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Abstract: The liver is considered an essential organ in the human body. Liver dis-
orders have risen globally at an unprecedented pace due to unhealthy lifestyles
and excessive alcohol consumption. Chronic liver disease is one of the principal
causes of death affecting large portions of the global population. An accumulation
of liver-damaging factors deteriorates this condition. Obesity, an undiagnosed
hepatitis infection, alcohol abuse, coughing or vomiting blood, kidney or hepatic
failure, jaundice, liver encephalopathy, and many more disorders are responsible
for it. Thus, immediate intervention is needed to diagnose the ailment before it is
too late. Therefore, this work aims to evaluate several machine learning algorithm
outputs, namely logistic regression, random forest, XGBoost, support vector
machine (SVM), AdaBoost, K-NN, and decision tree for predicting and diagnos-
ing chronic liver disease. The classification algorithms are evaluated based on var-
ious measurement criteria, such as accuracy, precision, recall, F1 score, an area
under the curve (AUC), and specificity. Among the algorithms, the random forest
algorithm showed better performance in liver disease prediction with an accuracy
of 83.70%. Furthermore, the random forest algorithm also showed better preci-
sion, F1, recall, and AUC metrics. Hence, random forest is considered the best
algorithm for early liver disease prediction.

Keywords: Machine learning; liver disease; prediction; classification; logistic
regression; random forest

1 Introduction

The liver assumes a central part in the coagulation cycle and the upkeep of hemostasis [1]. It is
considered one of the significant organs in the human body and the major vital organ with internal
functions, such as creating compounds, handling waste items, and eliminating destroyed tissues or cells.
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The liver presents with different illnesses that inevitably can cause it harm and other sorts of related illnesses.
Approximately 35 million individuals died because of chronic infections, as indicated by the World
Gastroenterology Organization (WGO) and the World Health Organization (WHO), and liver disorder is
one of the illnesses mentioned [2]. Because of high alcohol consumption, breathing of harmful gases, and
ingesting spoiled food, pickles, and medications, patients with liver sickness have persistently worsened.
An early analysis of liver issues may raise a patient’s recovery rate. Liver ailments can be analyzed by
examining the enzyme levels in the blood [3]. Presently, the prevalence of alcoholic liver disease (ALD)
has been growing. In some studies, age-standardized mortality associated with HCV is shown to have
risen from 7.17 per 100,000 people in 2007 to 8.14 per 100,000 people in 2013, accompanied by a
stamped decline when patients started direct-acting antiviral therapy treatments. Here, HCV represents the
hepatitis C infection. Even though HCV contamination has improved, the appearance of ALD has
increased, specifically in non-Hispanic Asians. There was a higher death rate for hepatitis B infection
contamination among non-Hispanic Asians.

Minorities in the United States have higher fatalities related to ongoing liver ailments [4]. Sometimes,
liver disease is challenging to diagnose in its early stages. We cannot discover the disease until the liver
function is partially damaged. Early diagnosis can be life-saving [5]. Currently, the examination of
predicting liver illness has been broadly contemplated. Several studies on artificial immune and genetic
algorithms have been reported for liver disease diagnosis [6]. Different classifiers with different data sets
indicate differences in diagnoses [7].

Globally, liver disease has become an alarming and life-threatening issue. Machine learning algorithms
can early help in early diagnosis to reduce risk. Analyzing the previous studies showed low performance.
Hence this research aims to achieve more satisfactory performance.

This research aims to determine the accuracy of several popular machine algorithms—XGBoost, SVM,
logistic regression, random forest, AdaBoost, Decision Tree, and K-NN—to predict liver diseases by
analyzing different data sets and comparing their performances. The main contributions are to find out (a)
the correlation matrix with the outcome, (b) the model performance of the lowest split to the higher split
of the training set, and (c) the best split of the training set.

The paper is organized as follows: Section 2 discusses related works, Section 3 presents the
methodology of the research, Section 4 demonstrates the outcomes of different machine learning
algorithms, and finally, the paper concluded in Section 5.

2 Related Works

Several machine learning models have been used for predicting liver illness. The goal is to research the
information mining calculations to predict liver infections on imbalanced information through periodic
testing. Each of the algorithms has been investigated based on different metrics such as accuracy and the
ROC index. K-Nearest Neighbor outflanked other calculations. Logistic regression, Auto Neural, and
random forest achieved well with the accuracy. A system was proposed to assess the efficiency and
accuracy of the used models to predict chronic liver disease (CLD). The study focused on structured data.
XGBoost Classifier, random forest, decision tree, and logistic regression were used for the best possible
output classification and prediction. The accuracies of logistic regression and XGBoost Classifier were
quite satisfactory. For the random forest model, the accuracy was approximately 74.57% [8]. Four meta-
learning algorithms were utilized to arrange the information for liver sickness. For clinical assessment,
diverse information mining strategies were available. In that examination, meta-learning algorithms were
investigated based on correct classification. For the AdaBoost algorithm, the correct classification rate
was 70.3259%. Logit boost and bagging both offered a 70.4974% correct classification rate [9]. Several
data sets were used for constructing classification models for the prediction of liver illness. Data mining
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classification algorithms were applied to the data sets, and the efficiency of all classifiers was balanced in
terms of precision, accuracy, and recall. The AP data set showed promising performance with the support
vector machine (SVM), with an accuracy of 71.24% [10], distinguishing the manifestation of liver
infection and power of liver harm when combined with appropriate imaging modalities, such as
ultrasound, CT scan, or MRI check to utilize decision tree, random forest, and support vector machine
algorithms. They utilized a current world data set and binary classification, which is fundamentally
classifying the elements of a given set into two groups—patients suffering from liver sickness or not.
They also used an ensemble-based approach to determine the best forecast accuracy [11]. The
observational measurable investigation to analyze the liver disease by applied machine learning models
for expectations of liver sicknesses used 1,640 instances. The data set contains individual and clinical
data. This study utilized machine learning models: K-NN, SVM, random forest, naïve Bayes, and
AdaBoost. The K-NN and AdaBoost models perform exceptionally, compared to other models, with
100% accuracy for predicting LDs [12]. A new classifier was proposed by extending the classifiers with
genetic algorithms. Several classification models and visualization techniques were compared and used to
predict liver disease and feature selection. The classifiers’ performances were measured based on
accuracies, recall precisions, f-measures, and time complexities. Among classifiers, logistic regression
showed an accuracy of 76%. It improves the accuracy of classification from experiments and comparative
studies, contributes to a reduction in classification time, and helps predict the disease. To assess several
machine learning algorithms’ performances and decrease the cost of protracted liver disease, this study
used algorithms, such as logistic regression, K-NN, decision tree, random forest, and SVM. The
algorithms were analyzed in the accuracy, precision, recall, F1 score, and specificity. The accuracies were
75%, 74%, 69%, 64%, and 62% for logistic regression, random forest, decision tree, SVM, and K-NN,
respectively. Among those algorithms, logistic regression showed the highest accuracy.

3 Methodology

The collected data set included 583 instances with 10 attributes and one outcome. Data sets were trained
with a division of 10 increments from 50% to 90%. Instances and data set features, data set training, feature
scaling, and application of the machine learning algorithms are explained in this section. The operational
flow of this study is shown in Fig. 1.

3.1 Instances and Data Set

We gathered CLD information From the UCI Machine Learning Repository. The data set contains
583 instances and 10 attributes. Tab. 1 presents the features or attributes, with mean and standard
deviations. Approximately 71.36% (416) of the data set is affected by liver disease. Out of these
583 people, 441 are male.

3.2 Feature Scaling

In machine learning, feature scaling is considered an essential step during preprocessing information
before creating an AI model [13].

3.3 Data Set Training

For repairing all the highlights of the appearing data set in Fig. 1, 10-increment data sets were trained
with train sizes of 50% to 90%.
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Figure 1: Flow chart of this study

Table 1: Features list

Serial Features Name Sub Category Data Distributions Data
Type

Mean ± Standard Deviations
(SD)

1 Age Minimum: 4 Mean: 44.746 Numeric

Maximum: 90 SD: 16.49

2 Gender Male 75.64% Nominal

Female 24.36%

3 Total Bilirubin Minimum: 0.4 Mean: 3.299 Numeric

Maximum: 75 SD: 6.21

4 Direct Bilirubin Minimum: 0.1 Mean: 1.486 Numeric

Maximum: 19.7 SD: 2.808

5 Alkaline Phosphotase Minimum: 63 Mean: 290.576 Numeric

Maximum: 2110 SD: 242.938

6 Sgpt Alamine
Aminotransferase

Minimum: 10 Mean: 80.714 Numeric

Maximum: 2000 SD: 182.62

7 Sgot Aspartate
Aminotransferase

Minimum: 10 Mean: 109.911 Numeric

Maximum: 4929 SD: 288.919
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3.4 Application of the Machine Learning Algorithms

This study applied logistic regression, K-NN, SVM, decision tree, random forest, XGBoost, and
AdaBoost algorithms. The algorithms are briefly described as follows.

3.4.1 Logistic Regression (LR)
Logistic regression (LR) is generally a linear model that is used for predicting binary variables. LR

technique is used for classifying a new observation of an unknown group. LR is a unique system for
gathering data into two random and exhaustive data collections [14].

3.4.2 K-Nearest Neighbors (K-NN)
K-NN is an elementary classification algorithm of machine learning. It gives an example of the most

preferred class among the neighboring K. K is a constraint for changing the classification algorithms [15].
In this study, we used 47 K neighbors and uniformly used weights. Uniform is a function where all kinds
of neighbored points are appropriately weighted. We also used leaf size 30. The leaf size affects the speed
of the implementation and the required memory. We used p = 2 and metric = ‘Minkowski’. Here, “p”
indicates the power parameter, and Minkowski is the default matrix.

3.4.3 Support Vector Machine (SVM)
SVM is a supervised measure of learning that can be used for classification and relapse problems, but it

is commonly used for characterization problems. SVM functions work admirably and can grasp linear
and nonlinear problems [16]. This study used an “RBF” kernel, which specifies the arrays or shapes used
in the algorithm.

3.4.4 Decision Tree (DT)
A decision tree (DT) is a data excavation model to tackle alliancing and categorizing issues. The DT is

generally a prime recursive block to cohere a continuous reckoning implementation. DT includes nodes
(parent) and leaves (child) [17]. This study used three max-leaf nodes and three criteria for DTs, for
which the random state was 0. The random state controls the estimator’s randomness, and 0 means that
the randomness was false in this case.

Table 1 (continued).

Serial Features Name Sub Category Data Distributions Data
Type

Mean ± Standard Deviations
(SD)

8 Total Proteins Minimum: 2.7 Mean: 6.483 Numeric

Maximum: 9.6 SD: 1.085

9 Albumin Minimum: 0.9 Mean: 3.142 Numeric

Maximum: 5.5 SD: 0.796

10 Albumin and Globulin Ratio Minimum: 0.3 Mean: 0.947 Numeric

Maximum: 2.8 SD: 0.32

11 Class (Outcome) liver_patient 71.36% Nominal

non_liver_patient 28.64%
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3.4.5 Random Forest (RF)
Random forest (RF) is a versatile, convenient model that exhibits different outputs. RF obstructs the

overfitting problem. It is one of the main versions of ensemble learning. Ensemble learning is defined by
using the same algorithm multiple times or using numerous algorithms [18]. In this study, we used
166 estimators. Estimators refer to existing tree numbers in a forest. We used the “entropy” criterion,
which is a function for measuring the quality. Here, the random state was zero. A random state is used
for controlling the randomness of the samples when building trees.

3.4.6 Extreme Gradient Boosting (XGBoost)
XGBoost is a supervised learning algorithm that implements a method to generate accurate models

called boosting. Supervised learning applies from a series of notable training examples to the task of
inferencing a predictive model [19]. Here, we used 40 estimators. Estimators are the number of
performing boosting stages. The subsample used here was 0.7, and the depth was 12. Subsample refers to
the fraction of samples to fit the base learners.

3.4.7 AdaBoost
AdaBoost is short for adaptive boosting. Fundamentally, AdaBoosting is a genuinely efficient prediction

of first boosting generated for a double order. For intellect boosting, it is the superior starting point. With
short DTs, AdaBoost is used. In addition, the primary tree is created, using the tree display on each
preparation event. It is used to weigh how much the following tree takes into account [20]. In this study,
we used 30 estimators, and the learning rate was 1. Estimator means the overall collection of sub-estimators.

4 Outcome

4.1 Accuracy

Accuracy is the measurement used for classification evaluation. Accuracy is usually the portion of
forecasting authentic prediction.

4.2 Precision

Precision is the dimension of positive predictions that define good predictions.

4.3 Recall

The recall is the component of the accumulated number of actual examples that have already
been retrieved.

4.4 F1 Score

The F1 score is an acceptable measure to take advantage of the event. An analogy between precision and
recall is found for observing the F1 score, and there remains a jagged class propagation.

4.5 AUC_ROC

The greater the ROC of the AUC, the stronger the portrayal of the model for separating the positive from
the negative classes.

4.6 Experimented Analysis

Fig. 2 shows the results and accuracies of the implemented machine learning algorithms. Fig. 2
represents the average accuracy of different trained data sets. With an increment, we trained several data
sets for the prediction of liver disease. We trained the models with 50% to 90% of data sets, and from the
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trained data sets, the overall accuracy is obtained. RF shows the best performance, with an average accuracy
of 77.21%. Fig. 3 shows the mutation of trained data with accuracy. We trained different data with different
size ranges of 50% to 90%. Fig. 3 shows that, at the 80% range of data training, the peak value is obtained for
all the applied algorithms. Only AdaBoost shows increased accuracy with the increasing trained size.

Figure 2: Average accuracy of applied algorithms in various train sizes

Figure 3: Train size (%) vs. accuracy (%)
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In contrast, the remaining algorithms give paramount performances and peak accuracy values in the
trained size realm at 80%. We considered 80% train size as the ideal size range for predicting the ailment
and obtained the accuracy, precision, recall, and F1 score at this size range for showing the maximum
peak value. In a 50% split, there is a higher chance of underfitting. On the other hand, 90% split
overfitting can occur. Applying the 80% split, this scenario can be overcome. Several researchers used
80% split to train their models [21,22].

From Tab. 2, we obtain the accuracy, precision, recall, and F1 score for those proposed algorithms. The
accuracy, precision, recall, and F1 score were 79.49%, 82.90%, 93.50%, and 87.80%, respectively, in the LR
algorithm. K-NN showed an accuracy, precision, recall, and F1 score of 81.20%, 82.60%, 96.80%, and
89.10%, respectively. SVM had an accuracy, precision, recall, and F1 score of 81.20%, 81.40%, 98.90%,
and 89.30%, respectively. The DT exhibits an accuracy, precision, recall, and F1 score of 79.40%,
79.50%, 100.00%, and 89.30%, respectively. RF shows an accuracy, precision, recall, and F1 score of
83.76%, 87.00%, 93.50%, and 90.10%, respectively. The accuracy, precision, recall, and F1 score were
82.00%, 87.00%, 90.30%, and 88.80%, respectively, for the XGBoost algorithm. AdaBoost showed an
accuracy, precision, recall, and F1 score of 76.00%, 84.90%, 84.90%, and 90.10%, respectively. From the
results of those applied algorithms, the RF showed satisfactory results among all applied algorithms. The
study found that RF showed extraordinary performance among the seven algorithms based on different
statistical performance measurements. Fig. 4 represents the AUC scores of the proposed algorithms from
the ROC curve. We observed that RF showed the highest AUC score from the obtained AUC scores,
which was 81.3%, and SVM showed the lowest score, which was 58.2%, among those seven algorithms.
From all the statistical results, this analysis showed that the RF algorithm had the highest accuracy with
precision, recall, F1 score, and AUC score of 83.76%, 87%, 93.5%, 90.1%, and 81.3%, respectively.

4.7 Comparison

Tab. 3 shows a comparative analysis. The algorithms, such as LR, SVM, K-NN, AdaBoost, LogitBoost,
BeggJ48, BeggRep, RF, naïve Bayes, DT (J48), multi-layer perceptron (MLP), BayesNet, and so forth, were
applied and achieved the highest accuracy score 81%. This study used the same data set as the previous study
but obtained better satisfactory performance. Among our applied algorithms, RF showed significant
performance, with an accuracy of 83.76%. However, other algorithms showed moderate performance for
the prognosis of liver disease at an earlier stage.

Table 2: Statistical results (80% train size) of this study

Algorithms Accuracy Precision Recall F1_score

Logistic 79.49% 82.90% 93.50% 87.88%

K-NN 81.20% 82.60% 96.80% 89.11%

SVM 81.20% 81.40% 98.90% 89.32%

DT 79.49% 79.50% 100.00% 88.57%

RF 83.76% 87.00% 93.50% 90.16%

XGBoost 82.05% 87.00% 90.30% 88.89%

AdaBoost 76.07% 84.90% 84.90% 84.95%

924 IASC, 2021, vol.30, no.3



Figure 4: ROC curve

Table 3: Comparisons with other existing systems

Reference No. Algorithm Name Accuracy Precision Sensitivity

[5] SVM 71% 64.1% 71.5%

Back Propagation 73.2% 65.7% 73.3%

[10] Logistic 73.39% 57.69% 22.73%

Linear LR 72.10% 52.17% 18.18%

SVM 71.24% 47.83% 16.67%

[23] LR 74.36% N/A N/A

RF 71.87

[24] DT 81% N/A N/A

RF 77%

SVM 77%

[25] LR 73.97% N/A N/A

SVM 71.97%

K-NN 73.97%

[26] AdaBoost 70.25 % N/A N/A

RF 69.26 %

[27] Naive Bayes 61.28% 55.8% N/A

SVM 79.66% 76.6%
(Continued)
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4.8 Nobility of This Study

It is observed that the RF algorithms provided the best performance result compared to other algorithms.
RF is an ensemble machine learning technique, and it creates several DT-based models, choosing the best
model to show a satisfactory outcome compared to other classifiers. This technique reduces the overfitting
problem and works for categorical and numeral values. This algorithm is a rule-based approach, which is
why data normalization is not mandatory. Several parameters are tuned in the python machine library; for
example, 166 estimators refer to existing tree numbers in a forest. The entropy function is used for
measuring the tree quality, which increases the model performance.

We used the same algorithm with the same data set in the abovementioned studies. In Singh et al. [23]
and [26], the authors used the same data set with the RF algorithm, with 71.87% and 69.26% accuracy,
respectively. They used a tenfold, cross-validation testing option, and the RF algorithm parameters were
missing in both papers. In Auxilia [24] and [28], the authors also used the RF algorithm, and the
accuracies were 77% and 70.32%, respectively. The authors did not mention the data set’s training and
test option. The algorithm parameter information was also missing in those studies. This study used the
same data set with RF and other popular algorithms and obtained a higher accuracy, precision, recall, and
F1 score. The methodology and algorithm parameters were mentioned in the Methodology section.

4.9 Discussions

The study results indicate that machine learning models can be used for liver disease prediction. The RF
model showed better results, compared to other models, for classification and prediction. RF had an accuracy
of 83%, whereas the precision, recall, and F1 scores of RF were 83.76%, 87%, 93.5%, and 90.1%,
respectively. The AUC score of RF was 81.3%. Though logistic showed a good recall of 93.5%, it had
comparatively a lower accuracy of 79.4% and an AUC score of 75.3%, which were lower than RF.

Similarly, SVM showed a high recall of 98.9%, but its overall accuracy was unsatisfactory. It showed a
lower AUC score of 58.2%. K-NN also showed a pleasant recall score of 96.8%, but it also showed
comparatively less accuracy, precision, and an AUC score of 81.2%, 81.4%, and 68.6%, respectively,
which were relatively lower than RF. AdaBoost showed a moderate performance, with an accuracy,
recall, F1 score, and AUC score of 76.7%, 84.9%, 84.94%, and 72.0%, respectively, which were sloppier
than RF. The recall value of the XGBoost algorithm was satisfactory, with a range of 90.3%, but it
showed less pleasant overall accuracy than RF. Lastly, the DT had a major recall of 100%, but its overall
performance was not satisfactory compared to RF. It showed comparatively low precision of 79.5% and
an accuracy of 79.4%, which was fewer than RF. Although we found the highest recall scores in SVM
and K-NN algorithms, both algorithms failed to reach the average accuracy, recall, precision, and
F1 scores; RF showed the best performance at every mentioned phase. From the analytical study and
comparisons of the performance according to average accuracy, precision, F1 score, and recall, RF
showed the performance beyond expectation. RF showed superior performance among all of the exoteric
algorithms. Therefore, RF is considered the best algorithm for the prediction of liver disease at an early stage.

Table 3 (continued).

Reference No. Algorithm Name Accuracy Precision Sensitivity

[28] J48 68.77% N/A N/A

SVM 71.35%

RF 70.32%

This Study RF 83.76% 87% 93.5%
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5 Conclusion

This paper demonstrated multiple prediction algorithms to predict and diagnose the liver disease at an
early stage. The data set showed different input parameters gathered, and we verified and trained the models
for the input parameters given. The prediction of liver disease was tested with greater precision by evaluating
the algorithms with an attribute collection and data set training. These findings identify novel factors to be
used specifically at an early stage by classifiers to detect liver disease. LR, RF, XGBoost, SVM, AdaBoost,
K-NN, and DT are constructed to predict liver disease. These findings showed that the RF model accurately
predicted patients with liver disease. Some of the algorithms performed well at some specific parameters, but
RF gave an excellent performance at every phase. Hence, RF is considered the best and most promising
algorithm for liver disease prognosis.
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