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Abstract: The game user interface (UI) provides a large volume of information
necessary to analyze the game screen. The availability of such information can
be functional in vision-based machine learning algorithms. With this, there will
be an enhancement in the application power of vision deep learning neural net-
works. Therefore, this paper proposes a game UI segmentation technique based
on unsupervised learning. We developed synthetic labeling created on the game
engine, image-to-image translation and segmented UI components in the game.
The network learned in this manner can segment the target UI area in the target
game regardless of the location of the corresponding component. The proposed
method can help interpret game screens without applying data augmentation.
Also, as this scheme is an unsupervised technique, it has the advantage of not
requiring paring data. Our methodology can help researchers who need to extract
semantic information from game image data. It can also be used for UI prototyp-
ing in the game industry.

Keywords: Object segmentation; UI segmentation; game user interface; deep
learning; generative adversarial network

1 Introduction

In the gaming industry, various deep learning-based algorithms are used in game development to
enhance the features of the game and to improve the response to each player’s actions dynamically.
Specifically, vision-based algorithms are applied to reinforcement learning [1] and level generation field
[2–4], which show their functionality and capability. Hence, these techniques can achieve the target
learning goal while using only pure pixel images from the game. However, since they do not utilize in-
game parameters, it is not possible to achieve a more specialized learning goal for the game, which
makes it only applicable to manageable action games or puzzle games.

On the game screen, the user interface (UI) provides essential information that helps the player navigate,
continue and accomplish goals during gameplay. In a convolutional neural network (CNN), which uses only
pure pixel information on the screen, if the information provided by the UI is extracted and used separately as
an additional input value, then there will be a considerable improvement in the learning efficiency of the deep
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learning network. For this reason, UI components such as buttons, image icons and gauge bars must be
effectively segmented on the game screen with the aim of analyzing the corresponding image only.

In general, if the information obtained from the UI is presented in the form of an application
programming interface (API) in game development, then game researchers can easily access and use it in
various research fields. However, games are commercial software that prevents external access to these
data to protect the contents from numerous hacking activities. Therefore, researchers have to develop
separate tools and acquire these data by themselves [5]. These become barriers to the development of
deep learning research in game development. Recently, we developed a tool that connects the recent
vision-based object segmentation technology to the app used in the data mining field, detects the main UI
area in the general app screen and then distinguishes the UI image from it [6]. Since the developed
technique can extract semantic information from game screenshots, further studies can be conducted
using this knowledge. In addition, it helps to automatically generate the data set necessary for image tag
labeling, outlier detection and highlight scene generation. However, since the supervised learning
technique was applied using the paired game screen and segmentation labeling image, the pairing data
could not be obtained and this serves as a limitation in the study.

Taking this into account, we extended our study to show that UI segmentation is possible with image-to-
image translation without paring data. The proposed method in this paper has the advantage of supporting
large-scale machine learning research related to game data by increasing the data accessibility of
individual researchers. In contrast to existing research, our research has the following characteristics:

� Semi-Automatic Segmentation Data Generation: A technique that approximates the UI area from the
app screen and semi-automatically generates a large-scale dataset required for machine learning.

� Image-to-Image Translation Network for UI Segmentation: Deep learning network that translates
from original game screen image to UI segmented image based on unsupervised learning.

2 Previous Works

2.1 Segmentation Using Game Data

There were various attempts made to increase the efficiency of segmentation using game data.
Moreover, there is a need for an increase in human resources to produce large-scale label data at the pixel
level, which results in considerable costs. Richter et al. [7] proposed a method to quickly generate an
accurate label map in pixels on an image extracted from a computer game. They verified their proposed
method by generating a dense pixel-level label for 30,000 images produced by an open world computer
game. Meanwhile, Chen et al. [8] employed a recognition approach to estimate affordance, unlike the
traditional method mainly used for the autonomous driving method. Consequently, they proposed input
image mapping to several key recognition indicators related to the affordance of road and traffic
conditions for driving. It provides a complete set of descriptions for the relevant scene so that a simple
controller can navigate autonomously. To prove this, they trained a deep CNN using long-period driving
images extracted from a video game and showed the possibility of an autonomous driving system in a
virtual environment. Taylor et al. [9] provided a surveillance simulation test environment that could be
used by anyone, based on Object Video Virtual Video, a commercial game engine. It simulates various
video streams synchronized in numerous camera configurations in a virtual environment where humans
and vehicles controlled by a computer or player are present. Moreover, Marin et al. [10] suggested a
method that pedestrian images learned in an arbitrary scenario operated appropriately for real pedestrian
detection. After recording the training sequence in such a situation, they determined a shape-based
pedestrian classifier. Vazquez et al. [11] was built for the same purpose as the study conducted by Marin
et al. [10]. To accomplish their objectives, they designed a domain adaptation framework called V-AYLA.
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By collecting several samples of pedestrians in the real world and then combining them with several
examples in the virtual world, they tested a method of training a pedestrian classifier that operated in the
target domain.

In this study, we applied object segmentation methods to several gameplay screens. The proposed
algorithm first segments the UI that contains the most meaningful content within the game. This study
acknowledges the works of Liao et al. [12], which obtained the necessary data from the gameplay data
and Richter et al. [7], which proposed a methodology for detecting game objects.

2.2 Segmentation Methods

Instance segmentation independently masks each instance of an object contained in an image at the pixel
level [13,14]. Object detection and instance segmentation are highly interrelated. In object detection,
researchers use a bounding box to detect each object instance of an image with a label for classification.
Meanwhile, instance segmentation takes this one step forward and applies a segmentation mask to each
instance of an object. The classification of the recently developed CNN-based instance segmentation
models is based on their principal functions. Girshick et al. [15] proposed a novel design for instance
segmentation called simultaneous detection and segmentation (SDS) [14], which followed the architecture
of the object detector and was a four-stage instance segmentation model. Thus far, CNN-based models
have used only the last layer functional map for classification, detection and segmentation. In addition,
they proposed the concept of hypercolumn [16] using information from some or all middle functional
maps of the network for better instance segmentation. The authors added the notion of hypercolumn to
the SDS and the modified network achieved better segmentation accuracy. Various detection algorithms
such as region based convolutional neural network (R-CNN), spatial pyramid pooling in deep
convolutional networks (SPPnet) [17] and Fast R-CNN [18] used a two-stage network for object
detection. The first stage detects object proposals using the selective search algorithm [19] and the second
stage classifies them using another CNN-based classifier. Multibox [20,21], Deepbox [22] and Edgebox
[23] used a CNN-based proposal generation method for object detection. Faster R-CNN [24] generated
box proposals using a CNN-based region proposal network (RPN). However, this proposal generation
mode uses the bounding box and instance segmentation model. Instance segmentation algorithms such as
SDS and hypercolumn used multi-scale combinatorial grouping (MCG) [25] to generate region proposals.
By using CNN-based region proposal network (RPN) as Faster R-CNN, Deep Mask [26] also generated
region proposals for the model to be trained end-to-end. Previous object detection and instance
segmentation modules such as [22–24] used methods such as selective search, MCG, constrained
parametric min-cuts (CPMC) [27] and RPN. Dai et al. [28], however, did not follow the conventional
way of using the pipeline network and did not use the external mask proposal method. Instead, they used
a cascading network to incorporate the functions of different CNN layers for instance segmentation. SDS,
deep mask and hypercolumn used feature maps at the top layer of the network to detect object instances
leading to coarse object mask generation. In [29–32], introducing skip connection is shown to be more
effective for semantic segmentation than instance segmentation owing to the reduction of the roughness
of the mask. Pinheiro et al. [33] used the model to generate an approximate functional map by employing
CNN and then adjusted the model to obtain an accurate instance segmentation mask in pixels using a
reinforcement model. In [34–37], the researchers used context information and low-level features in CNN
in various ways for better segmentation. Additionally, Zagoruko et al. [32] incorporated skip connection,
foveal structure and integral loss in Fast R-CNN [18] for better segmentation.

In the traditional CNN, images with the same attributes but different context information obtain the same
classification score. Previous models, especially fully convolutional network (FCN), used a single score map
for semantic segmentation. For example, in segmentation, the model should allow the same image pixel of
different instances with different context information to be segmented individually. Dai et al. [38]
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incorporated the concept of relative position into FCN to differentiate multiple instances of an object by
assembling a set of small score maps calculated at different relative positions of the object. Furthermore, Li
et al. [39] extended the concept of [38] and introduced two different position detection score maps. SDS,
hypercolumn, convolutional feature masking (CFM) [40], multi-task network cascade (MNC) [28] and
multi path net [32] prevented the model from being a learnable end-to-end by using two different sub-
networks for object detection and segmentation. Furthermore, works of Liang et al. [41] and Liu et al [42]
expand instance segmentation by grouping or clustering FCN score maps with enormous post-processing,
while Li et al. [39] introduced a joint formula of classification and division masking sub-networks in an
efficient manner. Various researches [43–46] used a semantic segmentation model, whereas Mask R-CNN
[47] extends Faster R-CNN, an object detection model, by adding a binary mask prediction branch for
instance segmentation. In the work of Huang et al. [48], they qualitatively learned the predicted mask by
injecting a network block into Mask R-CNN and proposed the Mask Scoring R-CNN. Recently, Kirillov
et al. [49] used point-based rendering in Mask R-CNN and created a cutting-edge instance segmentation
model. These researches [50,51] introduced a direction function that predicted different instances of a
specific object. Uhrig et al. [50] employed a template matching method with distinct characteristics to
extract the center of an instance and Chen et al. [51] obtained an instance by following the assembly
process of [38,39]. References [16,44,52] used the function of forming a middle layer for better
performance. Additionally, Liu et al. [53] used the concept of function propagation from the lower-level to
the highest-level and built a state-of-the-art model based on Mask R-CNN. Newell et al. [54] used a novel
method of using CNN along with association embedding for joint detection and grouping to process
instance segmentation. Object detection using the sliding window approach provided a segmentation step
and successful tasks such as Faster R-CNN, Mask R-CNN (e.g., SSD) [55] and RetinaNet [56] without
using a quality improvement stage. The sliding window approach is widely used for object detection, but
not for instance segmentation. Chen et al. [57] introduced dense instance segmentation to reduce this
difference presented in Tensor Mask. With the numerous segmentation methods presented, we have applied
the Pix2Pix method as the segmentation algorithm, which has recently shown stable performance in the
paired dataset. This has the advantage of fast and stable segmentation without a separate masking task.

3 Methods

This study aims to develop an accurately semantic segmentation of the UI area on the game screen. The
UI area must be labeled with a specific color to accomplish this goal. Acquiring such paired labeling data in
large quantities requires a very high manual cost. Simple puzzle and arcade games do not have a large
number of UI components in the game but have a large size of UI components and these components are
separated from each other, making them relatively easy to label. However, in case of in-game genres such
as MMORPG, there are dozens of small-sized UI components on the screen and as they are adjacent to
each other, it is expensive to label them by hand. The size of the data is related to the accuracy of the
deep learning network, therefore, making it difficult to develop an accurate semantic segmentation
network if a large volume of data cannot be acquired. To solve this problem, we developed a tool that
automatically detects UI components on the game screen. Through this, it is possible to obtain an image
in which only the UI area is automatically labeled in a game screen. However, this tool must have a
separate UI area and can only be applied to games that do not have an alpha value; hence, it cannot
detect the UI area in all games. Therefore, labeling data can be acquired only in some of the target
games. In this study, we tried to verify the functionality and capability of this tool when the image-to-
image translation technique was applied to overcome the limitations. If we construct a large amount of
labeling data with our tool and use it as target data for unsupervised learning, our tool has the advantage
of translating source data with complex game UI components that cannot be labeled, to obtain semantic
segmentation images. Fig. 1 shows our unsupervised learning concept.
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3.1 Paired UI Data Synthesis from Screenshots

To effectively generate image data, in this study, we automatically generated one million synthetic UI
images using a commercial game engine. Using this, we automatically extracted the UI using three
images with the same UI but different backgrounds on the game screen. The algorithm used for automatic
UI extraction is as follows:

1. Inputting three game screenshots with the same UI but different backgrounds

2. Comparing the RGB values of all pixels in an image and removing pixels whose difference is higher
than the threshold

3. Extracting the intersection of the remaining pixels by applying method 2 to screenshots 1 and 2,
screenshots 1 and 3 and screenshots 2 and 3

4. UI segmentation and color designation using the Flood Fill algorithm

5. Filtering the small sized UI by regarding it as noise

In the experiment, the value of the threshold between 10% and 20% was appropriate. If the threshold is
too small, the UI is not extracted properly. If it is too large, considerable noise are mixed. Some parts were not
automatically filtered during the noise filtering process; thus, some manual intervention would be required.
The UI within 10 × 10 pixels was regarded as noise and the extracted UI was designated as magenta. Magenta
is a color that is not used to a large extent in the game; thus it is appropriate to be used in experiments. Next,
we captured dozens of game images without the UI to be used as a background. Generally, the UI exists at the
edge of the screen; thus, we selectively captured the inner part of the screen. After randomly selecting one of
the captured background images using the aforementioned process, we randomly placed all the extracted UIs
on the selected image. To increase the efficiency of the experiment, all UIs were processed such that they do
not overlap. The synthetic UI data for the experiment were constructed in 256 × 256 size. Fig. 2a shows
image data produced by randomly placing original UIs, while Fig. 2b shows image data produced by

Figure 1: Proposed unsupervised learning concept
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coloring the placed UIs as magenta. By randomly placing all UIs not to overlap each other on an arbitrarily
selected background, we automatically generated approximately 10,000 sheets of experimental image
data in 10 minutes.

3.2 Network

Our goal is to infer the UI area when we receive a general game screen as an input. UI components
generally have a rectangular or circular shape on the screen. When the network recognizes the
characteristics of these shapes effectively, it can exclude other image elements (e.g., game characters,
game backgrounds) in the game screen and detect only the UI area. This means that the image-to-image
translation network that we are going to use must be an extremely specialized network for shape
recognition. For this, we used the UGATIT network model [58] that showed good performance in image-
to-image translation as the baseline network.

The UGATIT network features an auxiliary classifier and AdaLIN; these two features of the UGATIT
network have a significant advantage in shape modification, compared with existing image-to-image
models. This study aims to develop a network that specializes in recognition of UI component. The
features of UI component are considerably important, compared with other image transform domains. If
proper learning is not performed, particularly with regard to the shape and area of the UIs, a large error
occurs in the cognitive aspects, regardless of how well the other background areas are learned. Therefore,
stable shape changes are necessary when UI-specific information is used by the network.

To achieve this, we incorporated an additional feature detail - geometry features of UI component. These
details were obtained from a pre-trained network and it generated one loss for training the UGATIT Network.
Geometry feature network is a network that extract features of basic shapes such as triangles, circles and
squares. This is to take advantage of the fact that UI components such as buttons, window windows and
icons are mainly composed of basic shapes. For the Geometry feature network learning, we created a
paired synthetic image with only basic shapes colored on various random backgrounds. This paired
synthetic image was classified as VGG16. For training, a total of 20,000 256�256 images were created.
At this time, there are six categories—square, rectangle, circle, ellipse, round bar and round rectangle.
After learning, the full connect layer was excluded from VGG and only the feature encoder network was
used. The learned geometry feature network converts only the basic geometrical features detected in the

Figure 2: Generated UI image data from the proposed tool, (a) colored UI, (b) original UI
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image to a 1D 256-dimensional vector when a specific image is entered and can be quantified as a loss value
through the calculation of the cosine similarity between the converted vectors. Fig. 3 illustrates an example of
the training dataset.

The proposed network design is shown in Fig. 4. Let xs ∈ Xs and xt ∈ Xt represent samples from the
source and target domains, respectively. Furthermore, let G1(xs) and G2(xt) represent the translated source
and target domains, respectively. Our proposed model consists of two generators (G1(xs) and G2(xt)), two
discriminators (D1(G1(xs)) and D2(G2(xt))) and two feature extractors F1(xs, xt). G1(xs) creates an image
that fits the target style based on the GAN framework and G2(xt) is used for cycle consistency. The
discriminators D1 and D2 distinguish between real and fake translated images. The feature extractor F1

provides a loss values to the CycleGAN framework to facilitate shape transformation. The final loss
function of our model can be written as the loss of Ltotal.

argmin
G1G2

max
D1D2

Ltotal G1; G2; D1; D2; F1ð Þ (1)

Ltotal comprises five loss terms: Llsgan, Lcycle, Lidentity, Lcam, and Lgeometry. The adversarial loss Llsgan is
employed to match the distribution of the translated images to the target image distribution. The cycle
loss Lcycle is applied for a cycle consistency constraint to the generator. The identity loss Lidentity is used
to ensure that the color distributions of the input and output images are similar. These three losses are
calculated using G1, G2, D1 and D2 with the traditional GAN framework. These terms are described in
detail in [58,59]. Lcam uses information from the auxiliary classifiers to determine the differences between
two domains [60].

The additional feature loss Lgeometry is the difference in 256-dimensional cosine similarity between the
input image and the generated image. This value shows how similar the input image and the generated image
are in terms of basic figure shape. Therefore, when creating a segmentation image, it induces the creation of
similar images in terms of shape appearance as much as possible. Lgeometry loss can be applied differently
according to the visual characteristics of each game by adjusting weight value α. Fig. 5 shows the
network performance experiment results. When Lgeometry loss is applied, it is shown that the accuracy of
segmentation increases in UIs with many shapes such as rectangles and circles. However, if the UI within

Figure 3: Synthetic dataset for geometry feature network training (round bar) and its detected features in
feature network
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the screen to be applied is not classified into a simple geometry shape and the images are connected to each
other, the effect of applying Lgeometry loss is weak.

Ltotal ¼ Llsgan G1; G2; D1; D2ð Þ þ Lcycle G1; G2; D1; D2ð Þ þ Lidentity G1; G2; D1; D2ð Þ
þ Lcam G1; G2; D1; D2ð Þ þ Lgeometry F1; G1; G2ð Þ (2)

Lidentity F1ð Þ ¼ acosine� similarity F1;G1;G2ð Þ (3)

4 Experimental Results

To verify the usefulness of this system, we tested it in three commercial games (Kingdom Rush, Iron
Marine and Blade and Soul). The reason for choosing such a commercialized game was to confirm the
practicality of the proposed technique when applied to an actual game. The three games differ in UI
complexity. The segmentation number was 7 for Kingdom Rush, 8 for Iron Marine and 30 for Blade and
Soul. These numbers can be interpreted as the numbers of UI groups that are geographically isolated
from each other by the floor fill algorithm in the tool we use. We first created a simple screen capture
program and captured screenshots of 5,000 images for each game. These screenshots were labeled with
UI through the automatic UI extractor we suggested. The labeled image result is shown in Fig. 6.

The training took place for each game. All images were resized to 256 × 256 for training. For
optimization, we set the maximum number of iterations to 200, the learning rate as 0.001 and its decay
rate as 20% per 5 iterations. We used the SGD optimizer for training with the batch size = 8.

Figure 4: Proposed network architecture
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The NVIDIA RTX Titan GPU took approximately two days to perform a single training. The images
resulting from creating segmentation images with the test set of each game using the trained network
model are shown in Figs. 7–9. The ratio of the training, validation and test data set size was set at 6:2:2.

Figure 5: Network performance experiment results (left: segmentation result with Lgeometry, right:
segmentation result without Lgeometry)
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As this experiment recognizes the UI area in units of objects, instance segmentation of each UI unit module
was not performed.

Fig. 7 shows the results of applying our system to Kingdom Rush. The tower defense game is a game in
which a tower is placed in a designated location on the screen to defeat the attacking enemies. As this game is
provided on a smart device and is based on monitor tapping, all UIs have a wider space between each other to
facilitate touch. Furthermore, it has an area of relatively larger size to facilitate the recognition of finger-sized
touches. The proposed network detects UI elements divided into 7 with a probability of more than 80%.

Figure 6: Auto-labeled training data set for each game
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Fig. 8 shows the results of applying our system to Iron Marine. It is a tower defense game created in the
same game development as Kingdom Rush. Unlike Kingdom Rush, where only towers are placed within a
fixed screen, Iron Marine requires a user interface to move the screen and move the character. Because of this,
the UI screen is more complicated and the UI modules are not separated and attached, making labeling
relatively difficult. Our system was able to detect the UI area with 73.5% accuracy. These results show
that our method works stably even with the unsupervised learning technique in games with approximately
7 - 8 touch-based interface components.

Fig. 9 shows the results of applying our system to PC MMORPG Blade and Soul. Blade and Soul is an
action-based PC MMORPG game with complex types of information displayed on the screen where players
interact by learning them. Therefore, unlike in the case of Kingdom Rush, the chat window, map screen and
character information UI are further displayed on the screen. Moreover, the space between the UI
components is smaller because the mouse, which allows fine control, is used as the primary interface. In
this experiment, we attempted to confirm whether the system could automatically detect these complex
UI components. The system automatically generated synthetic data segmented into 30 groups and trained
the network through this. When applying the data trained in this manner to the original Blade and Soul,
we could accurately detect the corresponding UI area with a pixel accuracy of 64.5%. The learning
process of the network is stable although the number of the UI components detected is larger than that of
Kingdom Rush. Unlike Kingdom Rush, in Blade and Soul, the UI components are relatively smaller and
have high image details. Therefore, if the corresponding UI component has a similar color and shape to

Figure 7: Result of Kingdom Rush UI segmentation
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the background image, it may be difficult for the network to detect it. However, our network demonstrates its
capability to segment the UI components.

Tab. 1 shows the overall segmentation performance of our network. First, we reduced the size of UI
screens of the three games to 256 × 256; we then checked the number of segmented UI components, the
size of the most basic UI button and the approximate spacing between each UI component and defined
approximate complexity from this. We measured pixel accuracy, mean accuracy, mean IU and frequency
weighted IU values for Kingdom Rush, Iron Marine and Blade and Soul. Pixel accuracy values were
0.816, 0.735 and 0.645, respectively. It is established that, overall, pixel accuracy reduced, being
inversely proportional to the number of UI component classes we intend to classify. Since Kingdom
Rush, a mobile game, is based on a touch-based UI, our system could automatically extract all UI
components. However, the number of the UI components detected by the system for Blade and Soul and
MMORPG games is approximately 65% less than the actual number of UI icons. This is because the UI
components are sub-divided into skill units. Therefore, our system shows that UI segmentation is more
effectively achieved in mobile games.

Figure 8: Result of Iron marine UI segmentation
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Fig. 10 shows the result when the proposed method is applied to different games with a network trained
with a dataset created by combining Kingdom Rush and Iron Marine data and Blade & Soul. It was applied to
a total of four games (Starcraft1, Starcraft1 cartoon version, Fishdom, MMORPG V4). This experiment aims
to determine how accurately the network can detect UI for other games of the same genre by training it with
different game datasets. As a result of the experiment, in the casual game genre where the number of UIs is

Figure 9: Result of Blade and Soul UI segmentation

Table 1: Evaluation metric for images produced by the generator for each game

Kingdom Rush Iron Marine Blade and Soul

Number of Seg. UI Components 7 8 30

Size of a Single Button Large (25×25) Large (25×25) Small (5×5)

Spacing between UI Components Long (5 pixel) Long (5 pixel) Short (1-2 pixel)

Overall Complexity Low Low High

Pixel Accuracy 0.816 0.735 0.645

Mean Accuracy 0.840 0.712 0.631

Mean IU 0.706 0.689 0.547

Frequency Weighted IU 0.691 0.612 0.514
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small and the image complexity is low, the UI area could be detected with relatively high accuracy. However,
The same was not possible in the case of MMORPG, which has a complex UI composition based on realistic
images. Tab. 2 shows the overall segmentation performance of our network when our trained model are
applied to different games in similar game genres.

5 Conclusions

In this paper, we introduced a method of segmenting only the UI area on the game image using the
unsupervised learning technique. We have developed a semi-automatic labeling tool to identify the
regions of interest and then assign labels to them, which is performed effectively on an arbitrary game
screen. Moreover, an image-to-image translation network was presented that uses the feature information
of the figure as the loss value. The image-to-image translation network, trained with data processed by
our tool, showed stable segmentation results in casual games and MMORPG games. Additionally, the
proposed method shows that there is a possibility that the UI area can be approximately segmented on
similar game images of the same genre. Our research technique shows that UI segmentation is possible
even though it is hard to create a paired dataset. This feature can be useful when a network needs to be
trained based on a large amount of unpaired synthetic image data owing to labeling costs.

Figure 10: Result of various game segmentation with network from Iron Marine and Kingdom Rush dataset
(left: Starcraft cartoon version & Original Starcraft (PC Game), Middle: Fishdom (Multi-Platform), Right:
Mobile MMORPG V4 (Mobile)

Table 2: Pixel accuracy when applied to other games of similar genre

Starcraft cartoon Fishdom Starcraft original MMORPG V4

Network trained with Tower defense 0.63 0.67 0.48 0.45

Network trained with MMORPGs 0.31 0.37 0.39 0.44
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