
ATime-Efficient and Exploratory Algorithm for the Rectangle Packing Problem

Mohammad Bozorgi1, Morteza Mohammadi Zanjireh1,*, Mahdi Bahaghighat1 and Qin Xin2

1Computer Engineering Department, Imam Khomeini International University, Qazvin, Iran
2Faculty of Science and Technology, University of the Faroe Islands, Faroe Islands

*Corresponding Author: Morteza Mohammadi Zanjireh. Email: Zanjireh@eng.ikiu.ac.ir
Received: 22 December 2020; Accepted: 29 April 2021

Abstract: Today, resource waste is considered as one of the most important chal-
lenges in different industries. In this regard, the Rectangle Packing Problem (RPP)
can affect noticeably both time and design issues in businesses. In this study, the
main objective is to create a set of non-overlapping rectangles so that they have
specific dimensions within a rectangular plate with a specified width and an
unlimited height. The ensued challenge is an NP-complete problem. NP-complete
problem, any of a class of computational problems that still there are no efficient
solution for them. Most substantial computer-science problems such as the travel-
ing salesman problem, satisfiability problems (sometimes called propositional
satisfiability problem and abbreviated SAT or B-SAT), and graph-covering pro-
blems are belong to this class. Essentially, it is complicated to spot the best
arrangement with the highest rate of resource utilization by emphasizing the linear
computation time. This study introduces a time-efficient and exploratory algo-
rithm for the RPP, including the lowest front-line strategy and a Best-Fit algo-
rithm. The obtained results confirmed that the proposed algorithm can lead to a
good performance with simplicity and time efficiency. Our evaluation shows that
the proposed model with utilization rate about 94.37% outperforms others with
87.75%, 50.54%, and 87.17% utilization rate, respectively. Consequently, the pro-
posed method is capable to of achieving much better utilization rate in compari-
son with other mentioned algorithms in just 0.023 s running-time, which is much
faster than others.

Keywords: Rectangle packing problem; best-fit algorithm; lowest front-line
strategy

1 Introduction

Decreasing wasting of resources affecting industries and businesses can be very advantageous [1–7].
The rectangle packing problem (RPP) is one of the most practical issues in the industrial sector. The RPP
has many uses in various industries, including cutting leather, wood, metals, paper, glass, cloth, and
paperboard [8–11], for designing and manufacturing cars, fighters, and ships [12–14], very-large-scale
integration (VLSI) design [11,15–17], and even in similar issues like timing and replacement [18,19]. It
also has uses in the assignment and timing of the radio frequency spectrum [18].

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI:10.32604/iasc.2022.016075

Article

echT PressScience

mailto:Zanjireh@eng.ikiu.ac.ir
http://dx.doi.org/10.32604/iasc.2022.016075


In the RPP, there exists a set of rectangles with specific dimensions, and the aim is to arrange these
rectangles in a rectangular page with a fixed width and an unlimited height without overlapping, provided
that the packing is orthogonal [20]. It means that the sides of the rectangles that are inserted into the
rectangular page are parallel to the sides of the central page’s rectangle [16,21]. Also, the problem may
not be guillotine-cut. That means that the replaced rectangles cannot be placed in several groups
separated from the others by vertical or horizontal lines [8,17]. Rotation of the rectangles is acceptable,
but the rotation angle could be only 90 degrees [22,23].

In addition to waste reduction, increasing the utilization rate is one of the fundamental challenges in the
industry. The utilization rate equals the sum of the area of the input rectangles (

Pm
i¼1 wihi) divided by the area

of the main page (width × height). It is represented by U [22,24,25] and can be calculated by Eq. (1):

ss ¼
Pm

i¼1 wihi
ðwidth� heightÞ (1)

In this equation, width represents width of the main page, and height represents height of the main page,
(wi) and (hi) are the width and height of the replaced rectangles, respectively, and m is the number of these
rectangles [22].

In the past decades, various related algorithms have been presented due to its crucial role and importance
in the widespread applications. Despite a wide range of the RPP applications, the efficient implementation is
still a complicated task. The most fundamental challenge is that we should solve an NP-complete set problem
[20,24,26–29]. Therefore, with an increase in the problem scale, achieving a practical solution with an
appropriate run time could be difficult or even impossible.

The rest of this article is organized as follows. In the second section, the related works about the
rectangle packing context were discussed. In the third section, the methodology with the proposed
algorithm was presented in full detail. In the fourth section, achieved results were presented, and
ultimately the fifth section dealt with the conclusion.

2 Related Works

To solve the RPP, one of the most favorite algorithms that has attracted many researchers is the Best-Fit
algorithm. It is a multi-layered algorithm in which the layers are created gradually as the rectangles are
inserted. The rectangle places into the higher level, if it cannot be placed in a layer. In conclusion, the
rectangle will always be located in a layer that has less waste after insertion [8].

Hu et al. [11] have presented an algorithm based on Best-Fit and BL algorithms. Their algorithm has all
of the properties of the two mentioned algorithms. This algorithm categorizes the rectangles first and then
places the created categories one by one. This method is suitable for rectangles with different sizes but
with some restrictions to the number of input rectangles. The time complexity of this algorithm is O
(mMlogM), in which m and M could be equal to the number of input rectangles.

Liu et al. [22] presented a solution for the RPP by combining the lowest front-line algorithm with the
genetic optimization algorithm. Arrangement of the rectangles from the lowest point possible to the
highest point is a prominent feature of this algorithm that reduces space waste. It also utilizes a smart
function to cross local optimum modes. The long-running time of this algorithm for identifying and
improving various modes is its fundamental challenge.

Huang et al. [30] presented an algorithm based on two basic algorithms, including the Best-Fit algorithm
and particle swarm optimization (PSO) algorithm. They compared their method with the presented classical
methods and achieved more efficient results. However, the fundamental challenge of their approach is the
long-running time of the algorithm.

886 IASC, 2022, vol.31, no.2



Chazelle [31] introduced an algorithm called Bottom Left Fill (BLF). The number of possible modes for
inserting a rectangle was decreased in the BLF algorithm. While in the BL algorithm, it is impossible to use
the leftover spaces from placing the rectangles, in the BLF algorithm, the rectangle is placed at the lowest
point possible. The BLF algorithm uses unused spaces. The time complexity of this algorithm is O(n2),
where n is the number of inputs. This means that this algorithm is not scalable well.

Liu et al. [32] developed an algorithm for the RPP based on two algorithms, including the BL algorithm
and the genetic algorithm (GA). They improved the initial BL algorithm because it does not identify some of
the modes. As the mode in which the rectangles are alternately big and small, the big rectangles have
ascending sizes, and the small ones have descending scales. The decisive point of this algorithm is the
use of an intelligent crowd function for the GA (genetic algorithm). The running order of this algorithm
is O(n2).

3 Structure

In this section, at first, two algorithms including the Best-Fit decreasing height algorithm and the lowest
front-line strategy are introduced. Then, the researchers present the proposed model in this research in its
details.

3.1 The Lowest Front-Line Strategy

An acceptable paper size is US Letter (8:500 � 1100 or 21:59 cm� 27:94 cm). All margins—top,
bottom, left, and right—are set to 1″ (2.54 cm). The paper must be single column, single-spaced, except
for the headings as outlined below. The acceptable font is Times New Roman, 11 pt., except for writing
special symbols and mathematical equations.

The lowest front-line strategy is designed based on the BL algorithm and is defined as follows [22]:

� The first step: The algorithm starts with the initial quantification of the front line. In the beginning, the
front lines set contained only one line, and that is the horizontal line at the bottom of the page.

� The second step: Locating the rectangle in a place using the lowest front-line strategy. pi is the position
where the i − th rectangle is placed. First, we select and check one line of the front line set to see
whether the width of the rectangle that is going to place is equal to or smaller than the width of
the selected line. If the conditions are true, that rectangle will be placed at the top left of the page.
If the conditions are not true, the height of the lowest line is increased until it reaches the second
lowest front line, and the conditions will be rechecked. This process repeats until one line of the
front line set gets selected. In this step, if several lines exist with the lowest heights, the selection
will be based on the X-axis. If height is increased from a lower line to a higher line, they will be
merged.

� The third step: In this step, the front line will be updated. Some of the old lines will be converted to
new lines, and new lines will be added to the front line set. As the points mentioned in the second step,
the adjacent lines with equal height must be merged to form a single line.

� The fourth step: If all rectangles are placed, the algorithm ends, otherwise a new rectangle will be
selected, and the process will continue to the second step.

Fig. 1 demonstrates an example of the lowest front-line strategy. P1 will be selected for {A1A5}, and after
that, the front line will be {E1E2, A2A5}. In the same way, p2 will be selected for {A2A5}, and after the
placement, the front line will be {E1E2, B1B3, A3A5}. Similarly, after placing the p3 rectangle in {A3A5},
the front line will be {E1E2, B1B3, C1C2, A4A5}. In this point, the lowest line is {A4A5}, and it does not
have enough space to place P4. So, the height of {A4A5} was increased until it reaches {B1B3}, the

IASC, 2022, vol.31, no.2 887



second-lowest front line. Finally, the {B1B3} line will be selected to place the P4 rectangle, and the front line
is {E1E2, D1D2, B2B3, c1c2, B4B5} at the end [22].

The lowest front-line strategy does not sort the input rectangles before placing them. Actually, this is a
challenge for this algorithm. It increases page height and decreases the utilization rate. This algorithm always
tries to find the lowest and the leftmost point possible to place the rectangles. The way the height increases in
this algorithm is its positive point.

3.2 The Best-Fit Decreasing Height Method

In the Best-Fit decreasing height algorithm, the rectangles are first sorted in decreasing order. Then, the
biggest rectangle will be placed at the bottom-left corner, and the first layer will be created. To place the next
rectangles, if the rectangles could not be placed in the created spaces of the created layer, we create a layer
above the highest layer and place the rectangle in it. If there are several layers with enough space to place the
rectangles, a layer will be selected with less waste after the rectangle placement [33,34]. The time complexity
of this algorithm is O(nlogn) [35].

The Best-Fit decreasing height algorithm is layered well, and it is suitable for non-guillotine cut issues.
Finding the best position with the lowest waste is waste is a noticeable advantage of this algorithm. Also, due
to sorting the inputs, this algorithm has a better utilization rate compared to the Best-Fit algorithm without
sorting. In this algorithm, we cannot place a rectangle between two layers, and this causes wasting.
Therefore, we can place the rectangle between the layers in the proposed algorithm.

This study presents an algorithm with the properties of both Best-Fit decreasing height algorithm and the
lowest front-line strategy. This algorithm, similar to the Best-Fit method, always tries to find the best position
for the rectangle. However, this algorithm aims to decrease the total height by increasing the height of the
layers, inspired by the lowest front-line strategy.

3.3 The Proposed Algorithm

The steps of the proposed algorithm are as follows:

The first step: At first, the algorithm starts with initial quantification. The height of this page is zero
initially, and its final value is specified at the end of the algorithm. In this algorithm, there exist a set of
lines called the front line for saving empty spaces. In the beginning, the front line is the bottom
borderline of the page. The information of the input rectangles such as width, height, and the number of
each one will be received at this stage of the algorithm.

Figure 1: The lowest front-line strategy

888 IASC, 2022, vol.31, no.2



In this algorithm, an array was used to reserve empty spaces. The first row of this front-line array is the
starting point of the line, the second row of the front-line shows the endpoint of the line, the third row of the
front-line array represents the distance of this line from the lowest front line, which is the bottom borderline
of the page, and the fourth row of the front-line array shows the height of the next front-line after this line.
With these four points, we can imagine a rectangle. If the value of the fifth row of the front-line array is 1, it
means that this line is not occupied, and when a rectangle is placed, this value will become −1. The fifth row
of the array is added to adhere to the not-overlapping assumption. When placing rectangles into a line using
the fifth row of the front-line array, it will be checked whether it is full or empty.

The second step: In this step of the algorithm, the rectangles with more height than width will be rotated
90 degrees. It means that the height and the width will be replaced.

The third step: In this step, the rectangles will be sorted in decreasing height size order.

The fourth step: A rectangle will be selected from the beginning of the inputs list, and then, we search
among the front-lines set for a place with enough space for the rectangle. Then, among the selected lines, we
choose a line that has less waste. At this point, there are three modes:

� If a line is found among the front-lines set with sufficient width and height for placing the rectangle,
we select it; and if there are several lines for placing, we choose the one that wastes less space.

� If we cannot find a line with the required height and width, we start searching among the longest front-
lines for a line that has the required width for placing the rectangle. Also, if there are several lines, we
choose the one that has less width and increases the height of the page lesser.

� If we cannot find a position to place the rectangle in the two predicted modes mentioned above; and if
we did not find any line that has enough space for placing the rectangle, then we create a new layer
above the longest front-line and place the rectangle in the bottom-left of the created layer and increase
the height of the page.

The fifth step: In this step, we update the front-line and empty spaces, and convert some of the old lines
into new lines and also add new lines. In addition, we must identify all of the empty spaces. Then, we try to
identify all of the empty houses that have common borders. In order to make the most of the wasted space
available, if one or more than two houses have common borders, it must be merged with the house that
creates larger free space after merging compared to other houses. This step plays an essential role in
reducing waste.

The sixth step: In this step, we check the ending of the algorithm. If there is not a rectangle in the input
list to place, the algorithm ends. Otherwise, we go to the beginning of the fifth step and continue the
algorithm again. In the end, we calculate the utilization rate of the algorithm. Fig. 2 shows the flowchart
of the algorithm process.

Figure 2: The semi-code of the proposed algorithm

IASC, 2022, vol.31, no.2 889



4 The Experimental Results

In this study, the MATLAB programming language was used in a PC with Intel(R) Core(TM) i7 and
12 GB internal storage. The data was deployed using the Liu algorithm [22] for the evaluation of the
algorithms. Tab. 1 shows these data, and also, the width of the rectangle page is 400 units. Then, the
achieved results of the proposed algorithm were compared with the Liu study [22], Best-Fit, and front-line.

Tab. 2 shows the results of all mentioned algorithms. It indicates that the proposed algorithm has the best
performance about 94.37% compared to 87.75%, 50.54%, and 87.17% for other algorithms. Besides, our
method reached the utilization rate of 94.37% in just 0.023 s, well below others. Whereas the method
presented in [22] reached the utilization rate average of 85.51% after 300 times repeating the algorithm
and 26.3 s, and at best, it has reached the rate of 87.75%.

Fig. 3 plots the utilization rate of the three Best-Fit decreasing height, the lowest front-line strategy, and
the proposed algorithms. In this figure, the utilization rate percentage of every algorithm has been drawn after
placing each rectangle. The horizontal axis represents the number of placed rectangles, and the vertical axis
represents the utilization rate percentage.

Fig. 4 shows the run time vs. number of rectangles of the three algorithms, including Best-Fit decreasing
height, the lowest front-line strategy, and the proposed algorithm. In this figure, the best running time belongs
to the proposed algorithm.

4.1 The Effect of the Sorting and Rotation on the Utilization Rate

In this section, we analyze the effects of the sorting and rotation on the utilization rate. Sorting the input
rectangles has a significant impact on the utilization rate. We sorted the input rectangles in descending order
of height, width, and area of the rectangles, and then we ran the algorithm. The results of running the
algorithm show that sorting in descending order of height has better results. Tab. 3 shows the results of
this comparison, and Fig. 5 shows the utilization rate for various sorting modes.

Table 1: Basic data presented in [22]

Number 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20

Width 25 18 79 121 29 64 48 11 46 4 5 6 7 8 9 10 11 10 50

Height 36 24 84 30 48 98 59 17 121 22 41 72 25 65 24 11 36 30 61

Quality 4 5 3 4 11 2 3 2 2 1 2 2 2 2 3 2 2 3 2

Table 2: Comparison of the proposed algorithm implementation results with the Best-Fit, front-line, and Liu
algorithms

Algorithm The proposed Liu Front line Best-Fit

Utilization 94.37% 87.75% 50.54% 87.17%

Run time(s) 0.023 26.3 0.042 0.031

890 IASC, 2022, vol.31, no.2



The rotation step was removed to run the algorithm again. Then, the new results were compared with the
algorithm while considering the rotation. The results showed that the rotation has a positive effect on the
utilization rate. Tab. 4 shows the results of this experiment. Fig. 6 draws a comparison between running
the algorithm with and without the rotation.

Figure 3: The utilization rate of the three Best-Fit decreasing height, the lowest front-line strategy, and the
proposed algorithms

Figure 4: The running time of the Best-Fit decreasing height algorithm, the lowest front-line strategy, and
the proposed algorithm

IASC, 2022, vol.31, no.2 891



Figure 5: The utilization rate of the proposed algorithm with different sorting

Table 3: The results of running the proposed algorithm with different sorting

Sort type None Width Area Height

Utilization rate 69.25% 72.22% 87.89% 94.37%

Runtime(s) 0.30 0.036 0.036 0.023

Table 4: The results of the proposed algorithm implementation with removing the rotation step and sorting

Impact of step Run-time(s) Utilization rate Deleted step

14.75% 0.032 82.24% Rotation

36.27% 0.030 69.25% Sort

892 IASC, 2022, vol.31, no.2



4.2 Comparing the Algorithm with Random Data

Comparing the algorithm with low-volume data and also, in some cases, comparing the algorithm with
high-similarity data, is one of the challenges of the presented algorithms. Practically, there are various data
with different sizes in the industry. Therefore, in this section, the proposed algorithm, the lowest front-line
strategy, and the Best-Fit algorithm were analyzed by producing random data. The obtained results show that
the utilization rate of the proposed algorithm is better than the other two algorithms. In addition, it has a
shorter running time. Tab. 5 shows the utilization rate and the running time of these algorithms. Fig. 7
indicates the utilization rate of the Best-Fit, front-line, and proposed algorithms with random data. Also,
Fig. 8 shows the running time of these three algorithms.

4.3 The Time Complexity

The proposed method has the polynomial-time complexity. As a result, it needs maximum O(m) time for
searching between m front-lines and finding the proper line to place the rectangle. This task must be done for
all of the rectangles, and the total number of rectangles is n. Therefore, the time complexity of this algorithm
is generally linear in time order and equals O(nm). The results of the implementation indicate that the value of
m is always less than n. It means that at the end, the total number of the front-lines is always less than the total
number of the rectangles. In Tab. 5, the total number of rectangles column is n, the total number of front-lines
column is m, and m is always less than n. Fig. 9 demonstrates how the number of front-lines increases per
number of input data.

Figure 6: The utilization rate of the proposed algorithm with & without the rotation step

IASC, 2022, vol.31, no.2 893



Table 5: The results of the utilization rate of the proposed algorithm by producing random data

Run-time(s) Utilization rate Amount of front-
line in the
proposed
algorithm

Amount
of
rectangles

N

The
proposed
algorithm

Best-Fit Front line The
proposed
algorithm

Best-Fit
Front line

0.061439 0.113711 0.135782 0.9680 0.9044 0.8213 142 283 50

0.179677 0.268977 0.365532 0.9759 0.9261 0.8076 294 560 100

0.268492 0.679887 0.940690 0.9722 0.9212 0.8018 379 808 150

0.561501 1.371588 1.670308 0.9720 0.9088 0.7620 498 1102 200

0.784825 1.683756 3.098013 0.9720 0.9355 0.7979 616 1444 250

1.136259 2.152571 3.692223 0.9735 0.9459 0.7850 672 1684 300

1.687331 3.185944 5.856734 0.9718 0.9281 0.8020 747 1972 350

1.792151 4.626413 6.491700 0.9737 0.9384 0.7742 836 2117 400

2.338938 6.179962 8.555913 0.9682 0.9335 0.7860 924 2380 450

2.532763 7.593715 12.461293 0.9705 0.9581 0.7893 1026 2738 500

2.609368 8.936252 16.055307 0.9695 0.9454 0.7790 1100 3012 550

3.789860 7.678264 17.209783 0.9737 0.9408 0.7863 1126 3260 600

3.503998 12.119956 21.050525 0.9750 0.9314 0.8077 1235 3497 650

5.143389 14.592887 27.870559 0.9710 0.9426 0.8253 1328 3955 700

5.692376 16.248161 30.576511 0.9693 0.9485 0.7703 1348 4110 750

6.548756 20.146549 38.626904 0.9768 0.9537 0.7935 1448 4534 800

5.552323 20.865130 41.414833 0.9673 0.9508 0.7987 1464 4592 850

7.132780 22.115729 48.515116 0.9740 0.9447 0.7807 1503 4819 900

8.174483 26.831960 57.326876 0.9691 0.9548 0.7943 1501 5244 950

9.152594 23.973368 65.242514 0.9678 0.9425 0.7896 1744 5763 1000

10.860228 34.939327 78.368714 0.9655 0.9531 0.7831 1644 6055 1100

9.508915 40.207071 99.702676 0.9675 0.9550 0.7966 1730 6615 1200

14.972989 46.728704 113.762547 0.9657 0.9625 0.7896 1909 7044 1300

16.997029 26.938338 411.017108 0.9708 0.9479 0.7981 1984 7671 1400

18.103096 28.565729 478.56225 0.9695 0.9673 0.8027 2008 8164 1500

21.743997 33.262568 598.293248 0.9681 0.9603 0.7964 2194 8796 1600

24.726140 38.004280 723.358521 0.9715 0.9596 0.7852 2232 9415 1700

25.643730 42.053160 786.529926 0.9706 0.9625 0.8030 2383 9853 1800

24.416149 45.981673 971.096964 0.9749 0.9517 0.7884 2750 10555 1900

31.034617 50.574680 1128.696616 0.9659 0.9603 0.7944 2623 11030 2000

894 IASC, 2022, vol.31, no.2



Figure 7: The utilization rate of the Best-Fit, front-line, and proposed algorithms with random data

Figure 8: The running time of the Best-Fit, the front-line, and the proposed algorithms with random data

IASC, 2022, vol.31, no.2 895



5 Summary and Conclusion

In this study, an efficient algorithm was presented for the Rectangle Packing Problem (RPP). RPP
struggles to insert a set of non-overlapped rectangles (with specific features) in a rectangular space (with
a constant width and an unlimited height), providing that the packing is orthogonal. To this end, we have
implemented the proposed algorithm along with the Best-Fit decreasing height and the lowest front-line
strategy. Our evaluation shows that the proposed model with utilization rate about 94.37% outperforms
others with 87.75%, 50.54%, and 87.17% utilization rate, respectively. Consequently, the proposed
method is capable to of achieving much better utilization rate in comparison with other mentioned
algorithms in just 0.023 s running-time, which is much faster than others.

The proposed method has the polynomial-time complexity. It is generally linear in time order and equals
O(nm). The results indicate that the value of “m” is always less than “n”. It means that, at the end, the total
number of the front-lines is always less than the total number of the rectangles.

This problem is NP-complete and has numerous local extremum points. Consequently, it is possible that
the presented algorithm cannot find some global extrema. Therefore, we can use this algorithm along with
GA or unsupervised learning models [36] to solve it for future studies. In the future, we first consider a
solution to the problem with the Best-Fit algorithm presented in this study. Then, we improve our model
every time that we repeat GA.

Funding Statement: The author(s) received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] A. E. Kelishomi, A. Garmabaki, M. Bahaghighat and J. J. S. Dong, “Mobile user indoor-outdoor detection

through physical daily activities,” Sensors, vol. 19, no. 3, pp. 511, 2019.

Figure 9: The comparison between the number of rectangles and the number of front-lines

896 IASC, 2022, vol.31, no.2



[2] M. Bahaghighat and S. A. Motamedi, “Psnr enhancement in image streaming over cognitive radio sensor
networks,” Etri Journal, vol. 39, no. 5, pp. 683–694, 2017.

[3] M. Bahaghighat, Q. Xin, S. A. Motamedi, M. M. Zanjireh and A. Vacavant, “Estimation of wind turbine angular
velocity remotely found on video mining and convolutional neural network,” Applied Sciences, vol. 10, no. 10,
pp. 3544, 2020.

[4] M. Ghorbani, M. Bahaghighat, Q. Xin and F. Ozen, “ConvLSTMConv network: A deep learning approach for
sentiment analysis in cloud computing,” Journal of Cloud Computing, vol. 9, no. 1, pp. 1–12, 2020.

[5] F. Abedini, M. Bahaghighat and M. S’hoyan, “Wind turbine tower detection using feature descriptors and deep
learning,” Facta Universitatis, Series: Electronics and Energetics, vol. 33, no. 1, pp. 133–153, 2019.

[6] M. Bahaghighat, F. Abedini, M. S’hoyan and A. J. Molnar, “Vision inspection of bottle caps in drink factories
using convolutional neural networks,” in IEEE 15th Int. Conf. on Intelligent Computer Communication and
Processing, Cluj-Napoca, Romania, pp. 381–385, 2019.

[7] M. Bahaghighat, L. Akbari and Q. Xin, “A machine learning-based approach for counting blister cards within
drug packages,” IEEE Access, vol. 7, pp. 83785–83796, 2019.

[8] A. K. Virk and K. Singh, “Solving multi-objective two dimensional rectangle packing problem,” in Proc. of Sixth
Int. Conf. on Soft Computing for Problem Solving, Patiala, India, Springer, pp. 188–196, 2017.

[9] Y. Hu, H. Hashimoto, S. Imahori, T. Uno and M. J. Yagiura, “A partition-based heuristic algorithm for the
rectilinear block packing problem,” Journal of the Operations Research Society of Japan, vol. 59, no. 1, pp.
110–129, 2016.

[10] D. Zhang, Y. Che, F. Ye, Y.W. Si and S. Leung, “A hybrid algorithm based on variable neighbourhood for the strip
packing problem,” Journal of Combinatorial Optimization, vol. 32, no. 2, pp. 513–530, 2016.

[11] Y. Hu, S. Fukatsu, H. Hashimoto, S. Imahori and M. Yagiura, “Efficient overlap detection and construction
algorithms for the bitmap shape packing problem,” Journal of the Operations Research Society of Japan, vol.
61, no. 1, pp. 132–150, 2018.

[12] P. K. Agarwal and M. Shing, “Oriented aligned rectangle packing problem,” European Journal of Operational
Research, vol. 62, no. 2, pp. 210–220, 1992.

[13] A. K. Virk and K. J. Singh, “Solving bi-objective two-dimensional rectangle packing problem using binary cuckoo
search,” International Journal of Computer Science and Information Security, vol. 14, no. 7, pp. 165, 2016.

[14] Y. H. Zhu, “Parameter analysis of placement function for the rectangular packing problem based on GA,” in
Materials Science Forum, vol. 836, pp. 381–386, 2016.

[15] S. Wang, “Solving rectangle packing problem based on heuristic dynamic decomposition algorithm,” in 2nd Int.
Conf. on Electrical and Electronics: Techniques and Applications, Beijing, China, pp. 187–196, 2017.

[16] K. Jansen and R. J. D. O. Solisoba, “Rectangle packing with one-dimensional resource augmentation,” Discrete
Optimization, vol. 6, no. 3, pp. 310–323, 2009.

[17] L. Wei, W. Zhu, A. Lim, Q. Liu and X. J. Chen, “An adaptive selection approach for the 2D rectangle packing area
minimization problem,” Omega, vol. 80, pp. 22–30, 2018.

[18] E. Huang and R. Korf, “Optimal rectangle packing: An absolute placement approach,” Journal of Artificial
Intelligence Research, vol. 46, pp. 47–87, 2013.

[19] A. Bortfeldt, “A reduction approach for solving the rectangle packing area minimization problem,” European
Journal of Operational Research, vol. 224, no. 3, pp. 486–496, 2013.

[20] R. Mohanty and P. Kiran, “New results on next fit and first fit on-line algorithms for square and rectangle
packing,” in Int. Conf. on Advances in Computing, Communications and Informatics, Udupi Karnataka, India,
pp. 2201–2207, 2017.

[21] M. Chlebik and J. Chlebikov, “Hardness of approximation for orthogonal rectangle packing and covering
problems,” Journal of Discrete Algorithms, vol. 7, no. 3, pp. 291–305, 2009.

[22] H. Liu, J. Zhou, X. Wu and P. Yuan, “Optimization algorithm for rectangle packing problem based on varied-
factor genetic algorithm and lowest front-line strategy,” in IEEE Congress on Evolutionary Computation,
Beijing, China, pp. 352–357, 2014.

IASC, 2022, vol.31, no.2 897



[23] N. Bansal and A. Khan, “Improved approximation algorithm for two-dimensional bin packing,” in Proc. of the
Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, Portland Oregon, USA, pp. 13–25, 2014.

[24] J. Marberg and J. Schneider, “Rectangle packing with additional restrictions,” Theoretical Computer Science, vol.
412, no. 50, pp. 6948–6958, 2011.

[25] A. Joos, “Perfect packing of cubes,” Acta Math. Hungar, vol. 156, no. 2, pp. 375–384, 2018.

[26] Y. L. Wu, W. Huang, S. Lau, C. Wong and G.Young, “An effective quasi-human based heuristic for solving the
rectangle packing problem,” European Journal of Operational Research, vol. 141, no. 2, pp. 341–358, 2002.

[27] R. E. Korf, “Optimal rectangle packing: Initial results,” in Proc. of the Thirteenth International Conference on
Automated Planning and Scheduling, Trento, Italy, pp. 287–295, 2003.

[28] Q. Li, S. Yang and S. Zhu, “Solving 2D rectangle packing problem based on layer heuristic and genetic
algorithm,” in 4th Int. Conf. on Intelligent Human-Machine Systems and Cybernetics, Nanchang, China,
vol. 2, pp. 192–195, 2012.

[29] W. Huang, D. Chen and R. Xu, “A new heuristic algorithm for rectangle packing,” Computers & Operations
Research, vol. 34, no. 11, pp. 3270–3280, 2007.

[30] L. Huang, Z. Liu and Z. Liu, “An improved lowest-level best-fit algorithm with memory for the 2D rectangular
packing problem,” in 2014 Int. Conf. on Information Science, Electronics and Electrical Engineering, Hokkaido,
Japan, vol. 2, pp. 1279–1282, 2014.

[31] B. J. Chazelle, “The bottomn-left bin-packing heuristic: An efficient implementation,” IEEE Transactions on
Computers, vol. 32, no. 8, pp. 697–707, 1983.

[32] D. Liu and H. Teng, “An improved BL-algorithm for genetic algorithm of the orthogonal packing of rectangles,”
European Journal of Operational Research, vol. 112, no. 2, pp. 413–420, 1999.

[33] N. Ntene and J. V. Vuuren, “A survey and comparison of guillotine heuristics for the 2D oriented offline strip
packing problem,” Discerete Optimization, vol. 6, no. 2, pp. 174–188, 2009.

[34] D. Garg, “Parallelizing generalized one-dimensional bin packing problem using mapReduce,” in 2014 in IEEE
Int. Advance Computing Conf., New Delhi, India, pp. 628–635, 2014.

[35] A. Lodi, S. Martello and M. Monaci, “Two-dimensional packing problems: A survey,” European Journal of
Operational Research, vol. 141, no. 2, pp. 241–252, 2002.

[36] E. Amouee, M. M. Zanjireh, M. Bahaghighat and M. Gorbani, “A new anomalous text detection approach using
unsupervised methods,” FACTA University, Series: Electronics and Energetics, vol. 33, no. 4, pp. 631–653, 2020.

898 IASC, 2022, vol.31, no.2


	A Time-Efficient and Exploratory Algorithm for the Rectangle Packing Problem
	Introduction
	Related Works
	Structure
	The Experimental Results
	Summary and Conclusion
	References


