Intelligent Automation & Soft Computing K Tech Science Press

DOI:10.32604/iasc.2022.017123
Article

An Enhanced Memetic Algorithm for Feature Selection in Big Data Analytics
with MapReduce

Umanesan Ramakrishnan’" and Nandhagopal Nachimuthu?

'Anna University, Chennai, 600025, India
“Department of Electronics and Communication Engineering, Excel Engineering College, Namakkal, 637303, India
*Corresponding Author: Umanesan Ramakrishnan. Email: umanesan.r@gmail.com
Received: 21 January 2021; Accepted: 19 April 2021

Abstract: Recently, various research fields have begun dealing with massive data-
sets forseveral functions. The main aim of a feature selection (FS) model is to
eliminate noise, repetitive, and unnecessary featuresthat reduce the efficiency of
classification. In a limited period, traditional FS models cannot manage massive
datasets and filterunnecessary features. It has been discovered from the state-of-
the-art literature that metaheuristic algorithms perform better compared to other
FS wrapper-based techniques. Common techniques such as the Genetic Algorithm
(GA) andParticle Swarm Optimization (PSO) algorithm, however, suffer from
slow convergence and local optima problems. Even with new generation algo-
rithms such as Firefly heuristic and Fish Swarm Heuristic, these questions have
been shown to overcome. This paper introduces an improved memetic optimiza-
tion (EMO) algorithm for FS in this perspective by using conditional criteria in
large datasets. The proposed EMO algorithm divides the entire dataset into sam-
ple blocksandconducts the task of learning in the map steps. The partial result
obtained is combined into a final vector of feature weights in the reductionprocess
which defines the appropriate collection of characteristics. Finally, the method of
grouping based on the support vector machine (SVM) takes place. Within the
Spark system, the proposed EMO algorithm is applied and the experimental
results claim that it is superior to other approaches. The simulation results show
that the maximum AUC values of 0.79 and 0.74 respectively are obtained by the
EMO-FS model.

Keywords: Big data analytics; metaheuristic; evolutionary algorithm; memetic
optimization

1 Introduction

Development of prediction techniques from data needs compact Machine Learning (ML), pattern
recognition, as well as statistical modeling approaches. These models are appliedto Big Data and monitor
the massive number of instances and numerous predictive quantities named as features [1]. Generally, the
data dimensionality can be reduced, which yields a selected subset of original features of the predictive
data regarding a result of interest T. In specific, the main theme of FS is referred to as exploring a feature
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subset that has limited size as well as optimal detection. The architecture of Hadoop MapReduce is shown in
Fig. 1.
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Figure 1: Architecture of Hadoop MapReduce

To remove irrelevant and repetitive data related to weakly relevant models [2], FS assiststhe learning
process. This produces a simulation outcome where the prediction techniques along with minimum
features are easy to analyze, understand, rely on, and also are rapid in prediction. Hence, FS offers a
valid intimation of data produced in a data generation method as well as it acts as a basic tool in
knowledge discovery; deep correlation of solutions to FS along with simple techniques which produce
the explored data [3]. FS can be referred to as the fundamental operation in detecting a by-product.
Developing an FS technique is very hard becausethe FS problem is a combinatorial issue andis also
named NP-hard for linear regression problems [4]. The exhaustive searching of every feature subset is
ineffective than the minimum feature subset.Heuristic search approaches, as well as approximate
considerations, are essential for scaling FS, that ranges from convex relaxations and parametric
consideration like linearity which is a Lasso technique [5] for causally-inspired, non-parametric modules,
namely, secured data distribution for a causal method [6]. Especially, Big Data has maximum dimensions
and higher instance volume, and hence processing has become CPU-based and data-intensive which is
difficult to be managed using an individual system. One of the major problems in this study is topartition
datahorizontally(samples) and vertically (features), which is termed as hybridpartitioning, and thus
computations are processed locally for every block as well as integrated minimum communication load.
Another problem is thetypes of heuristics that might be applied rapidly and protectively to remove
irrelevant and repetitive features. Hybrid partitioning of data samples and learned models [7] issaid to be
an open studying issue in Big ML models whereas protective FS heuristics are presented for sparse Big
Data [8], which can only be applied for data with maximum values. For addressing the limitations present
in this model for big volume data, Parallel, Forward—Backward with Pruning (PFBP) technology has
been proposed. PFBP technologyis independent of data sparsity and henceit is used in massive and sparse
datasets; and expanded for adding the optimizations particularly in sparse datasets. PFBP depends upon
statistical tests of independence and is motivated by the statistical causal model which shows the merging
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possibility in the form of causal technique and specifically Bayesian networks and maximal ancestral
graphs [9].

The application of Data Mining (DM) tools to solve the issues related to big data requires redeveloping
models similar to the environment. From diverse aspects, the MapReduce concept [10] and a shared file
systemhavebeen established by Google as an efficient and effective module to report the big data
analysis. Hence, it might be applied in DM instead of parallelization approaches like MPI (Message
Passing Interface) which has constraints of fault-tolerant and simplicity. Several experiments have been
carried out in parallelization of ML devices by applying the MapReduce technique [11]. In recent times,
novel and reliable workflows are used to expand the reputed MapReduce model, namely Apache Spark
[12], and are effectively employed in different DM as well as ML issues [13]. Data preprocessing
approaches and robust data reductiontechniques mainly focus on cleaning and simplifying the input data.
Hence, it tries to simulate the DM process and enhance the accuracy by removing noisy and repetitive
data. Also, specific work defines two major kinds of data reduction modules. Initially, instance selection
and instance production [14] concentrate on theinstance level. When compared with other previous
techniques, evolutionary models are applied effectively in feature selection. Thus, the additional
improvement of a single size might restrict the usability and perform poorly in offering a preprocessed
dataset within a limited duration while solving a major issue. This paper presents no models for handling
feature space along with evolutionary big data techniques.

From the state-of-the-art literature, it has been found that metaheuristic algorithms perform better
compared to other wrapper-based techniques for FS. However, popular techniques like the Genetic
Algorithm (GA) andparticle swarm optimization (PSO) algorithm suffer from slow convergence and local
optima problems. These limitations are attempted to solve using later generation algorithms like Firefly
heuristic and Fish Swarm Heuristic. In this view, this paper presents an Enhanced Memetic Optimization
(EMO) algorithm for FS by including conditional criteriain big datasets. The proposed EMO algorithm
partitions the actual dataset into blocks of samples andperforms a learning process in the map phase. In
the reduce phase, the attained partial outcome is re-merged into a final vector of feature weights which
can be used to identify the required set of features. The proposed EMO algorithm has been implemented
within the Spark framework and the experimental outcomes state that the proposed EMO algorithm is
superior to other algorithms.The rest of the paper is organized as follows. Section 2 offers the proposed
EMO-FS model and Section 3 validates the performance of the EMO-FS model. Finally, Section
4 concludes the paper.

2 The Proposed EMO-FS Model

The proposed MapReduce model for FS is acombinedform of generic classificationtasks. Specifically,
the EMO-FS technique depends on the EMO technique to perform the FS process. Initially, EMO-FS has
been employed on the actual dataset to attain a vector of weights that exhibits the relationship between all
attributes. This vector has been employed with an alternate MapReduce function to generate minimized
dataset and the resultant dataset is used by SVM. Fig. 2 shows the overall process of the EMO-FS model.

2.1 EMO Algorithm
Here, the proposed correlation-basedmemetic FS algorithm forclassification is shown in Fig. 3.

In the initialization step,the GA population is initiated randomly along with a chromosome by encoding
the candidate feature subset. Then a local search (LS) is performed. The LS can be processed on every part of
the chromosometo attainlocal optimum and enhance the feature subset. Genetic operators like crossover and
mutation are carried out for producing the upcoming population. This step is repeated till the termination
criteria are reached.
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Figure 2: Overall process of the proposed EMO-FS model
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Figure 3: Flow chart for EMO

2.1.1 Population Initialization

In FS, the candidate feature subset is represented by selecting an encoded chromosome. A chromosome
is defined as a binary string of a length similar to the overall number of features where every bit encodes in
one feature. A bit is either 1 or O that represents the corresponding feature’s presence. A chromosome length
is implied as n. A higher value of bit ‘1’ is signified as m. If the prior knowledge regarding optimal features is
provided, then m has been limited to the pre-determined value; otherwise, m is the same as n. At the initial
point of searching, a population of size p were is initiated randomly.
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2.1.2 Objective Function
It can be described in a simple term by classification accuracy:

Fitness(c) = Accuracy(Sc), (1)

where Sc is the adjacent chosen feature subset encoded in chromosome ¢, and FS procedure function
Accuracy (Sc) estimates the dimension for a given feature subset Sc,.

2.1.3 Local Search Improvement Procedure (LS)

Symmetrical uncertainty in thecorrelation-oriented filter ranking model assures that it is an effective
method to eliminate repeated features and boost classification accuracy. By assuming this, the application
of the correlation-based filter ranking technique iswith SU values in the form of memes.While the
correlation between the feature and a class is greater for creating a related class and the link between the
alternate features is up to the level to be detected by other related features, then it is known to be the best
feature to perform the classification.

SU-oriented correlation values depend on the data-theoretical model of entropy which is a value of
uncertainty regarding an arbitrary variable. Hence, the entropy of a variable X can be expressed as

H(X) =" P(x)log:(P(x:)), 2
and theentropy of X is described when observing conditioned on variable ¥ might be expressed as

H(X|Y) = =) P(y) Y _P(xly)log:(P(x:)), 3)

where P(x;) denotes the advanced probabilities for measures of X and P(xl- \yj) represents the
probabilities of X that provides the values of conditioned onY.Consequently, the quantity of entropy X
gets reduced and presents extra information of X obtained by Y,whichis termed as information gain (/G),
which is and defined as

IGX|Y) = H(X) — H(X|Y). “4)

Based on the obtained value, a feature Y is referred to as highly associated with feature X when
IG(X|Y)>1G(Z|Y) holds for any other feature Z. Here, IG is defined symmetrically for 2 arbitrary
variables X and Y. Symmetry is said to be a required feature of correlation values among features. But,
IG is a biased one with higher rates. Moreover, the measures should undergo normalization to guarantee
that comparable characteristicshave a similar impact. Hence, a Symmetrical Uncertainty has been selected
and described as given below:

SUX, Y) = 2[IG(X|Y)/(H(X) + H(Y))), 5)

SU balances the IG's bias to features and massive values and normalizes the value to [0, 1] that contains
value 1 showing that information of, where 1 represents complete prediction of value and 0 denotes that X
and Y are independent. Also, the pair of features acts symmetrically.

SU value is constrained by 2 main functions as given in the following:

e It is capable of removing features that havelower SU valueswhen compared with a threshold.
e Acquires a feature weight thathelps in the population initialization for GA in memetic technology.

A feature with a higher SU measure obtains maximum weight whereas the features with minimum SU
values are eliminated. For a dataset that has N features and a class C, the applied model explores the
collection of frequent feature subsets in classification techniques. It is composed of 2 main regions. The
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initial part is associated with the estimation of SU; . for every feature and placed in lower sequence based on
the SU; . measures. The SU; . value states the relationship between feature F;, and class C. Alternatively, it
processes the ordered list to avoid repeated features and records the predominant feature compared to other
related features. A pre-defined feature f, which is a predefined is applied to extract the features ranked
lowerthan f, fp and including f,. In residual features, when f, is appeared to be repetitive f;, f; is
eliminated. Feature f; is a redundant pair to f, when thecorrelation between f, and f; is higher than the
correlation between f, and class C. Once a single iteration is completed concerning f,, the model acquires
the present feature immediately next to f, as a novel reference to follow the same procedure. This process
is terminated when there are no further features and returns the feature subset.

2.1.4 Evolutionary Operators

In this process, benchmark GA tools are employed, including linear ranking selection, uniform
crossover, as well as mutation operators relied on the elitist procedure. Nevertheless, when prior
knowledge of the optimal value is given, the value of bit ‘1’ is compared with higher m from an
evolution task. The standard uniform crossover and mutation operators do not follow this strategy, so
Subset Size-Oriented Common Feature Crossover is used.

2.1.5 Contraction Criterion

For developing an efficient hybrid technique in global optimization, the merits of the exploration
abilities of EA and exploitation abilities of LS have been combined in a balanced manner. In MDE, it is
presented with a novel contraction procedure that integrates 2 types as given in the following:

e p, is extended with higher distance in the objective space.
e p, is referred to as greater distance in the decision space.

Hence, the suggestion of p, is retrieved as

M (i) e ()]
plzlg(f 0T 1) )] : (©6)

where p, implies the value of diversity of the population in the objective space.

2.2 EMO-FS Algorithm

The parallelization of the EMO model is defined by applying the MapReduce technique to get a vector of
weights. Assume T as a randomized training set recorded in HFDS, and m implies the number of map tasks.
The dividing pattern of MapReduce splits 7" into m disjoint subsets of samples. Then, every 7; subset
(i €{1,2,...,m}) can be estimated under the application of adjacent Map; task. The partition work is
performed frequently since every subsetisconstrained with approximate instances, and randomized T
assures enough class management. The map stage takes place in every 7; that has an FS model. Hence,
the final result of every mapping function is named as a binary vector f; = {f, ...,fip}, where D refers to
the count of features, which represents the features to be selected using the EMO method. In the case of
the reduce phase, by acquiring a vector x as described in Eq. (7), where x; signifies an average of FS
domains thatcontain feature j. Hence, the simulation outcome of the entire FS process is applied in
building a reduced dataset that can be employed for upcoming ML techniques:

X = {X1,...Xp},
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1SN
xj:EZﬁj,je{l,z,...D} (7)
i=1

The reduce phase can be processed by a unique task that reducesthe duration of the implementation
process by reducing MapReduce overhead. The complete function is carried out with limited iterations of
MapReduce workflow and elimination of extra disk usage.

2.3 Support Vector Machine (SVM)

A famous classification technique used in supervised ML is the SVM. It aims to determine the best
partition hyperplane that has the highest margin of the training data dividing the n-dimensional space into
2 distinct areas using this hyperplane. The SVM method also has solid underpinnings in the statistical
learning hypothesis. This method is executed effectively in several linear and non-linear classification
techniques. There are several kernel-based functions in SVM, namely linear kernel function, the
normalized poly kernel, polynomial kernel function, Radial Basis Function (RBF), and Hyperbolic
Tangent (Sigmoid) Kernel sigmoid function. The SVM gives results as class labels, either positive or
negative to all instances in this case of binary classification, to calculate metrics such as ROC curve and
so on. It also determines the distance betweenthe hyperplanes that divide classes. SVM has several
benefits viz., achieving the optimal outcome by managing the binary illustration and capable of managing
the minimum number of features.

2.4 Dataset Reduction with MapReduce
Here, the vector x is computed and the purpose is to extract few promising features from the actual

dataset. For the scalable approach, a further MapReduce procedure is intended. Initially, vector x is
binarized utilizing a threshold 0:

b= {by,....bp},
bj:{l’ if x 2 0,

0, otherwise.

@®)

The vector b denotes the features chosen to reduce the dataset. The number of chosen features
(D= ZJD: , bj) are is managed by 0: through the maximum threshold, some of the features are chosen,
while a lower threshold permits fewer features to be selected.

3 Performance Validation
3.1 Dataset Description

For result analysis, a set of two datasets, namely Epsilon and ECBDL14-ROS, has been used. The
details of the datasets are provided in Tab. 1. The table states that the Epsilon dataset includes a total of
400000 instances fort raining and 100000 instances for testing. It contains a set of 2000 features. The
ECBDL14-ROS dataset includes a total of 65003913 instances fort raining and 2 897 917 instances for
testing. It contains a set of 631 features.



1554 TASC, 2022, vol.31, no.3

Table 1: Dataset description

Dataset Training instances Test instances Features
Epsilon 400 000 100 000 2000
ECBDL14-ROS 65 003 913 2 897917 631

3.2 Implementation Setup

The experiments are conducted on a cluster of 20 computing nodes and a master node. Each
computing node is comprised of: (i) Processors: 2 x Intel Xeon CPU E5-2620, (ii) Cores: 6 per processor
(12 threads), (iii) Clock frequency: 2.00 GHz, (iv) Cache: 15 MB, (v) Network: QDR InfiniBand
(40 Gbps), (vi) Hard drive: 2 TB, and (vii) RAM: 64 GB. The Hadoop master performs the NameNode
and JobTracker hosted ona master node. The previous techniques manage the HDFS, by coordinating
the slave tools interms of corresponding DataNode operation, whereas the alternate one is responsible
for TaskTrackers of every computing node that implements the MapReduce approach. Spark uses the
same configuration, where the master process has been placed on a master node, and worker task has
been exhibited on slave machines. These models are capable of sharing the HDFS file system. The
above-mentioned details define the software applied for these works: (i) MapReduce execution: Hadoop
2.0.0-cdh4.7.1. MapReduce 1 (Cloudera’s open-source Apache Hadoop distribution), (ii) Spark version:
Apache Spark 1.0.0, (iii) Higher mapping operations: 320 (16 per node), (iv) Greater reducer tasks:
20 (1 per node), and (v) Operating system: CentOS 6.6. The overall number of cores on the cluster is
240. Also, the maximum number of maps are maintained to improve the application of cluster by
enabling greater parallelism and good data placement, which decreases the network overload.

3.3 Result analysis

Tab. 2 and Fig. 4 provide the FS results achieved by the EMO-FS model. The figure states that the
EMO-FS model has chosen a set of 1342 features from the total 2000 features on the applied Epsilon
dataset. Besides, the EMO-FS model has selected a total of 452 features from the available features on
the applied ECBDL14-ROS dataset.

Table 2: Selected features by the EMO-FS model

Dataset Total Features EMO-FS
Epsilon 2000 1342
ECBDL14-ROS 631 452

Tab. 3 shows the execution time analysis of the EMO-FS model compared with MR-EFS and sequential
CHC models on the applied Epsilon dataset. The table values indicate that the EMO-FS model requires a
minimum execution time of 4587 s, whereas the MR-EFS and sequential CHC models need maximum
execution times of 6531 and 162345 s respectively.
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Figure 4: FS results offered by the EMO-FS model

Table 3: Execution times (in seconds) over the applied dataset

Training instances EMO-FS MR-EFS Sequential CHC
400 000 4587 6531 162345

Fig. 5 and Tab. 4 provide a comparative analysis of the proposed EMO-FS model under various
classifiers on the applied Epsilon dataset. Under the application of the SVM classifier on the Epsilon
dataset, it is shown that the EMO-FS model has achieved a maximum AUC of 0.73 whereas the MR-EFS
and sequential CHC models have attained minimum AUC values of 0.68 and 0.65 respectively. At the
same time, it is noted that the SVM model has obtained a minimum AUC of 0.59 with no FS process.

0.9 2 EMO-FS B MR-EFS = Sequential CHC ® Without Feature Selection

SVM LR NB

Figure 5: AUC results for the Epsilon dataset
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Table 4: AUC results with different FS methods and classifiers on the Epsilon Dataset

Feature Selection Methods SVM LR NB

EMO-FS 0.73 0.76 0.79
MR-EFS 0.68 0.70 0.72
Sequential CHC 0.65 0.67 0.68
Without Feature Selection 0.59 0.62 0.64

Similarly, under the application of the LR classifier on the Epsilon dataset, it is depicted that the EMO-
FS model leads to a maximum AUC of 0.76 whereas the MR-EFS and sequential CHC models have offered
lower AUC values of 0.70 and 0.67 respectively. Along with that, it is observed that the LR model reaches
the least AUC of 0.62 with no FS process. Finally, under the application of the NB classifier on the Epsilon
dataset, it is exhibited that the EMO-FS model has offered a maximum AUC of 0.79 whereas the MR-EFS
and sequential CHC models have obtained minimum AUC values of 0.72 and 0.68 respectively. At the same
time, it is noted that the NB model has obtained a minimum AUC of 0.64 with no FS process.

Tab. 5 depicts the training run-time analysis for the Spark using different classifiers. On assessing the
training run-time analysis under the SVM model, it can be observed that the EMO-FS model requires a
minimum run-time of 310.63 s whereas the MR-EFS, Sequential CHC, and no FS models need
maximum run-time values of 334.18, 345.27, and 400.38 s respectively. Likewise, while determining the
training run-time analysis under LR, it can be observed that the EMO-FS model requiresa minimum time
of 334.18 s whereas the MR-EFS, Sequential CHC, and no FS models need higher run-time values of
367.29, 398.07, and 430.48 s respectively. Moreover, during the training run-time assessment under NB,
it can be observed that the EMO-FS model requires a lower time of 231.49 s whereas the MR-EFS,
Sequential CHC, and no FS models need maximum run-time values of 264.26, 300.21, and 340.42 s
respectively.

Table 5: Training run-time (in seconds) of the Spark with applied classifiers on the Epsilon dataset

Feature Selection Methods SVM LR NB

EMO-FS 310.63 320.70 231.49
MR-EFS 334.18 367.29 264.26
Sequential CHC 345.27 398.07 300.21
Without Feature Selection 400.38 430.48 340.42

Fig. 6 and Tab. 6 provide the comparative analysis of the proposed EMO-FS method by using different
classification methods on the ECBDL14-ROS dataset. By applying SVM on the ECBDL14-ROS dataset, the
EMO-FS technique attains a higher AUC of 0.69, and the MR-EFS and sequential CHC frameworks
achievereduced AUC values of 0.64 and 0.62 respectively. Simultaneously, it is evident that the SVM
classifier accomplishes a lower AUC of 0.56 without the FS task. Likewise, by using LR classification on
the ECBDL14-ROS Dataset, it is shown that the EMO-FS technique tends to achieve a greater AUC of
0.71 while MR-EFS and sequential CHC approaches provide minimum AUC measures of 0.64 and
0.63 respectively.
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Table 6: AUC results with different FS methods andclassifiers on the ECBDL14-ROS dataset

Feature Selection Methods SVM LR NB

EMO-FS 0.69 0.71 0.74
MR-EFS 0.64 0.64 0.67
Sequential CHC 0.62 0.63 0.65
Without Feature Selection 0.56 0.58 0.61

In line with this, it is monitored that the LR classifier has attained a minimum AUC of 0.58 in the
absence of FS operation. Consequently, with the help of the NB classifier on the ECBDL14-ROS dataset,
it is implemented that the EMO-FS approach has provided a qualified AUC of 0.74 while MR-EFS and
sequential CHC frameworks have reached lower AUC rates of 0.67 and 0.65 respectively. Concurrently,
it is pointed that the NB technology has accomplished the least AUC of 0.61 in lack of FS process.

Tab. 7 shows a training implementation time analysis for Spark with diverse classifiers. While applying
the training run-time analysis on the SVM method, it might be monitored that the EMO-FS technique needs a
lower run-time of 831.49 s and the MR-EFS, Sequential CHC, and no FS models require higher
implementation time rates of 864.28, 912.40, and 978.37 s correspondingly. Similarly, by computing the
training run-time analysis by applying LR, it is noted that the EMO-FS framework gives a minimum
time of 893.42 s while the MR-EFS, Sequential CHC, and without FS models acquire greater run-time
measures of 978.38, 978.38, and 986.45 s respectively. Likewise, at the time of training run-time
examined by using NB, it is tracked that the EMO-FS method provides the least time of 198.47 s and the
MR-EFS, Sequential CHC, and no FS techniques require higher run-time values of 215.09, 300.26, and
396.98 s respectively.
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Table 7: Training run-time (in seconds) of the Spark with applied classifiers on the ECBDL14-ROS dataset

Feature Selection Methods SVM LR NB

EMO-FS 831.49 893.42 198.47
MR-EFS 864.28 978.38 215.09
Sequential CHC 912.40 986.45 300.26
Without Feature Selection 978.37 1012.47 369.98

The above experimental details show that the proposed model offers maximum performance on the
applied Epsilon and ECBDL14-ROS datasets. The simulation outcome indicates that the EMO-FS model
has achieved maximum AUC values of 0.79 and 0.74 respectively. The following features of the EMO
algorithm contribute to this achievement: The proposed EMO algorithm partitions the actual dataset into
blocks of samples and performs a learning process in the map phase. In the reduce phase, the attained
partial outcome is re-merged into a final vector of feature weights which can be employed to identify the
required set of features.

4 Conclusion

This paper has presented an EMO algorithm for FS in big datasets. The proposed EMO algorithm
partitions the actual dataset into blocks of samples and performs a learning process in the map phase. In
the reduce phase, the attained partial outcome is re-merged into a final vector of feature weights which
can be employed to identify the required set of features. Finally, the SVM-based classification process
takes place. The proposed EMO algorithm has been implemented within the Spark framework. The above
experimental details show that the proposed model offers maximum performance on the applied Epsilon
and ECBDL14-ROS datasets. The simulation outcomes indicate that the EMO-FS model has achieved
maximum AUC values of 0.79 and 0.74 respectively. In the future, the proposed model can be further
enhanced by the use of deep learning and parameter tuning models.

Acknowledgement: We appreciate the linguistic assistance provided by TopEdit (www.topeditsci.com)
during the preparation of this manuscript.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References

[11 Z.Zhao, R. Zhang, J. Cox, D. Duling and W. Sarle, “Massively parallel feature selection: An approach based on
variance preservation,” Machine Learning, vol. 92, no. 1, pp. 195-220, 2013.

[2] G. H.John, R. Kohavi and K. Pfleger, “Irrelevant features and the subset selection problem,” in Machine learning
Proceedings: Proc. of the eleventh international conf., New Brunswick, NJ, Rutgers University, pp. 121-129,
1994.

[3] I Tsamardinos and C. F. Aliferis, “Towards principled feature selection: Relevancy, filters and wrappers,” in proc.
of the ninth international workshop on artificial intelligence and statistics, Florida, United States, pp. 1-8, 2003.



IASC, 2022, vol.31, no.3 1559

(4]
(5]
[6]
[7]
(8]

(9]
[10]
[11]

[12]

[13]

[14]

W. J. Welch, “Algorithmic complexity: Three NP-hard problems in computational statistics,” Journal of
Statistical Computation and Simulation, vol. 15, no. 1, pp. 17-25, 2007.

R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical Society: Series B
(Methodological), vol. 58, no. 1, pp. 267-288, 1996.

N. Krishnaraj and K. Bellam, “Improved distributed frameworks to incorporate big data through deep learning,”
Journal of Advanced Research in Dynamical & Control Systems, vol. 12, no. 3, pp. 332-338, 2020.

E. P. Xing, Q. Ho, P. Xie and D. Wei, “Strategies and principles of distributed machine learning on Big Data,”
Engineering, vol. 2, no. 2, pp. 179-195, 2016.

S. R. Gallego, H. M. Taln, D. M. Rego, V. B. Canedo, J. M. Bentez et al., “An information theory-based feature
selection framework for big data under apache spark,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 48, no. 9, pp. 1441-1453, 2018.

T. Richardson and P. Spirtes, “Ancestral graph Markov models,” Annals of Statistics, vol. 30, no. 4, pp. 962—-1030,
2002.

J. Dean and S. Ghemawat, “Map reduce: A flexible data processing tool,” Communications of the ACM, vol. 53,
no. 1, pp. 72-77, 2010.

W. Zhao, H. Ma and Q. He, “Parallel k-means clustering based on MapReduce,” in proc. IEEE Conf- on Cloud
Computing, Beijing, China, pp. 674-679, 2009.

M. Zaharia, M. Chowdhury, T. Das, A. Dave and J. Ma, “Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing,” in proc. 9th USENIX Conf. on Networked Systems Design and
Implementation, San Jose, CA, pp. 1-14, 2012.

K. Thomas, C. Grier, J. Ma, V. Paxson and D. Song, “Design and evaluation of a real-time url spam filtering
service,” in proc. IEEE Sym. on Security and Privacy, Berkeley, CA, pp. 447-462, 2011.

J. S. Sanchez, “High training set size reduction by space partitioning and prototype abstraction,” Pattern
Recognition, vol. 37, no. 7, pp. 1561-1564, 2004.



	An Enhanced Memetic Algorithm for Feature Selection in Big Data Analytics with MapReduce
	Introduction
	The Proposed EMO-FS Model
	Performance Validation
	Conclusion
	flink5
	References


