
Fault-Tolerant Communication Induced Checkpointing and Recovery Protocol
Using IoT

Neha Malhotra1,2,* and Manju Bala3

1I.K.Gujral Punjab Technical University, Kapurthala, 144603, India
2Lovely Professional University, Phagwara, 144411, India

3Khalsa College of Engineering and Technology, Amritsar, 143001, India
�Corresponding Author: Neha Malhotra. Email: mneha8789@gmail.com

Received: 01 April 2021; Accepted: 14 May 2021

Abstract: In mobile computing systems, nodes in the network take checkpoints to
survive failures. Certain characteristics of mobile computing systems such as
mobility, low bandwidth, disconnection, low power consumption, and limited
memory make these systems more prone to failures. In this paper, a novel mini-
mum process communication-induced checkpointing algorithm that makes full
use of the computation ability and implementation of effective stable storage in
a mobile computing system is proposed. The said approach initiates by taking
spontaneous checkpoints by each node in phase 1 using a logistic function that
is specifically used to estimate the time interval between two checkpoints and
saves them locally. In phase 2, each node takes checkpoints in a coordinated man-
ner using the Takagi–Sugeno (T–S) fuzzy system, which generates results based
on the interpretation of 39 rules specifically incorporated in the system to avoid
unnecessary and irrelevant checkpoints. Finally, the permanent checkpoints are
stored on IoT(Internet of things) to reduce the storage capacity of the system.
Quantitative analysis and experimental simulation prove that the proposed scheme
outperforms other communication-induced checkpointing schemes in terms of the
minimum number of processes required to take the checkpoints and communica-
tion cost. Simulation results prove that the checkpointing process becomes faster
as compared to the existing techniques due to a decrease in the latency wrt to the
number of nodes and storage of permanent checkpoints on IoT. With the advent of
network partitioning in the proposed system, the average computation loss has
also reduced as the rollback recovery takes place in a particular partition only,
not in the entire network. The overall approach makes a mobile distributed com-
puting system fault tolerant while non-blocking of the processes during the check-
pointing process.

Keywords: Checkpointing; distributed system; mobile computing; IoT; fault
tolerance

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI:10.32604/iasc.2021.019082

Article

echT PressScience

mailto:mneha8789@gmail.com
http://dx.doi.org/10.32604/iasc.2021.019082
http://dx.doi.org/10.32604/iasc.2021.019082


1 Introduction

The advancement in communication technology and its rapid development from wired to mobile
networks enables access to services anytime and anywhere by such a system. The devices using such
services are required to be equipped with resources so that the system can guarantee to operate even in
the presence of faults. Communication links in such systems are required to be failure-prone for the
smooth functioning of the system. Checkpointing-based recovery is a critical approach in making the
system as fault tolerable [1,2]. Checkpointing is a technique that focuses on the confinement of faults in
the system and its proper restoration from the stable states [3,4]. It is the process of saving a consistent
state of the process in a system so that the system can be recovered from the last consistent checkpoint in
case of fault. Most of the checkpointing techniques are not focusing on the stable storage concept, which
is one of the most critical resource challenges in mobile computing. The existing checkpointing protocols
cannot handle the challenges of mobile computing like, in mobile networks, resources are limited, and
due to the mobile nature of the nodes, frequent disconnections and reconnections are possible.

Moreover, to store the checkpoints, consistent, stable storage and implementation are required, which
has not been considered. To design an efficient checkpointing and recovery protocol, several points are
required to be addressed like, to get a most consistent and recent global state of checkpoints, overall
latency and computation cost of the messages should be less, must reduce the amount of energy and
bandwidth consumed, capable of handling frequent disconnections and reconnections in the network and
efficient mechanism to implement stable storage—the proposed protocol presented in this paper able to
handle all these challenges. The study’s objective is that the checkpoints were taken on a periodic time
interval in each node in the existing system. We see a potential improvement if we can make it dynamic
based on specific network environment conditions.

2 Related Work

Checkpointing approach can be classified into three different approaches: coordinated checkpointing
approach, uncoordinated checkpointing approach, and communication induced checkpointing approach.
In an uncoordinated approach, processes in the system can decide the time to take the checkpoint as they
do not depend on other processes in the system. The main advantage of this approach is that the
processes can reduce the overhead in the system by reducing the number of checkpoints to be taken.
However, there are several disadvantages of this approach, and the most subtle one is the domino effect
which can increase the overhead to a great extent in the system [5]. Secondly, processes may take
multiple checkpoints, which may not be required for consistent state capturing. Thirdly, this approach
requires garbage collection of all the new checkpoints. Using this approach requires more memory in the
system, which is a limited resource in mobile computing. In Guermouche et al. [6], and uncoordinated
checkpointing approach has been used to send deterministic apps. With the above usage, the domino
effect can be avoided using a small set of application messages.

Moreover, the protocol claims that the entire process need not roll back whenever a failure occurs in the
system. The said approach is helpful to address the burst access challenge. Another uncoordinated has been
proposed in Biswas et al. [7], in which each mobile node is required to keep a counter of how many clusters it
has traversed during a checkpointing interval. This counter is incremented whenever there is a change in the
cluster, and if this counter exceeds a predefined threshold, a checkpoint is required to be saved. In this
manner, a log has been developed to maintain this information required in failure. In a coordinated
approach, checkpoints can be taken in coordination with other processes in the system, and due to this
reason, the said approach is also called the asynchronous approach of taking checkpoints. Whenever a
process takes a new checkpoint, the old one has to be deleted. Upon initiating the checkpointing
algorithm, one process initiates it and is responsible for saving the consistent checkpoint on stable

946 IASC, 2021, vol.30, no.3



storage. In Mansouri et al. [8], authors have introduced an adaptive, coordinated, and non-blocking approach
to achieve fault tolerance in a mobile computing environment. In this scheme, only a few clusters are required
to checkpoints, not all of which result in no blocking processes. An adaptive fault-tolerant mechanism has
also been introduced by Cao et al. [9], which has reduced the synchronization messages and the number of
checkpoints.

Along with this, the approach has also made the checkpointing process non-blocking. Another technique
presented in Benkaouha et al. [10] has been designed based on the cluster-based routing protocol, and the
scheme ensures to take a minimum number of cluster-based checkpoints. The said scheme also reduces
the control and computation messages while reducing energy consumption and latency. In the third
approach, a combination of the above two approaches has been used. As in communication-induced
checkpointing, processes take checkpoints in two phases locally and globally. Once in an uncoordinated
manner at the node level and then in coordination with the partition manager. The main advantage of this
approach is that there is no domino effect which eventually prevents cascading termination. Authors in
Ahn [11] introduced an efficient protocol to detect Z-cycle free patterns but with no additional
computational messages. This approach promises to take few checkpoints.

In Garcia et al. [12], reviews the class of communication induced checkpointing protocols like Fully
Informed (FI) and Lazy-FI, FINE (Fully informed and efficient), and Lazy-FINE protocols, which are
classified as the best approaches towards this class of checkpointing. In Abdelhafidi et al. [13], two
communication induces protocols, namely CSFDAS and CSRDTP, that guarantee the RDT property
while reducing the overhead messages. These protocols ensure to carry a contact size of control
information which appended with the processes. Authors in Ahn [14] have introduced HMNR protocol to
control information of each process can be controlled, which eventually results in minimal forced
checkpoints. Also, the improved version of HMNR called Lazy-HMNR has been presented to lower the
number of Z-cycles. A formal framework to express the operational semantics of the existing snapshot
algorithms has been proposed in Kiehn et al. [15], which classifies the coordinated algorithm with
communication-induced algorithms. Since in literature, many checkpointing algorithms presented were
expressed using pseudo code only, hence authors have provided a framework for the evaluation.

3 System Model and Assumptions

In the proposed mobile computing system, nodes in the system have been divided into several partitions,
and each partition has its partition manager to look up for all the members of that partition. Partition
managers communicate with each other through particular nodes called gateways. Following assumptions
have been made to carry out the process:

First, nodes in the system take checkpoints in two phases, once locally and then globally. Second,
channels in the system are reliable that results in no message lost during the communication. Third, better
connectivity has been possessed by the nodes in the system, making these nodes enable to exchange
messages before disconnection and post reconnection to the network. Moreover, the T-S fuzzy system
helps to take forced checkpoints effectively.

4 Proposed Work

There are several protocols discussed in the literature. However, the main work of our study focuses on a
hybrid approach of checkpointing, which generally takes place in two phases: Phase1: in this phase, each
process in the system takes spontaneous checkpoint without coordinating with other processes and save it
in its local storage which eventually prevents storing a large number of checkpoints on stable storage that
further reduces the amount of energy and bandwidth consumed, Phase2: in this phase, checkpoints have

IASC, 2021, vol.30, no.3 947



been taken in coordination with the other processes in the system. The partition manager is the initiator,
initiates the process to record the consistent global checkpoint on stable storage while overcoming the
domino effect. To achieve this, the partition manager broadcasts to its member nodes to take checkpoints
which further propagate the same request to their neighbors. The most consistent and recent local
checkpoint, which has already been saved with each node during the phase1, has been transferred to the
stable storage so that a globally consistent and permanent checkpoint has been determined. Two
parameters have been initialized before initiating the checkpointing process, ‘α’ before phase 2 starts, the
count of messages taken by the nodes locally are represented using this, and ‘T’ is the time to decide
when to take the next checkpoint. Finally, the tentative checkpoints saved in IoT as permanent ones
depicted in Fig. 1. CP defines the checkpoints, MH defines the mobile host, next(i) is the counter that
increments after every ‘T’ time units, Sn(i) is the sequence number of the last checkpoint.

4.1 Phase1 (Take Spontaneous Checkpoints Using Logistic Function)

As each node takes checkpoints and saves them locally, then these inculcate the need to store the
sequence number of the checkpoints and the variable to decide the time interval for each checkpoint. In
our work, we have introduced the concept of logistic function to estimate the time intervals between two
checkpoints. To accomplish the same following parameters have been taken: Sni = Sequence number of
each checkpoint taken by the nodes and Ctri = Counter, which is incremented every time to decide
whether to take a random checkpoint or not. Information of the parameters mentioned above has been
maintained by each of the nodes in the network so that the same information can be piggybacked in the
computation messages to be shared with other nodes in the network. Based on the value of sequence
number and logistic functions, nodes will decide to take the next checkpoint in the sequence. The logistic
function is used for estimating the time interval between the random checkpoints, The equation for the
logistic function-based checkpointing is given below. This function works by first identifying the
parameters T_max, β, α and α0 as in (1) and in Fig. 2:

Figure 1: Step by step flow diagram for the proposed model

948 IASC, 2021, vol.30, no.3



T checkpointsð Þ ¼ Tmax

1þ e�bða�a0Þ (1)

Tmax = the maximum time interval between two checkpoints, ‘e’ is exponential, ‘a0’ is the logistic
function midpoint meaning at what checkpoint number the curve will become exponential, ‘b’ = growth
rate or the steepness of logistic function taking random checkpoints, ‘a’ maximum checkpoints that can
be taken.

The logistic function starts near 0, i.e., the node must take the first checkpoint immediately at first grows
slowly initially till the current number of checkpoints near a0, then grows very fast to reach Tmax and
eventually levels off and converges to the Tmax, i.e., the maximum allowed time interval between two
checkpoints as depicted in Fig. 3.

Figure 2: Time Interval for taking spontaneous checkpoint

Figure 3: Behavior of the curve at varying α0 and fixed β

IASC, 2021, vol.30, no.3 949



a0 and b control the shape of the curve as shown in figure changing a0 can make the initial checkpoint
interval slower and faster; however, in all cases, the curve converges to Tmax regardless of the no of
checkpoints or the growth rate b as shown in Fig. 4 below.

4.2 Phase 2 (Coordination Phase)

As the forced checkpointing decision depends on various scenarios, the overall goal is to reduce the
number of forced checkpoints and improve coordination. Taking checkpoints only when one node in the
system has performed its task leaves out many situations when forced checkpointing is needed; for
instance, what happens if the energy of one node drops below usable limits or the node moves out of the
range of the nearby coordinator. In these situations, the whole partition will be forced to go back to the
last checkpoint instead of the node suffering from these conditions; this affects the system as all the
nodes need to take a forced checkpoint when one node is either have completed work or forces all nodes
back to the last checkpoint when one node goes down [16]. This has the consequences like, it introduces
overall network overhead, it incurs extra latency forced checkpoints are taken more often, it decreases the
overall reliability of the network, and it makes the overall system pseudo-distributed.

ATakagi–Sugeno (T–S) fuzzy system has been taken into consideration for phase 2 of checkpointing as
depicted in Fig. 5, having three inputs a1, a2, and a3 an output b described by r fuzzy inference rules, some of
the rules taken for consideration are depicted in the table below. The reasoning for considering T-S-based
fuzzy systems is because they are more general than the Mamdani fuzzy systems. The T-S systems are
better as they allow parallel distributed control. A parallel distributed control is fundamental in the
development of any distributed checkpointing system.

T–S system is described by “IF-THEN” rules which represent local input/output relations. The main
characteristic of a T–S fuzzy model concerns the partitioning of a complex system with the help of input
models for capturing the system’s overall complexity obtained by the fuzzy blending of the set of inputs.
As the coordination phase can become complex very fast and ensure the overall reliability of the system,
a coordination phase for forced checkpointing using the T-S system based on Energy, Failure, and RSSI
is used, as depicted in Fig. 4 above. These specially selected parameters help nodes in the distributed
system decide when to take a forced checkpoint depicted in Tab. 1 below:

Figure 4: Behavior of the curve at varying α0 and β

950 IASC, 2021, vol.30, no.3



Kj: IF a1 2 Mj a1ð Þ AND a2 2 Nj a2ð ÞAND a3 2 Oj a3ð Þ; then b ¼Pj a1; a2; a3ð Þ (2)

where j = 1,2,…,r, Mj(a1), Nj(a2), Oj(a3), are fuzzy sets, and Pj (a1, a2, a3) is the polynomial of degree d.
degree d defines degree the of membership to that particular fuzzy variable. The inputs of the system are the
Remaining energy of the node, Node’s Failure Rate, and RSSI from the partition manager, the ranges for
defining the membership function are depicted in Tab. 2 below:

Figure 5: Takagi–Sugeno (T–S) fuzzy system for forced checkpointing

Table 1: Few rules of checkpointing in the Takagi-Sugeno fuzzy system

Energy Failure Rate RSSI Checkpoint

Very Low Low Unusable immediate

Low Low Normal Normal

Mid High Unusable immediate

High Mid High Normal

Very High Mid Unusable immediate

Table 2: Ranges of membership functions

Parameter Range

Remaining Energy 0-1 joules

Failure Rate 0-1

RSSI -120-0 db

IASC, 2021, vol.30, no.3 951



For the implementation of fuzzy membership rules, we have used Gaussian membership functions and
are defined by (3), (4), and (5); Gaussian MFs are because of their smoothness and concise notation. These
curves have the advantage of being smooth and nonzero at all points. Also, Gaussian functions are local but
not strictly compact, the desired output is very smooth, and Multivariate Gaussian functions can be formed
using different inputs as we have used in our case Remaining Energy of node, Failure Rate of node, and
RSSI, as depicted in Figs. 6, 7 and 8 respectively.

Figure 6: Membership function based on the remaining energy of the node

Figure 7: Membership function based on the failure rate of the node

952 IASC, 2021, vol.30, no.3



Sl a1ð Þ ¼ gauss a1; pl;rlð Þ ¼ exp � 1
2

a1 � pl
rl

� �2
 !

(3)

Pl a2ð Þ ¼ gauss a2; ql; dlð Þ ¼ exp � 1
2

a2 � ql
dl

� �2
 !

(4)

Rl a3ð Þ ¼ gauss a3; sl; @lð Þ ¼ exp � 1
2

a3 � sl
@l

� �2
 !

(5)

The output of the T–S system is computed by (6):

b ¼

Pr
j¼1

Mj a1ð ÞNj a2ð ÞOj a3ð ÞPj a1; a2; a3ð Þ
Pr
j¼1

Mj a1ð ÞNj a2ð ÞOj a3ð Þ
(6)

The fuzzy basis function (FBF) for the jth rule is given by (7):

nj a1; a2; a3ð Þ ¼ Mj a1ð ÞNj a2ð ÞOj a3ð ÞPr
j¼1

Mj a1ð ÞNj a2ð ÞOj a3ð Þ
(7)

Applying (7), the output of the T–S system can be written as (8) for the zero-order system:

b ¼
Xr
j¼1

nj a1; a2; a3ð Þxj (8)

Figure 8: Membership function based on the RSSI from the partition manager of the node

IASC, 2021, vol.30, no.3 953



And for the first-order and high-order systems as (9):

b ¼Pr
j¼1

nj a1; a2; a3ð Þam1 wmj þ . . .þ nj a1; a2; a3ð Þa1w1j

þnj a1; a2; a3ð Þam2 vmj þ . . .þ nj a1; a2; a3ð Þa2v1j
þnj a1; a2; a3ð Þam3 umj þ . . .þ nj a1; a2; a3ð Þa3u1j
þnj a1; a2; a3ð Þxj

(9)

As in (9) the fuzzy basic functions are multiplied by a1l , a2l , a3l where l = 1, 2, . . . , m. The modified
FBF (MFBF) for the jth rule is the function hl j (a1, a2, a3) or gl j (a1, a2, a3) or kl j (a1, a2, a3) given by
(10), (11) and (12):

hlj a1; a2; a3ð Þ ¼ nj a1; a2; a3ð Þal1 (10)

glj a1; a2; a3ð Þ ¼ nj a1; a2; a3ð Þal2 (11)

klj a1; a2; a3ð Þ ¼ nj a1; a2; a3ð Þal2 (12)

After applying (10), (11) and (12), (13) has been obtained:

b ¼Pr
j¼1

hmj a1; a2; a3ð Þwmj þ . . .þ h1j a1; a2; a3ð Þw1j

þgmj a1; a2; a3ð Þvmj þ . . .þ g1j a1; a2; a3ð Þv1j
þkmj a1; a2; a3ð Þumj þ . . .þ k1j a1; a2; a3ð Þu1j
þnj a1; a2; a3ð Þxj

(13)

For zero order, defined in (14);

hj a1; a2; a3ð Þ ¼ nj a1; a2; a3ð Þ;
wj ¼ xj

(14)

For first order, defined in (15);

hj a1; a2; a3ð Þ ¼ hmj; . . . ; h1j; gmj; . . . ; g1j; kmj; . . . ; k1jnj
h i

wj ¼ wmj; . . . ;w1j; vmj; . . . ; v1j;umj; . . . ; u1jxj
� �T
where dim hj

� �¼ dim wT
j

� 	
¼ 2dþ1

(15)

The output can we rewritten as (16) and (17):

b ¼ h1 a1; a2; a3ð Þ; . . . ; hr a1; a2; a3ð Þ½ �
w1

..

.

wr

2
64

3
75

¼ h a1; a2; a3ð Þw
(16)

h a1; a2; a3ð Þ ¼ h1 a1; a2; a3ð Þ; . . . ;hr a1; a2; a3ð Þ½ �;
w ¼ w1; . . . ;wr½ �T (17)

Fig. 9 above shows the output spread of output b described by r fuzzy inference rules, areas in red show
the condition for the forced checkpoint produced by the T-S fuzzy system. As the energy of the node drop

954 IASC, 2021, vol.30, no.3



below 20%, the node is forced to take a checkpoint at the stable storage. Similarly, if the node has a higher
failure rate, the node is forced to take checkpoints at the stable storage more frequently.

4.3 Storage of Permanent Checkpoints in IoT

To end the second phase of taking checkpoints, an already defined method by authors in Cao et al. [9]
has been used in which a variable is set to 1 in phase 1 by the initiator. Before sending the request, any node
divides that this variable by 2 for each of the recipients. To its response, the remaining value of this variable is
shared [17–20]. The initiator of phase 1 sums these values upon receiving the responses, and if the total of the
sum comes out to be one, then the second phase ends while converting the tentative checkpoints to permanent
checkpoints on IoT and asks other nodes in the network to do the same. This process is repeated, and all the
nodes delete their spontaneous and forced checkpoints whose sequence number is less than the permanent
checkpoint saved on IoT.

5 Simulation Parameters

Simulation of the proposed work is carried out in MATLAB by checking the effect of the increasing
value of ‘α’, i.e., the number of checkpoints and number of checkpoints taken in IoT. Following
parameters have been considered in Tab. 3 to carry out the same:

6 Performance Evaluation

Performance of the proposed work has been carried out using the parameters, checkpoints taken per
node; control messages count, latency of the system, and overhead of messages per node. Initially, the
performance is evaluated by determining how the method works if there is a change in the values of ‘α’.
Results generated have been given in Fig. 10, and Tab. 4, which depicts that number of nodes has no
impact on how many checkpoints have been taken, but the higher the value of ‘α’ lesser the coordination
among nodes. However, if the value of ‘α’ is less [21], several control messages are more, which results
in congestion. Hence, the figure shows that the proposed method can provide better results in any type of
application only by setting ‘α’ and stores the permanent checkpoints onto stable storage.

Figure 9: Effect of remaining energy and failure rate of the node on the decision to take a checkpoint

IASC, 2021, vol.30, no.3 955



Table 3: Simulation parameters

Area of network 1000 * 1000 m

Communication range 250 m

Nodes number 10-100

Mobility categorization Low, high, and medium

Time of simulation 1000 s

Mobility model Random waypoint mobility model

Fuzzy system T-S system

Tmax 500 ms

Beta 1.5

Threshold Alpha

Bandwidth (for IoT connection) 100 Mbps

Storage available in IoT 1 GB

Figure 10: Number of checkpoints stored in IoT vs. taken

Table 4: Number of checkpoints taken in IoT

25 Nodes 50 Nodes 100 Nodes

10.091 10.968 13.507

5.2297 5.4059 5.859

4.5344 4.6282 4.91

4.3329 4.4268 4.6865

4.2261 4.3415 4.5739

4.2259 4.2718 4.5864

956 IASC, 2021, vol.30, no.3



The following parameters used to access the performance of the proposed method are latency and
control messages overhead. As shown in Figs. 11 and 12, the latency started decreasing after some value,
mainly due to the more number of nodes as if the number of nodes is large, the possibility of message
transfer is more that eventually results in a faster-checkpointing process.

Overhead of messages per node increases with the nodes, which is on an average 23 in low mobility,
25.5 in mid mobility, and 28 in high mobility. However, the mode of message propagation helps to
simulate an exponential increase which is depicted in Fig. 13:

The performance of the proposed method has been measured on recovery by calculating the computation
loss, which is depicted in Fig. 14. It is evident from the figure that due to partitioning in the network, rollback
recovery occurs only in that partition, affecting the complete network and its functionality.

Figure 11: Impact of mobility on latency

Figure 12: Impact of α on coordination control messages

IASC, 2021, vol.30, no.3 957



As depicted in Fig. 15, it states how the records in IoT get impacted with disconnections which
eventually increases the records in IoT.

Figure 13: Number of the overhead of messages w.r.t. number of nodes at low, mid, and high mobility

Figure 14: Average computation loss concerning time

958 IASC, 2021, vol.30, no.3



7 Conclusion

A minimum process communication induced checkpointing algorithm with IoT has been presented to
achieve fault tolerance in a mobile distributed computing system which ensures the non-blocking of
processes during the checkpointing process. The proposed system helps to reduce the number of
checkpoints locally taken by mobile nodes and implements stable storage in IoT. The said approach
reduces the system overhead by minimizing the congestion of control messages among nodes. Moreover,
the dependency of nodes has been reduced as if one node is at fault; then it will not affect the other
nodes in the system to be rolled back. As a future direction, the proposed method can be implemented on
other distributed applications. Evaluation of the system can be done on various security threats like denial
of service attacks etc. Also, the impact of the proposed can be diagnosed on heterogeneous environments
and onto real-time hardware scenarios.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no interest in reporting regarding the present study.

References
[1] S. Biswas and S. Neogy, “Secured fault-tolerant mobile computing,” in Proc. Communication in Computer and

Information Science, vol. 191 CCIS, no. PART 2, pp. 417–429, 2011.

[2] C. Men, Z. Xu and D. Wang, “An efficient handoff strategy for Mobile Computing checkpoint system,” in Proc.
Embedded and Ubiquitous Computing, LNCS, pp. 410–421, 2007.

[3] S. Biswas and S. Neogy, “A mobility-based checkPointing protocol for mobile computing system,” International
Journal of Computer Science and Information Technology (IJCSIT), vol. 2, no. 1, February 2010.

[4] S. Biswas, P. Dey and S. Neogy, “Secure checkpointing-recovery using trusted nodes in MANET,” in Proc. - 4th
IEEE Int. Conf. on Computer Communication Technology ICCCT 2013, pp. 174–180, 2013.

[5] R. Tuli and P. Kumar, “New paradigms in checkpoint processing and recovery techniques for distributed mobile
systems,” Proc. Trends in Network and Communications, Communications in Computer and Information Science
CCIS, vol. 197, pp. 221–231, 2011.

[6] A. Guermouche, T. Ropars, E. Brunet, M. Snir and F. Cappello, “Uncoordinated checkpointing without domino
effect for send-deterministic MPI applications,” in Proc. - 25th IEEE Int. Parallel and Distributed Processing
Symposium, IPDPS, pp. 989–1000, 2011.

Figure 15: Impact of disconnections on records in IoT

IASC, 2021, vol.30, no.3 959



[7] S. Biswas and S. Neogy, “Mobility based checkpointing and trust-based recovery in manet,” International
Journal of Wireless & Mobile Networks, vol. 4, pp. 53–69, 2012.

[8] H. Mansouri, N. Badache, M. Aliouat and A. S. K. Pathan, “Checkpointing distributed application running on
mobile ad hoc networks,” International Journal of High-Performance Computing and Networking, vol. 11,
no. 2, pp. 95–107, 2018.

[9] G. Cao and M. Singhal, “On coordinated checkpointing in distributed systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. 9, no. 12, pp. 1213–1225, Dec. 1998.

[10] H. Benkaouha, N. Badache, A. Abdelli, L. Mokdad and J. Ben Othman, “A novel hybrid protocol of
checkpointing and rollback recovery for flat MANETs,” International Journal of Automation and Adaptive
Communication System, vol. 10, no. 1, pp. 114, 2017.

[11] J. Ahn, “Efficient communication induced checkpointing protocol for broadcast network-based distributed
systems,” Journal of Distributed and Parallel Processing, vol. 29, no. 1, pp. 1–12, 2019.

[12] I. C. Garcia, G. M. D. Vieira and L. E. Buzato, “A rollback in the history of communication induced
checkpointing,” submitted(arXiv:1702.06167 [cs. DC]), Feb. 2017.

[13] Z. Abdelhafidi, N. Lagraa, M. B. Yagoubi and M. Djoudi, “Low overhead communication-induced checkpointing
protocols ensuring rollback-dependency trackability property,” Concurrency Computation Practice and
Experience, vol. 29, pp. e4271, 2017.

[14] J. Ahn, “Reducing the overhead of distributed checkpointing with group communication,” Journal of advanced
information technology and convergence, vol. 10, no. 2, pp. 83–90, 2020.

[15] A. Kiehn and D. Aggarwal, “A study of mutable checkpointing and related algorithms,” Science of Computer
Programming, vol. 1, pp. 1–15, 2017.

[16] N. Malhotra and M. Bala, “Fault Diagnosis in Wireless Sensor Networks-A Survey,” in Proc.4th Int. Conf. on
Computing Sciences (ICCS), IEEE, pp. 28–34, 2018.

[17] X. Huang, R. F. Rojas, A. C. Madoc and D. Ahmad, “Evidentiary assessment for protecting WSNs from internal
attacks in real-time,” Int. J. Comput. Appl, vol. 39, no. 1, pp. 1–8, 2017.

[18] D. Sethi, P. Agrawal and V. Madaan, “X-Tumour: Fuzzy Rule-based Medical Expert System to Detect Tumours in
Gynecology,” International Journal of Control Theory and Applications, vol. 9, no. 11, pp. 5073–5084, 2016.

[19] A. Jain and C. Gupta, “Fuzzy logic in recommender systems,” in Fuzzy Logic Augmentation of Neural and
Optimization Algorithms: Theoretical Aspects and Real Applications. Cham: Springer, pp. 255–273, 2018.

[20] P. Kaur, P. Agrawal, S. K. Singh and L. Jain, “Fuzzy Rule-Based Students Performance Analysis Expert System,”
in Int. Conf. on Issues and Challenges in Intelligent Computing Techniques, IEEEXplore, pp. 104–109, 2014.

[21] R. Kaur, V. Madaan and P. Agrawal, “Fuzzy expert system to calculate the strength / immunity of a human body,”
Indian Journal of Science and Technology, vol. 9, no. 44, pp. 1–8, 2016.

960 IASC, 2021, vol.30, no.3


	Fault-Tolerant Communication Induced Checkpointing and Recovery Protocol Using IoT
	Introduction
	Related Work
	System Model and Assumptions
	Proposed Work
	Simulation Parameters
	Performance Evaluation
	Conclusion
	References


