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Abstract: The drowsiness of the driver and rash driving are the major causes of
road accidents, which result in loss of valuable life, and deteriorate the safety in
the road traffic. Reliable and precise driver drowsiness systems are required to
prevent road accidents and to improve road traffic safety. Various driver drowsi-
ness detection systems have been designed with different technologies which have
an affinity towards the unique parameter of detecting the drowsiness of the driver.
This paper proposes a novel model of multi-level distribution of detecting the dri-
ver drowsiness using the Convolution Neural Networks (CNN) followed by the
emotion analysis. The emotion analysis, in this proposed model, analyzes the dri-
ver’s frame of mind which identifies the motivating factors for different driving
patterns. These driving patterns were analyzed based on the acceleration system,
speed of the vehicle, Revolutions per Minute (RPM), facial recognition of the dri-
ver. The facial pattern of the driver is treated with 2D Convolution Neural Net-
work (CNN) to detect the behavior and driver’s emotion. The proposed model
is implemented using OpenCV and the experimental results prove that the pro-
posed model detects the driver’s emotion and drowsiness more effectively than
the existing technologies.

Keywords: Driver drowsiness; emotion analysis; convolution neural network;
driver fatigue; driver mentality

1 Introduction

The increase in population and the usage of the automobile has increased the negative outcomes of road
accidents, deadly injuries, loss of valuable life, financial losses, and non-recoverable health and mental
illness. The National Crime Records Bureau (NCRB) has released a report during the year 2020 on the
statistical analysis of road accidents [1]. The report states that there are around 5 Lakhs of road accidents
which have been reported in one year, among which 69% creates a high level of damage to life and
property. The report extends to the analysis of factors influencing road accidents. Driver drowsiness and
mentality are the vital factors for road accidents and rash driving [2]. The drowsiness of the driver may
be due to restless driving, fatigue, consumption of alcohol while the mentality relates to extreme anger,
frustration, and sometimes extreme happiness. Based on the analysis report, the driver’s behavior is the
vital cause for road accidents, which motivates a lot of researchers to be involved in monitoring and
detecting the driver’s drowsiness systems. Some notable research results were implemented in real-time to
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eradicate the road accidents, although the count of road accidents and the loss of valuable life are escalating
radically.

Fig. 1 depicts the statistical analysis of the fatal crashes due to driver fatigue and reckless driving. It is
clear from the statistics that the fatal count due to driver fatigue and reckless driving is almost equivalent to
each other, whereas the present monitoring system concentrates only on the driver’s drowsiness. Certain
driver monitoring systems detect driver drowsiness, whereas some systems monitor the vehicle
acceleration and the driver’s eye movement [3–5]. In recent days, vehicle manufacturers design their
vehicles integrated with driver drowsiness detection systems like Advanced Driver Assistance Systems
for monitoring both the driver behavior and the vehicle acceleration system. The Advanced Driver
Assistance Systems consists of an eye movement monitoring sensor, hardware, and automation software
that improves the performance of the driver drowsiness detection system [6]. In place of the evolution of
Advanced Driver Assistance Systems, the count of road accidents escalates due to rash driving by the
drivers. To address this concern of the Advanced Driver Assistance Systems, the proposed model is an
integrated monitoring system of detecting the driver drowsiness and the mentality of the driver which is
the vital factor for rash driving by the drivers. The integrated monitoring system is performed by the
Convolution Neural Networks (CNN) for detecting the fatigue of the driver while the emotion of the
driver is identified using a novel self-developed tool, Driver Emotion Detection Classifier (DEDC).
The Driver Emotion Detection Classifier is a tool with a trained database that extracts the feature from
the recorded video to analyze the emotion of the driver. Depending on the emotion of the driver, the pre-
recorded suitable song is played to neutralize the mentality of the driver so that to avoid reckless driving
to prevent the road accident [7,8]. The major contributions of this research paper are:

� A driver drowsiness detection system based on Convolution Neural Network (CNN), for detecting the
fatigue of the driver and the acceleration system of the vehicle.

� The mentality of the driver is monitored using a self developed novel tool, Driver Emotion Detection
Classifier (DEDC), in which the mentality of the driver is distributed into multi-levels like anger,
disgust, fear, happiness, sadness and neutrality.

The organization of the paper is classified into 5 sections with Section 2 describing the previous research
works related to the driver drowsiness monitoring systems, followed by section 3 that narrates the proposed
system. The experimental results were analyzed in Section 4 and finally the conclusion in Section 5.

2 Related Works

Numerous researchers are actively involved in determining the solution for road accidents due to
driver drowsiness. The plentiful research results have been classified into five categories of driving like
normal driving, fatigue driving, reckless driving, drunken driving, and distracted driving. Some of the
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Figure 1: Statistical analysis of accidents due to driver fatigue and reckless driving
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notable research results were illustrated from which the proposed system with enhanced performance has
been designed.

de Naurois et al. (2018) designed a model for predicting the drowsiness of the driver using Artificial
Neural Networks [9]. The system works on the heartbeat rate analyzing principle which is fed as the
input to the Artificial Neural Network (ANN) to detect the drowsiness of the driver. The experimental
analysis proves that the system has about 80% of accuracy in detecting the drowsiness of the driver.
Jabbar et al. (2018) has designed a real-time driver drowsiness detection system using the android mobile
application using Deep Neural Network (DNN) techniques [10]. The proposed method was designed
based on the Deep Learning method integrated with the Android mobile application. The system achieved
an accuracy level of 80% based on the experimental analysis.

de Naurois et al. (2017) proposed a driver drowsiness detection model based on the Artificial Neural
Networks (ANN) that detects the eye blink duration and its frequency as the major input to the Artificial
Neural Network (ANN) [11]. The model identifies the drowsiness of the driver with an error of 0.22 and
detects at a rapid rate with the mean square of 4.18 minutes. Moujahid et al. (2021) has proposed an
efficient and compact face descriptor for detecting driver drowsiness with several approaches of face
expression detection, multilevel face representation, and has compared with the dataset of NTH Drowsy
Driver Detection (NTHDDD) [12]. The proposed framework is proven to be efficient at par with the
performance using a convolution neural network.

Zhang et al. (2020) has designed a driver drowsiness detection model using Karolinska Sleepiness Scale
(KSS) to detect the drowsiness of the driver [13]. The proposed model is an integrated model of Mixed effect
Ordered Logit (MOL) with the Time Cumulative Effect (TCE). The experimental analysis was performed by
comparing the MOL-TCE model with the non-MOL-TCE models and the analysis proves that the proposed
model yields 62.84% better accuracy than the existing models. McDonald et al. (2018) designed a contextual
algorithm for detecting driver drowsiness. The algorithm was integrated with the Dynamic Bayesian
Network algorithm (DBN) and the algorithm yields a lower false-positive rate than the existing
PERCLOS which is the present standard for the driver drowsiness detection system [14].

Phanikrishna et al. (2021) designed an automatic classification model for detecting the drowsiness of the
driver using wavelet packet transform [15]. The wavelet packet transform was extracted from the single-
channel Electro-Encephalogram (EEG) signals from the driver. The proposed model yields 94.45% of
accuracy in performing the real-time sleep analysis. Taherisadr et al. (2018) designed a model for
identifying the attention of the driver using Mel-Frequency Cepstrum in the two-dimensional transform
and Convolution Neural Network (CNN) [16]. The designed model extracts the two-dimensional Mel-
Frequency Cepstrum representation of the ElectroCardiogram (ECG) sensed from the driver. The
analytical results yield that the designed model is more efficient than the existing methodologies of
drowsiness detection during driving. Lee et al. (2017) have designed a system that performs correlation
analysis of ElectroCardiography (ECG) and Photoplethysmogram (PPT) data for detecting the drowsiness
of the driver [17]. This model is a noise replacement model and the experimental analysis proves that the
Noise replacement model is better efficient than the PPT method of detecting the driver’s drowsiness.

Kumar et al. (2020) focused on the implementation of surveillance systems using embedded systems and
signal processing tools [18]. The system concentrates on three factors namely detecting driver drowsiness,
alcohol consumption, and crash detection for having better vehicle control. The experimental results show
that this method is more efficient than the existing analog system with a high level of accuracy.
Kowalczuk et al. (2019) proposed a diverse driver monitoring system by detecting the emotion of the
driver [19]. The system identifies the internal and real emotions of the driver and the final emotion has
been obtained using Kalman filter, in which the emotion is treated as a digital data. The system has no
affinity towards the detection of fatigue of the driver. Li et al. (2020) proposed a system for analyzing
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facial expression and emotion correlations to detect urban crimes. The Facial Expression Recognition (FER)
was designed and used to detect the emotion of the user using the facial expression and the results were
compared with the Kernel Density Estimation (KDE) to reveal the relationship between the emotion and
the driving pattern [20]. Wang et al. (2021) has compared the analysis of different image classification
algorithms based on traditional machine learning and deep learning. The study has been carried-out both
on very large dataset like MNIST dataset and small dataset like COREL1000 dataset. The experimental
results show that traditional machine learning has a better effect on small datasets while deep learning has
higher recognition accuracy on large datasets [21].

The proposed model is an integrated model, which detects the drowsiness of the driver and identifies the
emotion of the driver to avoid reckless driving which is one of the vital causes of road accidents.

3 Proposed Model

The proposed model is composed of two modules namely detection of driver’s fatigue and the emotion
analysis of the driver to avoid reckless driving. The first module of detecting the drowsiness of the driver
consists of three phases namely gathering the data from the driver sensing module, preprocessing the
acquired data, and Deep Learning which is composed of Convolution Neural Network (CNN). The three
phases and the functions were depicted in Fig. 2.

3.1 Data Gathering Phase

The data gathering phase is the initial training phase of the proposed model, in which the driver behavior
is diversified into multi-level behavior or normal, fatigue, aggressive, disturbed, and alcohol consumption.
The data gathering phase not only collects the information on driver’s multi level behavior but also
monitors the acceleration system of the vehicle based on the revolution per minute (RPM), speed, and
throttle of the vehicle. The acceleration analysis of the vehicle is performed on linear acceleration

Driving Signals

Deep Learning Phase

Convolution Neural Network

Driver Behavior

Data Gathering Phase

Driving Signals

Pre-processing Phase

Applying Time Window

Signal to Image

Figure 2: Proposed model for driver fatigue detection system
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measurement. The acceleration and gravity are considered along the three dimensional axis (x, y and z) for
determining the linear acceleration of the vehicle. The linear acceleration analysis measured from the vehicle
determines the driving mode of the vehicle and classifies it under any of the multi levels such as normal,
aggressive, drunken drive, reckless driving etc. A Driver Drowsiness Detection (DDD) dataset is used to
train the driver drowsiness detection phase and the extended Cohn-Kanade dataset (CK+) is used to train
the driver emotion analysis phase [22,23]. The datasets measured during the experimental training phase
are used as reference values for live testing purposes. The captured image is processed to determine the
eye blinking factor and its frequency under multi-level conditions like normal condition, fatigue,
drunkenness and aggression. The collected values are stored in the local database as trained values so that
they can be compared with the test values during the live measurements.

3.2 Pre-Processing Phase

The pre-processing phase is a necessary step that is performed prior to the core process of applying the
data to the convolution neural networks. The measured raw data when applied directly to the convolution
neural networks creates error in the output data and hence the preprocessing phase is considered to be a
more vital process for processing the raw data into the acceptable format by the convolution neural
networks. The preprocessing phase in the driver fatigue monitoring system measures the input image in
time domain representation and has been labeled into multi-level of normal, aggressive, drunken and
fatigue. The time interval considered in the proposed system is the most essential process and is selected
to be 1.0 sec for detecting the distraction of the driver. This time interval is to be selected with care so as
to avoid overlapping of input samples, which may lead to the loss of data. Similarly the time interval
must be as less as possible with an aim to detect the minute level of distraction of the driver. The
Recurrence Plot (RP) is employed to view the recurrent states and in the proposed model, the Recurrence
Plot in the time series on temporary data which is measured to make digital images with spatial properties
in the frequency domain. The mathematical expression for the Recurrence Plot is given as in Eq. (1).

Rx
a;b ¼ a RT � Xa � Xbj jj jð Þ (1)

Here the Ra,b is the recurrence plot, while the RT is the recurrence threshold, whereas α is the Heaviside
function of the temporal data. The algorithm for the time domain windowing and generating the recurrence
plot is illustrated in the Tab. 1.

Table 1: Algorithm for time domain windowing and generating recurrence plot

Input:
Xi = ∑(Xni); i=1,2,3….n
Xi = (X1

i + X2
i + X3

i+…..+ Xn
i)

Output:
Window size: 150
Sliding window: sw = 1
Recurrence threshold RT

Recurrence Plot function: using equation 1
for samples Xiє self dataset
do
for representations r є rep (Xi)
do
Image 150X100 = Ra,b

x

end
Image = concatenate (Image X)

end
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In the proposed system, the captured image of the driver was converted from the time domain and the
recurrence plotting is performed using the PyRQA toolbox for the analysis of recurrence quantification and to
generate the recurrence plots in a massive parallel pattern. The plotted image was of 50 x 50 pixels
dimensions stored in the grayscale format. The quantity of samples measured and the plotted images for
each level were listed in Tab. 2.

The preprocessed input images with 50 X 50 pixels are sampled and reconstructed to 150 X 100 pixel
images which are ready to feed as input to the adjacent stage of Convolution Neural Networks.

3.3 Deep Learning Phase

The deep learning phase is the final and core processing function of the proposed model for detecting the
fatigue of the driver. The deep learning phase is composed of two processes namely feeding the preprocessed
image to the convolution neural networks and finally the output replicates the driver’s behavior and the
output is classified under any of the aforementioned four levels. The motive for employing the
Convolution Neural Networks (CNN) over the Neural Networks in the driver drowsiness monitoring
system is that, the Neural Networks involve complex procedures to train the datasets and it requires all
the datasets must be trained which is a time consuming and complex process. The Deep Neural Network
accepts low level representations which were at the first level whereas the low levels were fused to high
levels of representation at the final layer of the Deep Neural Network (DNN). The Convolution Neural
Network (CNN) is a part of Artificial Neural Networks (ANN) which is employed in multi-diversity
applications for its simpler process. The output image of the preprocessing phase with 150 X 100 is
applied to all the channels of the convolution neural network and the majority of CNN layers extract
features from the input image. The final layer of the CNN performs the maximum classification of the
processed image and it classifies the observed image into any one of the states namely normal, fatigue,
drunken and reckless. The architecture of the CNN in the proposed model is depicted in Fig. 3.

Table 2: Quantity of measured samples for each level of driving and images plotted

Driving Pattern Number of Measured Samples Number of Image plotted

Normal 3812 3517

Fatigue 4289 4122

Drunken 4119 3927

Reckless 5023 4962

Input Image of
150 X 100 dimensions

Convolution
Filters (n,2n)

Max pooling
and Drop out

Convolution
Filters (2n)

Max pooling
and Drop out

Final
Classifier 40

Final
Classifier 5

Softmax

Figure 3: Proposed CNN architecture with two layers of convolution

722 IASC, 2022, vol.31, no.2



The proposed CNNmodel of the driver drowsiness detection system possesses two levels of convolution
filters with an order (n, 2n). These two levels of combined convolution filters reduce the complexity of the
model and also decreases the distraction detection time to 1.0 sec which leads to the rapid detection and
alerting of the driver drowsiness detection. The algorithm for the training and testing of measured data
using Convolution Neural Network is exemplified in Tab. 3.

The trained data were compared with the test data to classify the input data in any of the four levels
classified under driver behavior detection. The preceding subsection describes the later module of the
proposed system in detecting the emotion of the driver.

3.4 Emotion Detection System

The emotion detection system is based on Convolution Neural Network with a different set of processes
and layers, accepting the pre-processing data from the previous module whose dimension is 150 X 100 pixels
to determine the emotion of the driver. The input image is considered as the test image and is compared with
the trained image to classify the emotion of the driver under multiple levels of normal, anger, disgust, fear,
happiness, and sadness. The Convolution neural network for the process of emotion detection accepts the
input image of 50 X 50 pixels and hence the preprocessed data of 150 X 100 pixels is normalized to
convert into a digital image of 50 X 50 pixels. The reduction of image dimension is preceded by
diagnosis of the driver’s emotion by the simple onboard computer with convolution neural network
concept. The entropy of the CNN is defined as mentioned in Eq. (2).

Table 3: Algorithm for training and testing data using CNN

Input:
Training Image (Xtrain, Ytrain)
Testing Image (Xtest, Ytest)

Convolution Process:
Initialize the Parameters
Batch size: 50
Epochs: 25
Drop rate: 0.25
Pool size: (2,2)
for convolution layer (n, 2n) = (2,4)
for filter size (2,3,4,5)
do
filter size (10,20)
model.add (conv2D(2*filter count, (filter size, filter size)
model.add (maximum pooling2D, pool size)
end
model.add(Dense(quantity_levels,activate = softmax)
losses.catoegorial- cross entropy, optimizing = optimizer ()
model.evaluate ( )
end
end
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E x; x̂ð Þ ¼
Xm

i¼0

Xn

j¼0

ðxi;j: logðx̂i;jÞÞ (2)

The layer 1 and 2 in the convolution network classifies the 50 X 50 pixel image and the final layer
magnifies the image to fix the emotion under any of the aforementioned categories. During the training
process of the data, the following augmentation properties were implemented.

� Brightness range: 75% to 100%

� Rotation interval: ±2 degree

� Sheer range: ±2%

� Zoom transformation interval: ±2%

The tested images are normalized to a determined case using the mathematical relationship as
mentioned Eq. (3).

n0 ¼ n� nmin
nmax � nmin

(3)

The final magnified output from the layer 3 of the convolution neural network is of 150 X 150 pixel
dimension and based on the classified emotion of the driver, a prerecorded song is played using the
controller to neutralize the mentality of the driver so as to avoid reckless driving.

4 Experimental Results

This section investigates the proposed model which comprises two modules and the experimental results
were analyzed for its level of accuracy. The initial module of detecting the driver fatigue and other
aforementioned status of the driver is classified using Convolution Neural Networks (CNN). The
experimental result analysis was performed on the basis of accuracy level and the error rating in detecting
the driver state. As an initial analysis, the accuracy level of Convolution Neural Network (CNN) is
compared with the conventional classifiers of KNN classifier and SVM classifier and its derived
classifiers. Fig. 4 illustrates the comparative analysis of CNN with other conventional classifiers in terms
of accuracy percentage. CNN has scalable features for very large datasets and by the use of multiple
convolution operations it classifies images efficiently. From Fig. 4, it is proved that the multi-layer CNN
is more accurate in predicting the state of the driver and successfully classifying the multi-layer state of
the driver. The accuracy level of the classifier improves by increasing the processing duration. The
notable case in this driver drowsiness detection system is, it must possess a minimum duration to
determine the distraction of the driver. By using two-levels, these models were able to extract features
that identify the drowsy state of the driver. If three or more levels are chosen it would result in model
overfitting and reduce the accuracy.
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The Fig. 5 depicts the 4 X 4 confusion matrix of the two level convolutional neural network with four
predefined states of the driver. Fig. 6 is the qualitative analysis of the proposed model, in which the two level
convolutional neural networks possess trained datasets for comparing the features with the testing data. From
Fig. 6, the training and testing data accuracy and matching precisely such that the proposed model yields an
accuracy percentage of 93% in detecting the driver state and is classified under any of four normal, fatigue,
drunken, and reckless.

The error analysis of the proposed model is shown in Fig. 7, which proves that the trained data possess
reduced error than the testing data whereas the error rating were deteriorating to the level of null as the epoch
level is exponentially increased. Fig. 8 represents the confusion matrix of the Convolution Neural Network
for the six different emotion levels of the driver. The experimental results are well aligned among the
predicted level and the test level which proves that the designed model works efficiently and detects the
driver fatigue emotions with a high level of accuracy.

Figure 5: Confusion matrix of driver multi-level classification
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5 Conclusion

The Convolution Neural Network has become a notable technology in Machine Learning and
Automation Systems due to its salient properties and features. The driver drowsiness detection system is
a monitoring model, in which plentiful researchers are involved in reducing road accidents. Despite
designing more efficient models, the road accidents continue to escalate rapidly due to the increase in
distraction detection duration of the model. Hence to reduce the distraction detection duration and to
increase the level of accuracy, the proposed model comprises two level convolution neural networks
which can classify the driver behavior and the emotion in reduced detection duration. The experimental
results prove that the proposed models are well aligned with the trained data and the error rate comparing
the trained and test data and reducing with minimal marginal difference. The experimental analysis and
comparative statements generate an accuracy level of 93% in detecting both the behavior and emotion of
the driver. This system holds good for Automatic Driver Emotion Detection System (ADEDS) so that the
road accidents and loss of valuable life will be considerably reduced in the upcoming days.

Funding Statement: The authors received no specific funding for this study.
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