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Abstract: In recent times, big data analytics using Machine Learning (ML) pos-
sesses several merits for assimilation and validation of massive quantity of com-
plicated healthcare data. ML models are found to be scalable and flexible over
conventional statistical tools, which makes them suitable for risk stratification,
diagnosis, classification and survival prediction. In spite of these benefits, the uti-
lization of ML in healthcare sector faces challenges which necessitate massive
training data, data preprocessing, model training and parameter optimization
based on the clinical problem. To resolve these issues, this paper presents new
Big Data Analytics with Optimal Elman Neural network (BDA-OENN) for clin-
ical decision support system. The focus of the BDA-OENN model is to design a
diagnostic tool for Autism Spectral Disorder (ASD), which is a neurological ill-
ness related to communication, social skills and repetitive behaviors. The pre-
sented BDA-OENN model involves different stages of operations such as data
preprocessing, synthetic data generation, classification and parameter optimiza-
tion. For the generation of synthetic data, Synthetic Minority Over-sampling
Technique (SMOTE) is used. Hadoop Ecosystem tool is employed to manage
big data. Besides, the OENN model is used for classification process in which
the optimal parameter setting of the ENN model by using Binary Grey Wolf Opti-
mization (BGWO) algorithm. A detailed set of simulations were performed to
highlight the improved performance of the BDA-OENN model. The resultant
experimental values report the betterment of the BDA-OENN model over the
other methods in terms of distinct performance measures. Ligent healthcare sys-
tems assists to make better decision, which further enables the patient to provide
improved medical services. At the same time, skin lesion is a deadly disease that
affects people of all age groups. Early, skin lesion segmentation and classification
play a vital role in the precise diagnosis of skin cancer by intelligent system. But
the automated diagnosis of skin lesions in dermoscopic images is a challenging
process because of the problems such as artifacts (hair, gel bubble, ruler marker),
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blurry boundary, poor contrast and variable sizes and shapes of the lesion images.
To address these problems, this study develops Intelligent Multi-Level Threshold-
ing with Deep Learning (IMLT-DL) based skin lesion segmentation and classifi-
cation model using dermoscopic images. Primarily, the presented IMLT-DL
model incorporates the Top hat filtering and inpainting technique for the prepro-
cessing of the dermoscopic images. In addition, the Mayfly Optimization (MFO)
with multilevel Kapur's thresholding-based segmentation process is used to deter-
mine the affected region. Besides, Inception v3 based feature extractor is applied
to derive the useful set of feature vectors. Finally, the classification process is car-
ried out using a Gradient Boosting Tree (GBT) model. The performance of the pre-
sented model takes place against International Skin Imaging Collaboration (ISIC)
dataset and the experimental outcome is inspected in distinct evaluation measures.
The resultant experimental values ensure that the proposed IMLT-DL model outper-
forms the existing methods by achieving a higher accuracy of 99.2%.

Keywords: Intelligent models; computer aided diagnosis; skin lesion; artificial
intelligence; deep learning

1 Introduction

In recent times, big data in healthcare field have been developed significantly with useful datasets that
are highly complex and massive. In medical field, the size of the information qualifies the big data. Several
limitations are existing like heterogeneity, speed and variation of information in healthcare [1,2]. With the
features of versatility, connectivity and diversity of data gathering devices, the information which creates
high data rate and decision must be in real world for sustaining with the standard growth of techniques.
The data source in healthcare could be either qualitative (for example demographics, free text) or
quantitative (for example lab reports, gene arrays, images and sensor data). The main aim of the data
problem is to give a basis for monitoring proof to respond to medical queries. The standard concept of
the main features of big data consists of three V’s namely Volume, Velocity and Variety. In few
conditions, several features are also involved such as Value, Variability and Veracity. The approach of big
data and extensive utilization of electronic health records of people allows continuous results for
population health problems before it becomes difficult [3,4]. Rather than generalizing the data attained
from a smaller amount of instances to create inferences regarding population, it could utilize medical
information at the population level to give a real-time image. Examining the original information among
larger group of persons is an essential modification from traditional bio-statistics that concentrates on
reducing the impact of entire type. Though randomly controllable trial remains the benchmark to establish
and monitor the efficiency of the drugs at the population level, might involve real time aspects like drug
compliance, gives an improved method of actual efficiency of the drug. ML is a kind of Artificial
Intelligence (AI) that contains algorithmic approaches which allow machinery to resolve difficulties
without particular computer programming [5]. The Al method is utilized broadly in the research and
conventional network to define a wide variety of significant applications, like digital personal assistants,
personalization of customer products and self-driving vehicles. Although AI method has gained more
interest in healthcare and other areas, the significance of self-learning and continuous evolving ML
technique has to be moderated towards the problems in executing these tools in medical practice. Mostly,
the medical ML tools depend upon supervised learning approaches, where information is categorized into
predefined classifications. The bar for accuracy and efficiency of medical ML tools are structured by
medicinal devices. In contrast, a medicinal device is an exclusive feature of Al method has the capacity
to enhance novel information. This procedure is named incremental learning, where the resultant
information from a trained Al method is combined with closed data feedback loop and utilized to
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improve the prediction accuracy by Retraining Iteration method [6]. This feature identifies the trained Neural
Networks (NN) from standardized software/immutable scoring methods. This paper presents a new Big Data
Analytics with Optimal Elman Neural network (BDA-OENN) for clinical decision support systems. The
proposed BDA-OENN model intends to diagnose the neurological disorder called ASD. Primarily, data
preprocessing is applied for enhancing the data quality to certain extent. For the generation of synthetic
data, Synthetic Minority Over-sampling Technique (SMOTE) is used. Inorder to handle big healthcare
data, Hadoop Ecosystem tool is used. In addition, the OENN model is employed for classification of
process in which the optimal parameter setting of the ENN model takes place using Binary Grey Wolf
Optimization (BGWO) algorithm. Extensive experimental analysis is carried out to ensure that the
classification performance of the BDA-OENN model on the applied ASD dataset.

2 Background Information and Related Works
2.1 Overview of ASD

Autism Spectrum Disorder (ASD) is a neuro developing disease categorized by pervasive defects in
diverse interests, functions, repeated behavior and social communication. The conventional ideas are
related to distinct ailments such as genetic disintegrative disorder, Asperger’s ailments and autistic
infection [7]. In recent times, ASD is considered as an separate disorder with severity level that fails to
remain in last version of Diagnostic and Statistical Manual of Mental Disorder (DSM-5). The changes
over the dimensional approach will lead expert doctors using standardized diagnostic tools distinguishing
the symptoms of DSM-IV disorders [8]. Furthermore, DSM-5 consists of reports from starting stage and
co-occurring conditions. It is altered to ASD diagnostic conditions that facilitates the classification of the
sub types of ASD [9]. As presented by latest diagnostic application, ASD is the most heterogeneous
infection. The symptoms of ASD are language disability, alternative skills and developing applications
(like executive performance and adaptive skills) [10] that vary in higher values among the tested people.
Subsequently, initial stage of symptoms differs from each other, which demonstrates latency or plateaus
in deployment and regression of traditionally acquired accomplishments. In recent times, the researchers
focuses on distinct statistical and heuristics methods to examine and comprehend the methods for
diagnosing and retrieving the data from ASD. In this method, Machine Learning (ML) is the most
effective method utilized to examine the difficult concept [11]. Therefore, ML technique is employed to
implement binomial classification process to detect the feature that predicts the infection. Only few
mechanisms focuses on Autism Detection Analysis.

2.2 Prior Works on Big Data Analytics in Healthcare

Wall et al. [12] employed computational intelligence for diagnosing heart disease using ML,
optimization and fuzzy-logic techniques. Besides, the BDA tool is used along with the [oMT
environment. Amos et al. [13] developed a Disease Diagnosis and Treatment Recommendation System
(DDTRS) for increasing the exploitation of the recent medical technologies and aid professionals. The
Density Peaked Clustering Analysis (DPCA) is employed to detect the symptoms of the disease properly
and Apriori algorithm is also applied. Jianguo et al. [14] examines Coronary Heart Disease (CHD) in the
big data environment and mathematically modeled the clinical symptoms with the CHD kinds for predictive
analysis. Besides, Hadoop tool is applied for the construction of big data environment for data analysis.
Along with this, Back Propagation Neural Network (BPNN) and Naive Bayesian technique are applied for
CHD diagnosis. Letian et al. [15] designed a heart disease diagnosis model for the prediction process using
the Firefly—Binary Cuckoo Search (FFBCS) technique. Munir et al. [16] emphasis on the patient detection
process by the use of big data and Fuzzy Logic, that is obtained by using fuzzy process. Prableen et al. [17]
projected an effective smart and secure healthcare information system by the use of ML and latest security
framework for handling big healthcare data. Karthikeyan et al. [18] developed a new Optimal Artificial
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Neural Network (OANN) to diagnose heart diseases in big data environment. It includes an outlier detection
technique with Teaching and Learning Based Optimization (TLBO)-ANN model.

3 The Proposed BDA-OENN Model

The workflow of BDA-OENN model is illustrated in Fig. 1. The figure demonstrates that the medical data
is initially preprocessed in three different ways such as data transformation, class labeling and min-max based
data normalization. Then, the preprocessed data is fed into the SMOTE technique for the generation of big
healthcare data. Followed by, the big data is analyzed in the Hadoop Ecosystem environment, where the
actual classification process is executed. It is simple for the Elman Neural Network weights to fall into a
minimum since they are updated using the gradient descent approach, same as the BP neural network is
utilized. Elman neural network is a feedback neural network in which an additional connecting layer is
added to the hidden layer of the feedforward network in order to memorize and to produce more global
stability. Finally, the OENN based classification model is applied to determine the class labels and the
parameter tuning of OENN model takes place using the BGWO algorithm.
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Figure 1: Overall working process of BDA-OENN model

3.1 Hadoop Ecosystem

To manage the Big Data, Hadoop Eco-system and its components are extremely utilized. In a shared
platform, Hadoop is a type of open source framework, which allows the stakeholders to process and save the
Big-Data on computer cluster by using simpler programming methods. Over 1000 nodes from an individual
server is demonstrated to include fault tolerance and enhanced scalability. The three major components of
Hadoop are (i) Hadoop YARN (ii) MapReduce and (iii) Hadoop Distributed File System (HDFS).
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3.1.1 Hadoop Distributed File System (HDFS)

According to Google File System (GFS), the HDFS is exhibited. It is demonstrated as slave or master
architecture where the master has more than 1 data node that is known as actual data and a different name
node that is known as metadata.

3.1.2 Hadoop Map Reduce

To provide massive adaptability on 1000 Hadoop clusters, Hadoop Map Reduce is utilized and it is the
programming architecture at Apache Hadoop heart. For processing huge data on massive clusters,
MapReduce is utilized. MapReduce in task processing is comprised of two significant phases such as
Map and Reduce stage. Both the phases comprises of pair such as input and output which is the keyvalue
especially, in file system where both input and output of the task are stored. The framework handles
failed controlling, task re-execution and task scheduling. The framework of MapReduce comprises of
single slave node manager and one master resource manager for entire cluster nodes.

3.1.3 Hadoop YARN

Hadoop YARN method is utilized to manage cluster. From the knowledge gained at initial Hadoop
generation, it is demonstrated as a secondary Hadoop generation that performs as the major feature. On
Hadoop cluster for providing data governance tools, safety and consistent process, YARN performs as a
central architecture and resource manager. In dealing with Big Data, the other framework components
and tools may be installed on the Hadoop framework.

3.2 SMOTE Based Data Generation

The SMOTE technique is used to synthesize the input medical data into massive amount of big data.
SMOTE is an oversampling method presented by Chawla et al. [19] and functions in feature space
instead of data space. The goal of SMOTE is to create synthetic data as we track the nearest neighbours
of the minority class “k”. The term minority class refers to each of the minority class's nearest neighbours
“k” where “k” is determined (by default) and then synthetic data is created by starting with each pair of
points generated by the sample and its nearest neighbours and iterating. From this method, the instance
counts for the minority class in the actual dataset is raised by generating novel synthetic samples, that
leads to broader decision areas of the minority class, when naive oversampling by replacing cause the
decision area of the minority class that should be accurate. The novel synthetic instance is determined by
two variables such as oversampling rate (%) and the amount of nearest neighbor (k).

Xp = Xo + 0- (xoi - xo) (1)

where x,, denotes novel synthetic instance, x, represents vector feature of all instances in the minority class,
X,; indicates ith chosen nearest neighbor of x, and J represents arbitrary number between zero and one. For
instance, if f%= 900% and k£ = 5, it should create 9 novel synthetic instances for an actual sample.

Fig. 2 illustrates the flowchart of SMOTE algorithm. The three steps mentioned above are repeated for
nine times. As every time a novel synthetic sample is generated, most of the 5 nearest neighbors of x, is
selected arbitrarily [20]. Additionally, synthetic instance for nominal feature is executed by the
subsequent steps as follows, Step 1: Attain the majority vote among features in assumption and KNN for
the nominal feature value. If there is a tie, then select by arbitrary. Step 2: Allocate the attained value to
the novel synthetic minority class instance. For instance, provide a group of feature instance that
represents {A, B, C, D, E} and the 2 nearest neighbors containing group of features that are
{A, F, C, G, N} and {H, B, C, D, N}, the novel synthetic instance have to group the features, that is
{A, B, C, D, N}.
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Figure 2: Flowchart of SMOTE algorithm

3.3 ENN Based Medical Data Classification

Once the synthesized data has been generated, the ENN model is applied for classification of medical
data. The ENN presented by Xiaobo et al. [21] is a dynamic recurrent network. On comparing with the
classical BPNN, the ENN has the special layer known as context layer that creates the network having
the capability to learn time-varying patterns. Therefore, the ENN is most appropriate for classification
problems. An architecture of ENN is demonstrated in Fig. 3 [22]. Neglecting the context layer, the
remaining part is assumed as the standard multilayer network. The context layer comes from the outcome
of hidden layer. Further, the result of context layer is given as input back to hidden layer along with next
group of external input layer data. The data of prior time is saved and reprocessed by this feature.

The ENN has n-dimensional external input layer and the external input vector is signified as

x1(z) = [x“(z), xi12(2), ..., xl,n(z)]z where, z refers to the 7th input order. For ease, the output of final
layer is also planned to take » neuron and the resultant vector of these layers are expressed as
y(z) = 1(2), 12(2), ..., ya(2)]”. The individual neuron among the hidden layer as well as context layer is

matching individually and therefore, the amount of neuron in context layer is given by m that is similar to
hidden layers. An input of hidden layer in the context layer is defined as x(z) =c(z—1) =
[e1(z—=1),e2(z = 1), ..., cu(z — 1)]”. The entire input vector of these networks is given by,

x(z) = [F (2 (2)]”
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= [x11(2), x12(2), ..., x1a(2), 1z =1), ..., culz— 1)]2

= x1(2), x2(2), ..., x%(2)]%,

with & = m + n. The matrices amongst the 3 layers are signified as W"(z), W"¢(z) and W°"(z) respectively
[23]. It is vital to identify the size of these matrixes. By analyzing the dimensionality of all layers,
whi(z) € R™", Wh(z) € R™™ and W°"(z) € R™™ are achieved.

Output Layer

Hidden Layer

Bearing Layer
Input Layer

Figure 3: Structure of ENN

¥(z) implies the actual output of these networks and d(z) denotes the desired resultant vector. When the
activation function is selected as sigmoid function, y(z) is calculated by:

1
Lt ep(—v¢(2)

7i:1727"'7n7 (2)

ZWoh Li=1,2,..., n (3)

The input of hidden layer is comprised of 2 parts that are external and context input, given by
Wh(z) = [Wh(z) wh(z)] € R™*. From the entire input vector x(z) and the sigmoid activation function,
the outcome of hidden layer is written as

1 :
h](Z) :f(V]h(Z)> = y ] = 17 27 RPN (U (4)
1+ exp(—v}’(z))
le Yxx(z),j=1,2,..., m. (5)
The aim of this network in minimizing the error can be given by:
2

e(z

iy = e ©

e(z) = d(z) —y(2)- ™)
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To reduce E(z), the update of all weight matrices is calculated by,

oz + 1) = WO (2)— uga‘;’if()z )
= W'(2) + w (2)e(2)h” (1), (8)
Whiz+1) = wh(z) — M;;}EE;)
= W) + il () [P (2)] Y (el (2), ©)
At this point, u represents the learning rate and it is given by,
¥ (z) = diag[f’ (vi(2)) f'(v3(2)) .../ (Vi(2))] € R™" (10)
H(z) = diag[f' (Vi(2))f' (Vi(2)) ...f (Vi(2))] € R™™ (11)

3.4 BGWO Based Parameter Optimization

In order to tune the performance of the ENN model, the parameter optimization is carried out using the
BGWO algorithm. GWO is the recently developed metaheuristic algorithm derived from hunting nature of
grey wolves. Generally, the wolves live in a group of 5-12 members. It is inspired by hunting and searching
prey characteristics of grey wolves. The wolves in GWO is separated as o, f3, 0 and @w. In GWO, the hunting
procedure is directed by «,  and J, whereas w trails the others [24]. The encircle nature of the grey wolves
during hunting its prey is defined by:

X(t+1)=x.(t) —4-D, (12)
where X, represents the location of prey, 4 refers the coefficient vector and D can be denoted as
D= [C-X,(t) = X(1)] (13)

where C implies the coefficient vector, X is the location of grey wolf and ¢ signifies the round count. The
coefficient vectors, 4 and C, are measured by,

A=2a-r —a, (14)
C = 2r, (15)

where r; and r, are 2 self-determining arbitrary numbers uniformly distributed on [0, 1] and a implies the
surrounding coefficient which is used for balancing the tradeoff among exploration and exploitation. On
applying GWO algorithm, the variable a gets linearly reduced from 2 to 0, using Eq. (16).

t
a:2—2CJ, 16
- (16)
where ¢ indicates the round count and T denotes the highest round count. The leaders direct the «=» wolves to
move in the direction of optimum location. The updated location of the wolves is determined as:

X1 +X + X3

X(e+1)= 2D

(17
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where X;, X, and X3 can be calculated by using Eqs. (18)—(20):

Xl - |XCX _Al ‘Da|7 (18)
Xy = |Xp—4,- Dy, (19)
X3 == ‘Xé _A3 : D(5|7 (20)

where X, X and X are the location of a, B and 6 at round ¢ respectively. 4, A, and 43 are determined using
Eq. (14) and D,,, Dy and Ds are computed using Eqgs. (21)—(23) respectively.

D, = |C,-X, —X]|, (21)
Dy = |Cy-Xp—X|, (22)
D(5 = ‘C3 : X(5 - X|7 (23)

where C,, C, and C; are computed from Eq. (15). The BGWO algorithm makes use of the crossover operator
in updating the location of wolf using Eq. (24):

X(t+ 1) = Crossover(Y1, Y2, T3), (24)

where Crossover(Y, Y, and Y3) is the crossover operation amongst solutions and Y, T, and Y5 are the
binary vectors influenced by the motion of a, B and & corresponding wolves. In BGWO, YT, T, and Y3 are
computed as follows,

; d d
i _ { 1, if (X7 + bstep?) > 1 25)

0, otherwise

where XZ indicates the location of a, d is the dimension of searching area and bstepgf denotes binary step
which is given by Eq. (26),

1, if cstep? > rs
bstepl =< * = 26
StePy { 0, otherwise ’ (26)

where 73 is an arbitrary vector in [0, 1] and cstep? signifies the continuous valued step size which is computed
using Eq. (27),

1
1+ exp (—10(4¢-D¢ —0.5))’

cstep‘,j = 27)

where A{ and D? are measured using Eqgs. (14) and (21).
- (xd d
RN (Xﬁ—i—bstepﬁ) > 1 %)
0, otherwise

where Xﬁ is the location of B, d is the dimensionality of the searching area and bstep% denotes the binary step
which is defined by

1, if csteph > ry
bst. d — ) B = 29
stepjy { 0, otherwise ’ %)

where r4 is an arbitrary vector in [0, 1] and cstep% represents the continuous value step size which can be
defined as follows,
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1
1+ exp (—10(/10{ Yo 0.5)) ’

cstepg = (30)

where A{i and Df; are computed using Eqgs. (14) and (22).

a_ )1 if (X{Sd—i-bstepg) > 1
15 = {O, otherwise ’ S

where Xg is the location of 9, d is the dimensionality of the searching area and bstepg signifies the binary step
which is given below. Fig. 2 demonstrates the flowchart of GWO technique [25].

d_ 1, ifcstepg > rs 5
bstep; {0, otherwise ’ (32)

where 75 is an arbitrary vector in [0, 1] and cstepj;' is the continuous value step size which is given by Eq. (33),

1
1+ exp (—10(4¢- D4 —-0.5))’

cstepl = (33)

where Af and Dg’ are computed using Eqs. (14) and (23). After attaining T, T, and Y3, the new location of
the wolf can be upgraded by using crossover function as given below,

1
T‘f,ifr6<§

XU+1) = 2 (34)

1
d ] _< o
I2711[3_7’6<3

Tg’, otherwise

where d indicates the dimensionality of the searching area and r¢ is an arbitrary number uniformly
distributed in [0, 1].

4 Performance Validation

This section validates the ASD diagnostic performance of the BDA-OENN model on three benchmark
datasets namely ASD-Children Dataset, ASD-Adolescent Dataset and ASD-Adult Dataset. The details
related to the dataset are provided in Tab. 1 and the attribute details are given in Tab. 2.

Table 1: Dataset description

S.No. Dataset Name Sources Number of Attributes Number of Instances
ASD-Children Dataset UCI 21 292
ASD-Adolescent Dataset UCI 21 104

3 ASD-Adult Dataset UClI 21 704

Tab. 3 and Figs. 4a—4e illustrates the classification result analysis of the BDA-OENN model with OENN
model (without SMOTE based synthetic data generation). From the result obtained, it is clear that the BDA-
OENN method has attained better ASD diagnostic outcome. The ASD-Children dataset in the OENN model
has obtained a sensitivity of 98.13%, specificity of 98.65%, accuracy of 98.17%, F-score of 98.25% and
kappa of 98.02%. Followed by, the ASD-Adolescent dataset in the OENN method has achieved a
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sensitivity, specificity, accuracy, F-score and kappa of 96.47%, 98.94%, 97.86%, 96.90% and 97.36%
respectively.

Table 2: Attributes in the applied dataset

Number Attributes Description

1 Patient age

2 Sex

3 Ethnicity

4 Born with jaundice

5 Family Member with Pervasive Development Disorders (PDD)
6 Who Fulfills the Test

7 Country of Residence

8 Usage of Screening App earlier Or Not

9 Screening Test Type

10-19 Based on the screening method answers forl0 questions
20 Screening Score

21 Target Class [Yes/No]

Table 3: Result analysis of proposed methods on applied dataset

Dataset Sensitivity Specificity Accuracy F-score Kappa
Proposed OENN

ASD-Children 98.13 98.65 98.17 98.25 98.02

ASD-Adolescent 96.47 98.94 97.86 96.90 97.36

ASD-Adult 97.43 98.21 97.94 97.80 97.21

Proposed BDA-OENN

ASD-Children 98.83 98.90 98.89 98.65 98.42

ASD-Adolescent 97.21 99.10 98.43 98.12 98.23

ASD-Adult 98.89 99.34 98.95 98.86 98.67

The ASD-Adult dataset in the OENN approach has reached a sensitivity, specificity, accuracy, F-score
and kappa of 97.43%, 98.21%, 97.94%, 97.80% and 97.21% respectively while the ASD-Children dataset in
the BDA-OENN model has obtained sensitivity, specificity, accuracy, F-score and kappa of 98.83%, 98.90%,
98.89%, 98.65% and 98.42% respectively. Meanwhile, the ASD-Adolescent dataset in the BDA-OENN
model has obtained sensitivity, specificity, accuracy, F-score and kappa of 97.21%, 99.10%, 98.43%,
98.12% and 98.23% respectively. In the same way, the ASD-Adult dataset in the BDA-OENN technique
has attained a sensitivity, specificity, accuracy, F-score and kappa of 98.89%, 99.34%, 98.95%, 98.86%
and 98.67% respectively.

A detailed comparative result analysis of the proposed BDA-OENN model takes place with other
existing techniques in Tab. 4 [26-29].
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Figure 4: Result analysis of BDA-OENN model
Table 4: Result analysis of existing methods with proposed methods on applied dataset
Methods Sensitivity Specificity Accuracy F-score Kappa

BDA-OENN (Children)
BDA-OENN (Adolescent)

BDA-OENN (Adult)
OENN (Children)
OENN (Adolescent)
OENN (Adult)
QODF-DSAN

Decision tree

98.83
97.21
98.89
98.13
96.47
97.43
97.86
53.30

98.90 98.89 98.65 98.42
99.10 98.43 98.12 98.23
99.34 98.95 98.86 98.67
98.65 98.17 98.25 98.02
98.94 97.86 96.90 97.36
98.21 97.94 97.80 97.21
97.37 97.60 97.51 95.19
54.90 54.70 — —
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Table 4 (continued).

Methods Sensitivity Specificity Accuracy F-score Kappa
Logistic regression 55.50 62.60 59.10 - —
Neural network 53.30 71.20 62.00 - -
k-Nearest neighbor 46.60 72.10 61.80 - -
SVM (linear) 57.10 66.70 61.40 - -
RF-CART 82.06 77.02 80.71 - -

Opt. KNN - - 69.20 - -

Opt. LR - - 68.60 - -

Opt. RF - - 67.78 - -

Fig. 5 investigates the accuracy analysis of the BDA-OENN model with existing methods on the applied
ASD dataset. The figure shows that the DT model has produced poor result with an accuracy of 54.7%
whereas the LR model displays slightly higher accuracy of 59.1%. The SVM (liner model) shows
increased accuracy of 61.8%. Followed by, the K-Nearest Neighbor, NN, Opto. RF, Opto. LR and Opt.
KNN model has accomplished moderate accuracy values. Eventually, a manageable accuracy of 80.71%
has been attained by the RF-CART technique. The QODF-DSAN model results with a significant
accuracy of 97.6%. But the proposed OENN and BDA-OENN models have outperformed the existing
methods by attaining maximum accuracy values. In particular, the BDA-OENN model has resulted in a
maximum accuracy of 98.95% on the applied ASD-Adult dataset.
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Figure 5: Accuracy analysis of BDA-OENN model

Fig. 6 examines the sensitivity and specificity analysis of the BDA-OENN technique with existing
models on the applied ASD dataset. The figure shows that the k-Nearest neighbor model has produced
poor results with the sensitivity of 46.6% and specificity of 72.1% whereas the DT model displays
slightly higher sensitivity of 53.3% and specificity of 54.9%.The NN model has exhibited increased
sensitivity of 53.3% and specificity of 71.2%. Followed by, the LR and SVM (linear) approaches have
accomplished moderate sensitivity and specificity values. Eventually, a manageable sensitivity of 82.06%
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and specificity of 77.02% are attained by the RF-CART technique. The QODF-DSAN method has attained a
significant sensitivity of 97.86% and specificity of 97.37%. But the proposed OENN and BDA-OENN
models have outperformed the existing methods by attaining higher sensitivity and specificity values.
Particularly, the BDA-OENN model has resulted in a maximal sensitivity of 98.89% and specificity of
99.34% on the applied ASD-Adult dataset.
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Figure 6: Sensitivity and specificity analysis of BDA-OENN model

Fig. 7 determines the F-score and kappa analysis of the BDA-OENN model with existing methods on the
applied ASD dataset. The figure shows that the QODF-DSAN model has illustrated poor outcome with the F-
score of 97.51% and kappa of 95.19% whereas the OENN (Adolescent) model has outperformed even
increased F-score of 97.8% and kappa of 97.21%. Followed by, the OENN (Children) model has
accomplished moderate F-score of 98.25% and kappa of 98.02%. Eventually, a manageable F-score of
98.12% and kappa of 98.23% has been offered by the BDA-OENN (Adolescent) technique. Followed by,
the BDA-OENN (Children) technique has attained a significant F-score of 98.65% and kappa of 98.42%.

The BDA-OENN technique has resulted in a higher F-score of 98.86% and kappa of 98.67% on the
applied ASD-Adult dataset.
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Figure 7: F-score and Kappa analysis of BDA-OENN model



TIASC, 2022, vol.31, no.2 1255

5 Conclusion

This paper develops an effective BDA-OENN model for clinical decision support systems to diagnose
ASD accurately. The presented BDA-OENN model involves different stages of operations such as data
preprocessing, synthetic data generation, classification and parameter optimization. The medical data is
firstly preprocessed in three diverse ways such as data transformation, class labeling and min-max based
data normalization. Next, the preprocessed data is fed into the SMOTE technique to create big healthcare
data. Followed by, the big data is analyzed in the Hadoop Ecosystem environment, where the actual
classification process gets executed. Lastly, the OENN based classification model is applied to determine
the class labels and the parameter tuning of OENN model takes place using the BGWO algorithm.
Extensive experimental analysis is carried out to ensure the classification performance of the BDA-OENN
model on the applied ASD dataset. The experimental values obtained results in the betterment of the
BDA-OENN model over the other methods in terms of distinct performance measures. The BDA-OENN
model has resulted in a maximal sensitivity of 98.89% and specificity of 99.34% on the applied ASD-
Adult dataset. BDA-OENN (Children) technique results in a significant F-score of 98.65% and kappa of
98.42%. But, the BDA-OENN technique results in a higher F-score of 98.86% and kappa of 98.67% on
the applied ASD-Adult dataset. In future, the performance of the proposed BDA-OENN method is
extended further for social media information by dimensionality reduction and clustering techniques.
Applying different machine learning algorithm to reduce time complexity to improve the performance of
BDA-OENN.
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