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Abstract: Anomaly detection in surveillance videos is an extremely challenging
task due to the ambiguous definitions for abnormality. In a complex surveillance
scenario, the kinds of abnormal events are numerous and might co-exist, includ-
ing such as appearance and motion anomaly of objects, long-term abnormal activ-
ities, etc. Traditional video anomaly detection methods cannot detect all these
kinds of abnormal events. Hence, we utilize multiple probabilistic models infer-
ence to detect as many different kinds of abnormal events as possible. To depict
realistic events in a scene, the parameters of our methods are tailored to the char-
acteristics of video sequences of practical surveillance scenarios. However, there
is a lack of video anomaly detection methods suitable for real-time processing,
and the trade-off between detection accuracy and computational complexity has
not been given much attention. To reduce high computational complexity and
shorten frame processing times, we employ a variable-sized cell structure and
extract a compact feature set from a limited number of video volumes during
the feature extraction stage. In conclusion, we propose a real-time video anomaly
detection algorithm called MPI-VAD that combines the advantages of multiple
probabilistic models inference. Experiment results on three publicly available
datasets show that the proposed method attains competitive detection accuracies
and superior frame processing speed.

Keywords: Video anomaly detection; probabilistic model; surveillance video;
real-time processing

1 Introduction

The detection of abnormal events in surveillance videos is a significant task because watching the videos
frame by frame manually consumes lots of time. The availability of large volumes of surveillance videos
gives rise to a great demand for processing. However, this could be extremely challenging due to the
uniqueness and unbounded nature of abnormal events in the real world. Besides, as it is infeasible to
enumerate all kinds of abnormal events, we are unable to find a sufficiently representative set of
anomalies. Based on the characteristics of the labeled data in the training set, video anomaly detection
can typically be classified into the following three categories: supervised [1] where both normal and
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abnormal samples are labeled, semi-supervised [2–6] where only normal samples are provided, and
unsupervised [7,8] where no training data is given. We aim to tackle semi-supervised video anomaly
detection when only normal samples are required in the training set. An intuitive approach is to model
the normality distribution of training data, and any sample which does not adhere to the normality
distribution is identified as abnormal.

Probabilistic models are used for statistical data analysis, e.g., path planning [9]. Probabilistic models are
widely used for establishing normality distribution of training data, such as Markov random field [5],
conditional random field [6], probabilistic event logic [10], and local statistical aggregates [11]. The
problem formulation of video anomaly detection based on multiple probabilistic models inference is
presented as follows: (1) In the model training stage, given the training data Xtrain = {x1, x2, …, xn}
containing only normal video samples, the goal is to build a few probabilistic models pX ¼
fpX1 ; pX2 ; . . . ; pXmg of normal event patterns from Xtrain. (2) In the detection stage, the testing data Xtest

contains both normal and abnormal video samples, in which the samples that do not conform to the
probabilistic models pXiðxÞ; 1 � i � m are identified as anomaly. This is equivalent to a statistical test of
hypotheses:

� H0Z: x is drawn from pX;

� H1Z: x is drawn from an uninformative distribution other than pX.

If pXiðx0Þ, e; 1 � i � m, we reject the null hypothesisH0 and acceptH1, i.e., x′ does not conform to the
probabilistic models pX of normal event patterns, where ε is the normalization constant of the uninformative
distribution [6].

There are too many abnormal events in the real world, and we divide them into four fine-grained
categories: appearance anomaly, global motion anomaly, local motion anomaly, and long-term abnormal
activities. For example, skaters, cyclists, and disabled people moving with the help of a wheelchair are
local motion anomalies on the sidewalk, and they have a similar appearance to a normal pedestrian. The
probabilistic models only using appearance features in [2,10,11] cannot detect these local motion
anomalies. Long-term abnormal activities like loitering can be detected by Markov models [2,4].
However, Markov models are not sensitive to the other three kinds of abnormal events. To sum up, the
above video anomaly detection models have some limitations such as high missed and false detection
rates. Inspired by this observation, we characterize all four kinds of abnormal events using both
appearance and motion features to ensure detection accuracy. Specifically, we employ multiple
probabilistic models to learn appearance and motion features in surveillance videos respectively, and then
integrate multiple probabilistic models into an anomaly inference algorithm to infer all kinds of abnormal
events as much as possible. The main contributions of this paper are as follows:

(1) We theoretically formulate video abnormal detection based on multiple probabilistic models
inference as a statistical hypothesis testing problem.

(2) We propose a novel video anomaly detection algorithm based on multiple probabilistic models
inference called MPI-VAD.

(3) To strike the trade-off between detection accuracy and computational complexity, we employ a
variable-sized cell structure to help extract the appearance and motion feature from a limited
number of video volumes.

The rest of the paper is organized as follows. Section 2 introduces the related work regarding two types of
abnormal event detection methods - Accuracy First Methods and Speed First Methods. Section 3 presents
our proposed MPI-VAD in detail. Section 4 describes the experiment settings and results from evaluation
of MPI-VAD on three publicly available datasets: UMN, CUHK Avenue and USCD Pedestrian. Finally,
Section 5 concludes our work and discusses possible improvements in the future work.
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2 Related Work

Over the past decade, despite important advances in improving video anomaly detection accuracy, there
is a lack of methods designed for real-time processing that impairs its applicability in practical scenarios.
Real-time video anomaly detection means that a frame processing time is shorter than the time of a new
frame received. Taking a 30 FPS video sequence as an example, video anomaly detection could attain
real-time processing performance when a frame processing time is less than 33.3 milliseconds. According
to the trade-off between detection accuracy and computational complexity, existing video anomaly
detection methods can be divided into two main categories: Accuracy First Methods, which focus on
improving the detection accuracy no matter the required frame processing times, and Speed First
Methods, which are primarily concerned about reducing frame processing times to satisfy practical
applications for real-time processing.

Accuracy First Methods: They usually achieve higher detection accuracy at the expense of increased
computational complexity and frame processing times. An important characteristic of these methods is to
select sufficient video volumes to be processed, such as dense scanning [2], multi-scale scanning [12],
and cell-based methods [13]. Roshtkhari et al. [2] generate millions of features by an overlapped multi-
scale scanning techniques to enhance detection precision. Bertini et al. [12] compute a descriptor based
on three-dimensional gradients from overlapped multi-scale video volumes. Zhu et al. [3] adopt
histograms of optical flow (HOF) to detect anomalies in crowded scenes. Cong et al. [14] adopt multi-
scale HOF (MHOF), which preserves temporal contextual information and is a highly descriptive feature
specifically for accuracy improvement. Although these local feature descriptors extracted from video
volumes have shown promising performance, it takes long processing times to compute such feature
descriptors. Leyva et al. [13] employ a variable-sized cell structure-based methods to extract features
from a limited number of video volumes.

Speed First Methods: Though the above methods attain high detection accuracy, their frame processing
times are extremely long, and some essential efforts should be made to reduce the computational complexity.
Lu et al. [15] and Biswas et al. [16] manage to handle a few features even though they employ multi-scale
scanning techniques. Lu et al. [15] employ multi-scale temporal gradients as the prime feature to speed up
feature extracting. Biswas et al. [16] adopt the compressed motion vectors of a video sequence itself in a
histogram-binning scheme as features. Adam et al. [17] analyze the optical flow for individual regions in
the scene to meet real-time processing requirement; unfortunately, they only detect the appearance
anomaly and cannot detect local motion anomaly and long-terms abnormal activities in surveillance
videos. A common characteristic of these methods is that they are fast to extract features but not highly
descriptive. These methods usually reduce frame processing times by employing low-complexity
descriptors. In a word, these previously proposed methods mostly reduce the computational complexity at
the expense of slightly lower detection accuracy. Our proposed method achieves a trade-off between
detection accuracy and computational complexity.

3 Method

In this section, we firstly employ a variable-sized cell structure to extract appearance and motion features
from a limited number of video volumes. Secondly, multiple probabilistic models are built on a compact
feature set in the model training stage. Finally, we integrate multiple probabilistic models into MPI-VAD
in order to detect four fine-grained categories of abnormal events.

3.1 Feature Extraction

In order to select the video volumes for analysis, we firstly construct a variable-sized cell structure for
the whole scene (shown in Fig. 1). Local feature descriptors based on foreground occupancy and optical flow
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information are extracted from a limited number of video volumes (shown in Fig. 1). Each video volume u ∈
R3 has dimensions mx ×my ×mt, where mx and my respectively correspond to the horizontal and vertical
dimensions of the cell, and mt denotes the number of consecutive frames.

Foreground feature can efficiently describe the abnormal object presence such as trucks and wheelchairs.
For each video volume u associated with the cell at position (i, j), the corresponding foreground occupancy F
(i, j) ∈ R is computed as follows:

Fði; jÞ ¼ 1

N

XN
n¼1

uðnÞ; (1)

uðnÞ ¼ 1; if nth pixel belongs to foreground region
0; otherwise

�
; (2)

where N is the total number of pixels in video volume u, and u(n) indicates whether the n-th pixel belongs to
the foreground region. If foreground occupancy F(i, j) of a video volume u exceeds a threshold θ, the video
volume u can be considered active, and only active video volumes are further analyzed.

Optical flow information can properly describe the motion anomaly such as crowd panic, fights and
other sudden variations. To filter salient regions in active video volumes, we detect STIPs on the absolute
temporal frame differences via the FAST detector (shown in Fig. 1). Optical flow energy Op(xp, yp, tp)
and an MHOF descriptor wp(xp, yp, tp) are generated from each spatio-temporal support region centered in
the STIP(xp, yp, tp). Optical flow energy Op(xp, yp, tp) is computed as:

Opðxp; yp; tpÞ ¼ 1

N

XN
n¼1

kðvðnÞx ; vðnÞy Þk2; (3)

where N is the total number of pixels in a spatio-temporal support region, and vðnÞx and vðnÞy respectively
correspond to the horizontal and vertical components of n − th pixel optical flow. The MHOF descriptor
wp(xp, yp, tp) is an 8-bin optical flow histogram with two layers of bins calculated in the range f0; p2 ; p; 3p2 g.

3.2 Multiple Probabilistic Models

Our method for building multiple probabilistic models of normal event patterns in the model training
stage is illustrated in Fig. 2. Multiple probabilistic models are built on a compact feature set based on
foreground occupancy and optical flow information.

Multiple probabilistic models are applied to detect various abnormal events in complex scenes,
including appearance anomaly, global motion anomaly, local motion anomaly, and long-term abnormal
activities. Foreground occupancy and optical flow energy are respectively analyzed with the distinct
Gaussian Mixture Models. The MHOF descriptors are simultaneously analyzed with dictionary models
and Markov models.

Cell Structure FAST detectorMOG

STIP

FAST point

Support region

FAG
Foreground region

Figure 1: Feature extraction process in surveillance videos
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(1) GMMs for Foreground Occupancy: Gaussian Mixture Model (GMM) is widely used in various
fields, e.g., iris segmentation [18]. To detect appearance anomaly like variable-sized objects, we
use GMMs to learn foreground occupancy of normal video samples. The foreground occupancy
of each cell is analyzed by a GMM with parameters hF ¼ fpFk ; lFk ; rFk g, respectively
representing the weight, mean, and standard deviation of the k-th component of the GMM, as
follows:

pFGðFði; jÞjhFÞ ¼
X
k

pFk NðFði; jÞjlFk ; rFk Þ; (4)

where N is a normal distribution. Expectation-Maximization (EM) algorithm is used to train these local
GMMs. The parameters of the models are determined exhaustively as follows:

AICðk; FÞ 4¼ logðpFGðFjhFMLEÞÞ � dof ðkÞ; (5)

where F represents all the foreground occupancy to be processed, whose posterior likelihood is to be
maximized by iterating the Akaike Information Criterion (AIC); and hFMLE is the corresponding parameter
set that results in the maximum likelihood estimation.

Considering the spatially immediate neighborhood of local cells, we construct a final probability density
function to calculate the posterior likelihood of F(i, j) from the current cell, as follows:

pFGLðFði; jÞÞ ¼
Yiþ1

x¼i�1

Yjþ1

y¼j�1

cx;ypFGðFði; jÞjhFÞ; (6)

cx;y ¼ 1; x ¼ 0; y ¼ 0;
0:2; otherwise;

�
(7)

where γ is an exception-modified Kronecker delta function.

(2) GMM for Optical Flow Energy: Different from multiple GMMs for foreground occupancy in the
scene, to detect global motion anomaly, we only employ a global GMM with parameters
hO ¼ fpOk ; lOk ; rOk g, respectively representing the weight, mean, and standard deviation of the k-
th component of the GMM, as follows:

pOFEðOpðxp; yp; tpÞjhOÞ ¼
X
k

pOk NðOpðxp; yp; tpÞjlOk ; rOk Þ; (8)

where N is a normal distribution; andOp represents all the optical flow energy to be processed and hOMLE is the

Foreground 
occupancy - F

Optical flow 
energy - Op

MHOF 
descriptor - wp

Normal 
video 

samples

Feature 
extraction

Building local GMMs

Building global GMM

Building dictionary models

Building Markov models

Probabilistic models of 
normal event patterns

Figure 2: Our method for building multiple probabilistic models of normal event patterns in the model
training stage
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corresponding parameter set that results in the maximum likelihood estimation. EM algorithm is used to train
the global GMM.

(3) Dictionary Models for MHOF Descriptors:We are interested in capturing the local motion anomaly
in the scene considering the fact that the activities may vary within the scene. For example, when
both sidewalk and road exist in a scene, the activities on the sidewalk may largely differ from the
activities in the road. Hence, we create an individual dictionary for each cell in the scene instead
of creating a global dictionary as proposed in [2,19,20]. Each cell is assigned a dictionary
generated from the set S of MHOF descriptors within the cell. We firstly use k-means to define
the cluster centroid zi ∈ R8 in a dictionary, as follows:

zi: argmin
S

Xk
i¼1

X
wp2S

kwp � zik22; (9)

The generated dictionary is associated with a normal distribution with parameters θDIC = {μDIC,
σDIC}, respectively representing the mean and standard deviation of the distribution, as follows:

pDICðdpjhDICÞ ¼ NðdpjlDIC; rDICÞ; (10)

where dp = ‖wp − zi‖2, denoting the l2 distance of the word wp ∈ S to the cluster centroid zi. When we calculate
the posterior likelihood of the observed words wp ∈ S, dp ≈ 0 and pDIC(dp|θ

DIC)→ 1; otherwise wp∉S, dp≫
0 and pDIC(dp|θ

DIC)→ 0. Maximum likelihood estimation is used to train the dictionary models.

(4)Markov Models for MHOF Descriptors: Finite-State Markov Chain (FSMC) is used to capture long-
term abnormal activities like loitering. Because the activities in the scene vary significantly across
different regions, we use multiple local Markov models for different regions to detect anomalous
events in a scene, instead of creating a global Markov model as in [4]. Let us consider the current
state Xl given by the matching label l of the local dictionary, the probability density function of
the FSMC is given, as follows:

pMRV ðX1:LÞ ¼ pðX1Þ
YL
l¼2

pðXljXl�1Þ; (11)

where L is the number of states defined by the total number of labels in the local dictionary. The matching
label index l is defined as:

l: argmin
l

kwp � zlk22; (12)

and the associated state transition matrix A is defined as:

Aij ¼ pðXl ¼ j j Xl�1 ¼ iÞ;
X
j

Aij ¼ 1; (13)

The probability of words i and j both occurring is calculated by the concurrence of the two words. The order
of occurrence of words i and j does not matter if the number of analyzed frames is limited; thus we make
matrix A symmetrical.

3.3 Anomaly Inference

After building multiple probabilistic models of normal event patterns, a novel video anomaly detection
algorithm based on multiple probabilistic models inference — MPI-VAD (shown in Algorithm 1) is
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proposed to detect four fine-grained categories of abnormal events in the detection stage. MPI-VAD
integrates the multiple probabilistic models into video anomaly detection and synthetically considers the
detection results from different probabilistic models inference. MPI-VAD works in two cascaded phases
— mask generation and multiple mask joint analysis, as follows:

In the first phase –– mask generation, the mechanism evaluates the posterior likelihood of appearance
and motion features from video volumes. We generate three likelihood binary masks: foreground occupancy
mask MaskFG, optical flow energy mask MaskOFE and MHOF descriptors mask MaskMHOF. The posterior
likelihood of the foreground occupancy F is calculated as follows:

cFG ¼ � lgðpFGLðFÞÞ; (14)

The likelihood binary mask MaskFG is generated by thresholding γFG, as follows:

MaskFG ¼ 1; cFG . eFG;
0; cFG � eFG;

�
(15)

where εFG is a posterior likelihood threshold used to determine whether the video volume corresponding to
foreground occupancy F is abnormal; 1 denotes abnormal and 0 denotes normal. Similarly, we calculate the
posterior likelihood of the optical flow energy Op and MHOF descriptors wp. The posterior likelihood of the
optical flow energy Op is calculated as follows:

cOFE ¼ � lgðpOFEðOpÞÞ; (16)

The likelihood binary mask MaskOFE is generated by thresholding γOFE, as follows:

MaskOFE ¼ 1; cOFE . eOFE;
0; cOFE � eOFE;

�
(17)

where εOFE is a posterior likelihood threshold used to determine whether the spatio-temporal support region
corresponding to optical flow energyOp is abnormal. The posterior likelihood of the MHOF descriptors wp is
calculated as follows:

cMHOF ¼ � lgðpDICðwpÞ � pMRV ðwpÞÞ; (18)

The likelihood binary mask MaskMHOF is generated by thresholding γMHOF, as follows:

MaskMHOF ¼ 1; cMHOF . eMHOF ;
0; cMHOF � eMHOF ;

�
(19)

where εMHOF is a posterior likelihood threshold used to determine whether the spatio-temporal support region
corresponding to MHOF descriptor wp is abnormal.

In the second phase –– multiple mask joint analysis, the above multiple likelihood binary masks are
jointly analyzed to determine whether abnormal events occurred in surveillance videos. Specifically, if a
video volume is identified as anomalous in any individual likelihood binary mask, the corresponding cell
at time t is marked as anomalous, as follows:

Maskt ¼ MaskFG;t _MaskOFE;t _MaskMHOF;t; (20)

In order to make the anomaly inference mechanism more resilient to noise, we use the two consecutive
frames at times {t − 1, t} to determine the abnormality of the frame at time t, as follows:

gMaskt ¼ Maskt�1 ^Maskt; (21)
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The binary mask gMaskt represents the final abnormal regions in frame t.

Algorithm 1 MPI-VAD

Input: foreground occupancy F, optical flow energy Op and MHOF descriptors wp;

probability density functions: pFGL, pOFE, pDIC, pMRV;

thresholds εFG, εOFE, εMHOF

Output: Abnormal event mask Mask

1 Initialize likelihood binary masks of multiple probabilistic models:

MaskFG = 0, MaskOFE = 0, MaskMHOF = 0;

2 Calculate pFGL(F); // the posterior likelihood of F

3 γFG = −lg(pFGL(F));

4 Calculate pOFE(Op); // the posterior likelihood of Op

5 γOFE = −lg(pOFE(Op));

6 Calculate pDIC(wp), pMRV(wp); // the posterior likelihood of wp

7 γMHOF = −lg(pDIC(wp)*pMRV(wp));

8 if γFG > εFG then MaskFG = 1; // mask generation

9 else if γOFE > εOFE then MaskOFE = 1;

10 else if γMHOF > εMHOF then MaskMHOF = 1;

11 Mask =MaskFG ∨ MaskOFE ∨ MaskMHOF; // multiple mask joint analysis

4 Experiment

4.1 Experiment Settings

We have implemented MPI-VAD in MATLAB and tested it on a 3.2 GHz CPU with 16 GB RAM. We
have verified the effectiveness of MPI-VAD on three publicly available benchmark datasets, i.e., UMN,
CUHK Avenue, and USCD Pedestrian. Tab. 1 shows the details of the above three benchmark datasets.

1http://mha.cs.umn.edu/

Table 1: Details of three publicly available benchmark datasets

Datasets Scenarios Anomalies Resolution Duration

UMN1 Lawn,
lobby,
square

Unusual crowd activities 320 × 240 4 min

CUHK
Avenue [15]

Subway
entrance

Strange action, wrong direction, abnormal
object

640 × 360 20 min

USCD
Pedestrian [6]

Sidewalk Circulation of non-pedestrian entities and
anomalous pedestrian motion patterns

238� 158
360 × 240

10 min

1710 IASC, 2022, vol.31, no.3
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We construct the variable-sized cell structure according to cell growing rate α and initial vertical
dimension y0. For MOG background subtraction, the background learning rate is set to 0.01 on all these
datasets. The number of frames for background modeling is set to 200 on CUHK Avenue, USCD
Ped1 and Ped2, but 300 on UMN. For FAST detector, the number of the strongest points is set to 40.
When applying EM algorithm to train the GMMs, we limit the number of iterations k to 10 since we
empirically observe that AIC usually does not provide additional information when k is set to more than
10. These parameters are tailored to the characteristics of video sequences in practical surveillance scenarios.

4.2 Results Evaluation

Fig. 3 shows detection samples containing the detected abnormal events, which are marked with red
masks. We evaluate the performance of MPI-VAD against several state-of-the-art methods. Experiment
results show that MPI-VAD achieves competitive detection accuracy compared to no real-time methods
and outperforms other real-time methods.

Two evaluation criteria are adopted to measure the accuracy of video abnormal detection, i.e., Frame-
level criterion and Pixel-level criterion. The two evaluation criteria consider the matching degree between
the detection results and the ground truth with different granularities.

(1) Frame-level criterion: Once a frame is detected to contain anomalous pixels, it is identified as an
anomalous frame. This criterion focuses on abnormal event detection accuracy in the temporal
dimension of videos. However, it does not consider the detection accuracy in the spatial
dimension. Thus normal pixels in an anomalous frame are misidentified as anomalous.

(2) Pixel-level criterion: The criterion focuses on abnormal event detection accuracy in the temporal and
spatial dimensions. If 40% of the detected pixels are true anomalous pixels in a frame, the anomalous
frame is considered to be successfully detected.

UMN CUHK Avenue USCD Pedestrian 

Figure 3: Detection samples of MPI-VAD
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The Receiver Operating Characteristic (ROC) curve is drawn to measure the detection accuracy. ROC
curve is a curve of True Positive Rate (TPR) vs. False Positive Rate (FPR), as follows:

TPR ¼ TP

TP þ FN
; (22)

FPR ¼ FP

TN þ FP
; (23)

Based on a ROC curve, two values are calculated as quantitative indexes: 1) Area Under Curve (AUC):
area under the ROC curve. 2) Equal Error Rate (EER): the FPR value when the condition FPR + TPR = 1 is
satisfied. Notice that AUC and EER are similar performance evaluation metrics, specifically, EER→ 0 when
AUC→ 1. We also consider whether a method could attain real-time processing performance according to a
frame processing time.

For the UMN dataset, we report frame-level ROC curves in Fig. 4 and evaluate the corresponding results
in terms of the AUC and EER in Tab. 2. From Fig. 4, we notice that the detection accuracy of MPI-VAD is
inferior to the methods proposed by Zhu et al. [3] and Li et al. [6]. From Tab. 2, we find that our method
achieves the second shortest frame processing time and real-time performance.

For CUHK Avenue dataset, Fig. 5 shows frame-level ROC curves, and our method attains the best
performance. From Tab. 3, we can observe that our method achieves the highest AUC and meets real-
time performance. The shorter frame processing time attained by [15] is mainly due to the method do not
employ optical flow estimation nor background subtraction to extract motion features and instead uses
multi-scale temporal gradients with low computational cost.

Figure 4: Frame-level ROC curves for UMN

Table 2: Comparison with the state-of-the-art methods for UMN dataset

Methods AUC(%) EER(%) Frame processing time (ms) Real-time performance

Biswas et al. [16] 73.6 29.8 14 √

Lu et al. [15] 70.1 26.1 6 √

Zhu et al. [3] 99.7 5.3 4600 ×

Li et al. [6] 99.6 33.5 1100 ×

Hasan et al. [21] 92.4 15.1 2500 ×

Ours 90.2 17.5 30 √

1712 IASC, 2022, vol.31, no.3



Figs. 6 and 7 show ROC curves for the UCSD Ped1 dataset. We evaluate the experiment results in
terms of the AUC and EER at the frame-level and pixel-level in Tab. 4. As expected, no real-time
methods [20,23–27] tend to attain higher AUC and lower EER than real-time methods [15]. The method
[23] achieves the highest frame-level AUC, and the method [24] achieves the lowest pixel-level EER,
while their frame processing times are much longer than ours; however, our method achieves competitive
detection accuracy and best real-time performance. Figs. 8 and 9 show ROC curves for UCSD
Ped2 dataset, and Tab. 5 evaluates the corresponding results in terms of the AUC and EER. From Tab. 5,
we find our method outperforms the fastest real-time methods [15], and attains the highest detection
accuracy compared to no real-time methods [25–28].

Figure 5: Frame-level ROC curves for CUHK Avenue

Table 3: Comparison with the state-of-the-art methods for CUHK Avenue dataset

Methods AUC(%) EER(%) Frame processing time (ms) Real-time performance

Lu et al. [15] 80.9 - 6 √

Giorno et al. [8] 78.3 - 450 ×

Hasan et al. [21] 70.2 25.1 2600 ×

Chong et al. [22] 80.3 20.7 1300 ×

Ours 84.7 20.1 32 √

Figure 6: Frame-level ROC curves for Ped1
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Table 4: Comparison with the state-of-the-art methods for UCSD Ped1 dataset

Methods Frame-level Pixel-level Frame processing
time (ms)

Real-time
performance

AUC(%) EER(%) AUC(%) EER(%)

Mehran et al. [25] 67.5 31.0 19.7 67.5 190 ×

Mahadevan et al. [26] 81.8 25.0 44.1 58.0 200 ×

Xu et al. [23] 92.1 16.0 67.2 40.1 5400 ×

Zhou et al. [24] 85.0 24.0 87.0 18.7 3200 ×

Sabokrou et al. [27] - - - - 7600 ×

Cheng et al. [20] 75.0 31.0 - - 180 ×

Ours 86.2 17.5 71.9 36.4 32 √

Figure 7: Pixel-level ROC curves for Ped1

Figure 8: Frame-level ROC curves for Ped2

Figure 9: Pixel-level ROC curves for Ped2

1714 IASC, 2022, vol.31, no.3



5 Conclusion

In this paper, we integrate multiple probabilistic models into video anomaly detection and propose a
novel video anomaly detection algorithm called MPI-VAD. Attributed to the multiple probabilistic models
inference, MPI-VAD is able to detect various abnormal events in complex surveillance scenes. Our
method employs a variable-sized cell structure to extract appearance and motion features from a limited
number of video volumes and then achieves the trade-off between detection accuracy and computational
complexity. We evaluate MPI-VAD on three publicly available datasets and attain competitive detection
accuracies and real-time frame processing performance. However, MPI-VAD takes quite a long time to
train multiple probabilistic models. Thus our future work will focus on reducing the required time.
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