
An Energy Aware Algorithm for Edge Task Offloading

Ao Xiong1, Meng Chen1,*, Shaoyong Guo1, Yongjie Li2, Yujing Zhao2, Qinghai Ou3, Chuan Liu4,
Siwen Xu5 and Xiangang Liu6

1Beijing University of Posts and Telecommunications, Beijing, 100876, China
2Communication Operation Center State Grid Henan Electric Power Company, Information & Telecommunication Company, Zheng

Zhou, 450052, China
3Fibrlink Communications Co., Ltd, Beijing, 102200, China

4Global Energy Interconnection Research Institute Co., Ltd, Beijing, 102200, China
5Université Paul Sabatier-Toulouse 35, Toulouse, 31000, France

6China Electronics Standardization Institute, Beijing, 100007, China
*Corresponding Author: Meng Chen. Email: 1342029007@qq.com

Received: 24 March 2021; Accepted: 29 April 2021

Abstract: To solve the problem of energy consumption optimization of edge ser-
vers in the process of edge task unloading, we propose a task unloading algorithm
based on reinforcement learning in this paper. The algorithm observes and ana-
lyzes the current environment state, selects the deployment location of edge tasks
according to current states, and realizes the edge task unloading oriented to energy
consumption optimization. To achieve the above goals, we first construct a net-
work energy consumption model including servers’ energy consumption and link
transmission energy consumption, which improves the accuracy of network
energy consumption evaluation. Because of the complexity and variability of
the edge environment, this paper designs a task unloading algorithm based on
Proximal Policy Optimization (PPO), besides we use Dijkstra to determine the
connection path between edge servers where adjacent tasks are deployed. Finally,
lots of simulation experiments verify the effectiveness of the proposed method in
the process of task unloading. Compared with contrast algorithms, the average
energy saving of the proposed algorithm can reach 22.69%.

Keywords: Edge computing; energy consumption; task offloading; reinforcement
learning

1 Introduction

In recent years, with the rapid development of Internet of things (IoT) technology, tens of billions of
terminal devices (TD) in IoT network have realized economic and efficient interconnection. According to
the prediction of Cisco visual network index, by 2023, IoT devices will account for 50% of all networked
devices, and the number of connections between devices will reach 14.7 billion [1]. Massive data in IoT
network promotes the generation of new services, such as Internet of vehicles, face recognition and so
on. These services are delay sensitive tasks and require a lot of computing and storage resources.

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI:10.32604/iasc.2022.018881

Article

echT PressScience

mailto:1342029007@qq.com
http://dx.doi.org/10.32604/iasc.2022.018881
http://dx.doi.org/10.32604/iasc.2022.018881

However, limited by the physical size of the IoT device, the computing and storage resources of terminal
devices are limited, and its battery life is short. If tasks are run on the terminal device, it is difficult to
meet the user’s requirements, which will lead to bad user experience.

Cloud computing offloads the task to the remote cloud servers, which improves the service response
speed by using the computing resources in the cloud [2]. However, due to the high delay between the
terminal and the cloud, it is difficult to meet the requirements of delay sensitive tasks. Edge computing is
a potential solution to the problem. By deploying edge servers at the network edge near the mobile
terminal, the computing resources provided by the remote cloud are extended to the location closer to the
terminal. Based on edge computing, tasks can be executed directly on edge servers, which saving the
communication time of data transmission to the cloud. The main task unloading methods in edge
computing environment are binary offloading and partial offloading [3]. The former is aimed at some
tasks can’t be partitioned or highly integrated. In this way, each task in the queue to be unloaded is
executed on the local device, or completely unloaded to edge servers. The latter allows tasks to be
partitioned on local devices and edge servers. In this paper, we consider using the binary offloading to
unload tasks that cannot be partitioned in IoT environment. For an edge network which performs the
unloading task, the total energy consumption consists of two parts: servers energy consumption and links
energy consumption. With the explosive growth of IoT devices, the world’s data centers are expected to
account for 20 percent of the world's electricity consumption by 2025 [4]. Therefore, it is necessary to
design an energy aware task offload algorithm.

The problem of energy consumption optimization in the process of task unloading has attracted
extensive attention. However, most of existing works focus on the energy consumption management and
resource allocation of terminal equipment, lacks energy management method of edge servers, Fig. 1
describes the task unloading process in detail. In Fig. 1 each terminal device has a task queue to be
unloaded, each task in the queue is represented by Ti;j, i is the number of terminal equipment, and j is the
number of the task to be unloaded in the task queue. And Ti;jþ1 depends on the output of Ti;j. We assume
that the terminal only completes the data collection and does not participate in the execution of the task.

We focus on the energy consumption optimization of edge servers during task unloading.

In this paper, we first construct a mathematical model including server energy consumption and link
energy consumption. Because of the complexity of the edge computing environment, it is necessary to
use a reliable and scalable learning algorithm. Based on the above analysis, we design an edge task
unloading algorithm based on Proximate Policy Optimization (PPO). The technical contributions of this
paper are summarized as follows:

Figure 1: Task offloading in edge computing environment

1642 IASC, 2022, vol.31, no.3

� To accurately describe the energy consumption of edge network during task unloading, we construct a
mathematical model to describe the energy consumption, which includes server energy consumption
and link energy consumption. The processing energy consumption of the server is directly
proportional to the CPU utilization, and the transmission energy consumption of the link is
proportional to the bandwidth utilization.

� In this paper, the reward function of reinforcement learning algorithm is designed according to the
network energy consumption model, the greater the energy consumption, the smaller reward value.
Task offload strategy designed in this paper is responsible for selecting the deployable edge server,
and the path between adjacent servers is determined by Dijkstra algorithm. Once a task is unloaded,
the available resources (environment states) in the edge computing environment are updated.

The rest of this paper is organized as follows: In the second part, this paper briefly reviews related works.
In the third part, we construct a mathematical model to describe the energy consumption of edge network,
then constructs the problem as ILP model after considering various constraints. In the fifth part, the task
unloading algorithm is simulated and the simulation results are analyzed. The last part summarizes the
work of this paper and supplements the parts to be improved.

2 Related Work

In edge computing environment, terminal devices can choose to upload some tasks to the edge server.
Through the above operations, not only can the energy consumption of the device be reduced, but also the
risk of privacy leakage in traditional cloud computing can be decreased, and the real-time performance of
task processing can be improved. However, the existing literature focuses on reducing terminal energy
consumption and improving the response speed of unloading tasks. Reference [5] considered how to
allocate channel resources, reference [6] focus on how to allocate computing resources, [7–9]
comprehensive consideration of multiple factors to reduce terminal energy consumption. By offloading
tasks to edge servers, terminal energy consumption can be reduced. However, current researches mainly
focus on the allocation of channel resources and computing resources in edge networks, only a few
researches involve the energy consumption of edge servers. Reference [10] studied how to ensure the
longest running time of the whole system through mutual task unloading among servers in the scenario of
limited energy of each edge service. However, this method can only prolong the survival time of the
whole edge server node. Considering the energy consumption of data transmission between edge servers,
the above research does not reduce the energy consumption of edge server.

Dynamic voltage Scaling (DVS) can dynamically adjust voltage frequency to reduce energy
consumption and ensure the quality of service of real-time tasks [11,12] studies how to use DVS to
unload tasks from terminal devices to edge servers. The experimental results show that DVS can not only
complete the task processing within the specified time, but also reduce the terminal energy consumption.
[13,14] further discussed the joint optimization of TD energy consumption and task processing time in
Mobile Edge Computing (MEC) system using DVS technology, but none of the above studies involved
the energy consumption of edge server.

3 Problem Formulation

In this section, we first construct a task unloading model with energy consumption as the optimization
goal in IoT. After considering the constraints of bandwidth, computing resources and traffic conservation, we
get an optimization problem model.

IASC, 2022, vol.31, no.3 1643

3.1 Physical Network Model

In this paper, undirected graph G V ;Lð Þ is used to represent the edge network, where V is the set of
physical nodes in the network, L is the set of physical links in the edge network, lvu 2 L. Computing
power of each physical node is represented by Cv, the load capacity of each physical link is represented
by Cl, and physical link lvu connects node v and node u.

3.2 Task Queue Model

In this section, task queue on each terminal is modeled as a directed graph in this paper, and the tasks to
be unloaded in the queue are not repeated. Each task queue can be described by a four tuple
ts ¼ vs; vdð Þ;Rts; btsf g, where vs and vd represent the target node and start node of the task queue
respectively, and Rts represents the detailed information of the task queue to be unloaded, including the
task type and the data dependency between tasks. In this paper, we assume that the transmission
bandwidth between tasks in the same queue is same, and the value is bts. crt represents the number of
CPUs required to complete task t, and ctt represents the throughput of task t.

3.3 Energy Consumption Model

The energy consumption model of edge network constructed in this paper includes the energy
consumption of edge server and the energy consumption of physical link transmission traffic.

In addition to the energy consumption of computing tasks, the energy consumption of storage devices and
communication devices on the edge server is also considerable. Therefore, the energy consumption of the server
is modeled as the power consumption of the server starting up and processing the unloading task. The former is
the energy required by the edge server to maintain its normal operation, which depends on whether there are tasks
deployed on the edge server, regardless of the number of deployment tasks. The latter is positively correlated with
CPU utilization. We use Nv

t to indicate the number of tasks t deployed on edge server v.

Nv
t ¼

P
t2T

zvts;t � bts
ctt

2
666

3
777 8v 2 V ; 8t 2 T (1)

Since the energy consumption of the edge server is positively related to the CPU utilization, the
processing energy consumption of edge server is calculated as follows:

pvt ¼
psh � psb
Cv

� crt � Nv
t �

P
t2T

zvts;t � bts
ctt � Nv

t

¼ psh � psb
Cv

� crt �
P
t2T

zvts;t � bts
ctt

(2)

psb is start up energy consumption, and psh is the energy consumption when the edge server is running at
full load. Therefore, the energy consumption pv of the edge server can be expressed as:

pv ¼ psb �min 1;
X
t2T

X
ts2TS

zvts;t

()
þ
X
t2T

pvt (3)

In the above formula, min 1;
P
t2T

P
ts2TS

zvts;t

� �
2 0; 1f g indicates that the power consumption can only be

calculated once.
P
t2T

pvt represents the energy consumption generated by all tasks deployed on edge server v.

1644 IASC, 2022, vol.31, no.3

Similarly, the physical energy consumption in edge network also includes the power consumption of
switches on links and the transmission energy consumption when the link transmits the traffic between
servers. The former depends on the power on state of the switch on the link, and latter depends on the
bandwidth utilization of the physical link. In this section, rl is used to represent the bandwidth utilization
of link l. the calculation results are as follows:

rl ¼
P
ts2TS

wvfug
ts � yuvlts � bts
Cl

8l 2 L; 8t 2 T (4)

wvfug
ts indicates that task f on task queue ts is deployed on node v and task g is deployed on node u. yuvlts

indicates whether the task ts deployed on link l passes through node v and node u in turn.

Based on the above analysis, the total energy consumption of l can be calculated as:

pl ¼ plb �min 1;
X
t2T

X
ts2TS

wvfug
ts � yuvlts � bts

()
þ plh � plb
� � � rl (5)

plb represents the power consumption of the switch on the link, and

min 1;
P
t2T

P
ts2TS

wvfug
ts � yuvlts � bts

� �
2 0; 1f g indicates that the power consumption cannot be calculated

repeatedly. Once a task is unloaded on the server, the switch must be kept on. plh represents the energy
consumption of the link at full load. Hence, the total energy consumption of the edge network can be
expressed as:

ptotal ¼
X
v2V

pv þ
X
l2L

pl (6)

3.4 ILP Model

In this section, after considering the constraints of processing sequence of tasks in the queue, computing
capacity constraints, and network bandwidth constraints, the unloading problem of terminal tasks is
established as an ILP model with energy consumption as the optimization objective.

Firstly, to meet traffic constraints in the process of task unloading, this section assumes that a task
sequence to be unloaded is ts, ti and tj are two tasks to be unloaded in ts, and task tj must be executed
later. The above constraints are expressed as follows:

C1 :
X

u2V ;g2ts
wvfug
ts �

X
u2V ;g2ts

wufvg
ts ¼

1 if f ¼ ti
�1 if f ¼ tj
0 otherwise

8<
: (7)

We assume that the tasks in the task sequence can only be unloaded on one edge server:

C2 :
X
v2V

zvts;t ¼ 1 (8)

The tasks in sequences to be unloaded must be unloaded according to the dependency relationship
between tasks. The mathematical formula is used to describe the following formula:

IASC, 2022, vol.31, no.3 1645

C3 :
X

u2V ;v2V
wvfug
ts ¼xfgts (9)

In addition, this section also considers the computing capacity constraints of edge servers and the
bandwidth constraints of physical links.

C4 :
X

Nv
t � crt � Cv

C5 :
X

wvfug
ts � ctt � bts � Cl

(10)

In conclusion, the ILP model for Energy Efficient Task Offload (EETO) problem can be expressed as
follows:

min ptotal ¼
P
v2V

pv þ
P
l2L

pl

subject to : C1;C2;C3;C4;C5
(11)

4 Proposed Algorithm

4.1 Markov Decision Process for Task Offloading

Markov chain is a probability model, the future state is only related to current states. Markov decision
process (MDP) is a decision process based on Markov chain. MDP can be represented by a five tuple
S;A;P;R; cð Þ. S is the state space observed by agent; A represents the action space; P is the set of
transition probabilities, the finite set of probabilities that an agent enters a specific state after executing
action ai 2 A in a certain state. R represents a set of immediate rewards after performing the action; c is
the discount coefficient.

An edge server in the edge network can be used as an agent to obtain the available resources and task
unloading information of the edge network topology through the perceptron installed in physical network. In
a certain state, the environment state after agent performs the action is only related to current state,
independent of the historical state, and has no aftereffect. Therefore, the edge task unloading problem can
be expressed as an MDP model. The problem of edge task offloading based on MDP is presented as follows:

State space S: for sl 2 S, and sl ¼ Ucpu lð Þ;Ubw lð Þ� �
, which indicates the bandwidth resource utilization

of CPU and physical link of each edge server in the edge network when l edge task has been unloaded.

Action space A: al 2 Ameans that the agent selects an edge server in the edge network according to the
specific strategy and the current state sl, then deploys the l þ 1 task in the task queue.

Action execution function: step sl; að Þ ¼ rl; sl0 ; l
0� �
, This function represents the immediate reward rl,

subsequent state sl0 and the number of edge tasks that have been successfully unloaded. If edge task satisfies
the constraints (7)–(10) in the process of unloading, it means that the task can be successfully unloaded to the
edge network. Reward function Reward sl; alð Þ represents the immediate reward obtained by the unloading
action al in the state sl. The goal of this paper is to reduce the energy consumption in the edge network,
therefore, reward function in this paper can be expressed as follows:

Reward sl; alð Þ ¼ N � ptotal (12)

In above formula, the source of action al is from policy p. p is a mapping from state space sl to action
space al:

al ¼ p slð Þ (13)

1646 IASC, 2022, vol.31, no.3

The optimization goal of the MDP model established in this paper is to get an optimization strategy, it
maximizes the goal of reinforcement learning-the expectation of cumulative return value:

p�¼ argmax
p

E
X1
l¼0

ct � Reward sl; alð Þ
" #

(14)

ct is discount factor, and its value decreases with time.

4.2 PPO Algorithm Framework

Because the environment of edge computing network is complex and changeable, to learn in this
challenging environment, it is necessary to use a reliable and scalable intelligent algorithm [15]. Because
PPO algorithm guarantees stability by binding the range of parameter update to the trust area, this paper
considers using this algorithm to complete the unloading of edge tasks [16].

PPO algorithm is a deep reinforcement learning algorithm based on actor-critic framework. Its
architecture contains two actor networks, Actor 1 and Actor 2. Actor 1 represents the latest policy p,
which guides the agent to interact with the environment. Critic evaluates the current strategy according to
the reward, then updates the parameters in the critic network through back propagation of the loss
function. Actor 2 stands for the old strategy pold, after the agent trains a certain number of steps, it uses
the parameters in Actor1 to update Actor2. Repeating above process until PPO algorithm converges, we
get a trained edge task unloading model based on Actor-Critic framework.

hnew ¼ hold þ arhJ (15)

hold and hnew respectively represent the strategy parameters before and after the update, a represents the
update step size, and rhJ is the objective function gradient. The key of the policy gradient algorithm is the
update step size. If the update step size is not selected properly, the algorithm may collapse. PPO decomposes
the return function into the return function corresponding to the old strategy plus other items. Once the other
items in the new strategy are greater than or 0, the return function can be guaranteed to be monotonous.

g ~pð Þ ¼ g pð Þ þ Es0; a0…~p
X1
t¼0

ctAp st; atð Þ
" #

(16)

Ap st; atð Þ is the dominance function. The calculation of the dominance function is shown in the
following formula.

Ap st; atð Þ ¼ Qp s; að Þ � Vp sð Þ (17)

PPO algorithm optimizes the parameter h to satisfy the following equation.

max
h

E
ph ajsð Þ
phold ajsð Þ

Ahold s; að Þ
� 	

(18)

where ph ajsð Þ is the probability of using strategy p to take action a in state s, and the above formula should
satisfy Dmax

KL hold; hð Þ � g, Dmax
KL hold; hð Þ � g represents the maximum divergence between the old policy

parameter and the new policy parameter.

LKLPEN hð Þ ¼ Et
ph ajsð Þ
phold ajsð Þ

Ahold s; að Þ � bKL phold ; ~ph½ �
� 	

(19)

The policy update formula of PPO is shown in the above formula, but there is a problem that the super
parameter b is difficult to determine. PPO considers another method to limit the update step size of the policy.

IASC, 2022, vol.31, no.3 1647

rt hð Þ ¼
ph at jstð Þ
phold at jstð Þ

(20)

When policy does not change, rt hð Þ ¼ 1. and PPO algorithms consider using clipðÞ to limit the similarity
between the old and new policies. The improved policy update method is shown in the following
formula.

LCLIP hð Þ ¼ Et min rt hð ÞAt; clip rt hð Þð Þ; 1� E; 1þ Eð ÞAt½ � (21)

4.3 PPO Algorithm Implement

To optimize the energy consumption in the process of edge task unloading, algorithm designed in this
paper mainly includes the following three modules: 1) construction of edge network environment and
parameter setting; 2) edge task unloading model training; 3) output of energy consumption aware
unloading scheme.

As mentioned in 4.2, the actor network of PPO algorithm designed in this paper is composed of two
neural networks, Actor 1 and Actor 2. Actor 1 guides the agent to interact with the environment, obtains
transfer samples and caches them. The policy parameters in Actor 2 represents the old policies. After a
period of iteration, the parameters in Actor 1 will be used to update the parameters in Actor 2. The critic
network consists of a neural network. Training steps of unloading model are as follows:

Step 1: Input current state into Actor 1, and the agent selects an action based on al ¼ p slð Þ. After
repeating the above process, the agent continuously interacts with the edge network for T time steps,
collects the historical interaction information and caches it.

Step 2: Use (17) to calculate the advantage function of each time step.

Step 3: Use the following formula to calculate the loss function of the critic network, update the critic
network parameters f according to the function back propagation.

L fð Þ ¼ �
XT
t¼1

X
i>t

ci�tri � Vf stð Þ

 �2

(22)

Step4: Update the parameters of Actor1 by (17) and (21).

Step5: Repeat step 4. After a certain step, use the network parameters in Actor1 to update the parameters
of Actor 2.

Step 6: Repeat steps 1–5.

Based on above analysis, the edge task unloading algorithm based on PPO is described in the
following table.

5 Performance Evaluation

5.1 Simulation Setting

In this section, two kinds of network topology are used to verify the algorithm proposed in the previous
chapter. First network topology is composed of five edge servers and eight physical links. Second physical
topology consists of 8 edge servers and 12 physical links. To verify the energy optimization performance of
the task offload algorithm proposed in this paper, the energy consumption of 10, 15, 20… 60 task queues on
the terminal device is simulated and measured. We assume that three types of terminal tasks need to be
unloaded at the edge network, and detailed parameters settings of each task are shown in the Tab. 1. We
also assume that the bandwidth of each physical link is 1000 Mbps, and the available computing

1648 IASC, 2022, vol.31, no.3

resources of each edge server are 9 or 10 CPUs. Task types in each task queue are randomly selected from the
above three types of tasks and consist of at most three tasks. The number of tasks in each task queue is evenly
distributed between 2 and 3. In addition, this paper also assumes that the required bandwidth of all task
queues is evenly distributed in the range of [40, 50 Mbps]. The startup energy consumption and full load
operation energy consumption of the server and physical link are set to 170 and 800 W, 100 and 600 W
respectively. The task parameters used for simulation are shown in Tab. 2.

This paper uses the following four indicators to evaluate the proposed algorithm: 1. Total energy
consumption of the network: including energy consumption when processing terminal tasks and energy
consumption in the communication process. 2. Number of CPUs: the total number of CPUs consumed
when the offload task is executed at the edge network. 3. Physical network bandwidth: the total

Table 1: Edge task offloading algorithm

Algorithm: Edge task unloading algorithm based on PPO

Input: Initial state of the edge network and tasks queue to be unloaded

Output: Edge task offloading scheme

1. // 1) Build edge network environment and set parameters

2. Initialize the edge network environment and queue to be unloaded, and set the super parameters in PPO
algorithm

3. // 2) PPO algorithm based on AC framework is trained

4. Initializes the interactive cache, which is used for historical information collection

5. for episode 2 1;…Mf g
6. for t 2 1;…Tf g
7. According to the execution action al ¼ p slð Þ, reward rl and new status slþ1 are obtained, and the
historical sl; al; rlf g interaction information is collected

8. end for

9. for t 2 1;…Tf g
10. Update Actor1 network parameters according to (17) and (21)

11. Update Critic network parameters according to (22) back propagation

12. if t%circle ¼¼ 0

13. Update Actor 2 with the parameters in Actor 1

14. end if

15. end for

16. end for

17. // 3) Output the unloading scheme of task queues to be unloaded

18. while q task:length! ¼ 0

19. Output the unloading position (Server ID) of edge task

20. Actor1 chooses actions according to the current policy and moves to the next state

21. s s
0

22. end while

IASC, 2022, vol.31, no.3 1649

bandwidth consumed by the physical network when the edge network transmits inter task traffic. 4.
Offloading success rate: the percentage of terminal tasks successfully unloaded to the edge server.

To verify the effectiveness of the proposed algorithm. In this section, the algorithm (PPO_EM) proposed
in the previous section is compared with random algorithm and task unloading algorithm based on PPO but
without considering start up energy consumption (PPO_NEM).

5.2 Simulation Results

PPO_EM is implemented on a computer equipped with inter (R) core i5-9300 h and 16 g memory. The
program running environment is Python 3.7.4, Tensorflow 1.15.0; Fig. 2 shows the convergence of PPO_EM
in the training process. During training process, the number of task queues to be deployed is set to 80,
learning rate of actor network and critical network are set to 0.0001, and reward discount coefficient is
set to 0.9. The parameters of Actor 2 are updated with the network parameters in Actor 1 every 15 steps.
As can be seen from Fig. 2 at the beginning of training, the results of PPO_EM algorithm fluctuate due
to the randomly selected task deployment scheme, but with the increase of training times, reward function
gradually converges to the optimal value at about 150 steps.

Energy Consumption: Figs. 3a and 3b show the network energy consumption when the task unloading
strategy is executed in topology 1 with 5 nodes, 8 physical links, and topology 2 with 8 nodes and 12 physical
links, respectively. Compared with random algorithm, algorithm designed in this paper can save 22.69%
energy on average when executing task unloading. The reasons are as follows: Random algorithm only
considers the network topology, does not consider the factor of network energy consumption. When

Table 2: Relation between custom throughput of task and CPU

Task type Throughput (Mbps) CPU demand

1 100 1

2 80 1

3 50 4

Figure 2: Reward value with the number of iterations

1650 IASC, 2022, vol.31, no.3

building the MDP based optimization model, the algorithm designed in this paper designs the reward
function of each step from the perspective of energy consumption, realizes the joint optimization of
server energy consumption and physical link, and minimizes the total energy consumption in the process
of task unloading. Compared with the PPO_NEM which does not consider the power consumption of
power on, the algorithm designed in this paper only starts when the task is deployed on the
corresponding edge server, so it is better than the two comparative algorithms in energy consumption.

Offloading Success Rate: Figs. 4a and 4b show the success rate of task unloading in topology 1 with
5 nodes, 8 physical links, and topology 2 with 8 nodes and 12 physical links. It can be seen from figures that
with the increase of the number of task queues to be deployed, the success rate of unloading tasks based on
the three algorithms decreases. Because the number of tasks in the queue is randomly distributed between
2 and 3, it is possible that the deployment task queue increases, but the overall required resources
decrease. This can explain the phenomenon that the unloading success rate increases slightly with the
increase of task queue in the simulation diagram. It can be seen from the figure that the task unloading
algorithm based on PPO designed in this paper has a better unloading success rate than the random
algorithm. The reason may be that the reuse rate of the same type of tasks in the random algorithm is
low, the edge network resources are limited, and the repeated deployment of tasks consumes more
computing and bandwidth resources, thus affecting the task unloading success rate.

Consumed Bandwidth: Fig. 5 shows total link bandwidth cost when unloading tasks in the network
topology with the number of physical nodes being 5 and the number of physical links being 8. It can be
seen from the above figure that with the increase of the number of task queues to be unloaded, the total
amount of bandwidth consumed in the network is also increasing. What’s more, it can be seen from the
figure that the algorithm designed in this paper consumes the least network bandwidth Computer
algorithm consumes the most network bandwidth on the edge network. The reasons are as follows:
Although the random algorithm uses the shortest path connection when connecting the edge servers
deployed with adjacent tasks, the edge servers are randomly selected during the unloading process.
Therefore, compared with the PPO_EM algorithm which considers the link energy consumption, the
algorithm designed in this paper has less hops and less network bandwidth consumption when
implementing the routing between adjacent tasks.

Figure 3: a: Total amount of energy consumption with 5 nodes, 8 physical links b: Total amount of energy
consumption with 8 nodes and 12 physical links

IASC, 2022, vol.31, no.3 1651

Consumed CPUs: Fig. 6 shows the total number of CPU consumed by the edge network when the task
is unloaded in the physical topology with 5 physical nodes and 8 physical links. It can be seen from Fig. 6 that
when the three offload strategies are implemented in the edge network, the number of CPU consumed in the
network increases with the number of task queues to be deployed. From the overall trend of CPU
consumption, the CPU consumption of the task offload strategy designed in this paper is slightly better
than that of the algorithm without considering power consumption, and it is far better than the algorithm
based on random policy for task unloading. The reasons are as follows: because the random algorithm
randomly selects the edge servers to be deployed, the same type of tasks in different queues need to be
deployed repeatedly. In contrast, PPO_EM improves the utilization of the same task type by aggregating
task queue requests. Therefore, the random offload strategy consumes more CPU.

Figure 4: a: Offloading Sucess rate with 5 nodes, 8 physical links b: Offloading Sucess rate with 8 nodes and
12 physical links

Figure 5: Total amount of consumed bandwidth

1652 IASC, 2022, vol.31, no.3

6 Conclusion

In this paper, we focus on the optimization of energy consumption of edge server in the process of task
unloading. To improve the accuracy of server energy consumption evaluation, we first construct a server
energy consumption model including both startup energy consumption and processing energy
consumption, then we describe the model as an optimization problem model for energy consumption
optimization. Then, a task unloading strategy based on PPO is proposed to solve the approximate optimal
task unloading scheme. Simulation results shows that compared with the random algorithm, the proposed
algorithm can save 22.69% energy on average.

Funding Statement: This work was supported by State Grid Corporation of China science and technology
project “Key technology and application of new multi-mode intelligent network for State Grid” (5700-
202024176A-0-0-00).

Conflicts of Interest: We declare that we have no conflicts of interest to report regarding the present study.

References
[1] H. Wang, J. Yong, Q. Liu and A. Yang, “A novel GLS consensus algorithm for alliance chain in edge computing

environment,” Computers, Materials & Continua, vol. 65, no. 1, pp. 963–976, 2020.

[2] H. Zhang, G. Chen and X. Li, “Resource management in cloud computing with optimal pricing policies,”
Computer Systems Science and Engineering, vol. 34, no. 4, pp. 249–254, 2019.

[3] Y. Mao, C. You, J. Zhang, K. Huang and K. B. Letaief, “A survey on mobile edge computing: The communication
perspective,” IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.

[4] N. R. Sivakumar, “Stabilizing energy consumption in unequal clusters of wireless sensor networks,” Computers,
Materials & Continua, vol. 64, no. 1, pp. 81–96, 2020.

[5] A. Abdelnasser, E. Hossain and D. I. Kim, “Clustering and resource allocation for dense femtocells in a two-tier
cellular OFDMA network,” IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp. 1628–1641,
2014.

[6] J. Oueis, E. C. Strinati and S. Barbarossa, “The fog balancing: Load distribution for small cell cloud computing,”
in 2015 IEEE 81st Vehicular Technology Conf., Glasgow, UK, pp. 1–6, 2015.

Figure 6: Number of consumed CPUs

IASC, 2022, vol.31, no.3 1653

[7] J. Rubio, A. Pascual-Iserte, J. del Olmo and J. Vidal, “User association for load balancing in heterogeneous
networks powered with energy harvesting sources,” in 2014 IEEE Globecom Workshops, Austin, TX, USA,
pp. 1248–1253, 2014.

[8] H. M. Wu, Q. S. Wang and K. Wolter, “Tradeoff between performance improvement and energy saving in mobile
cloud offloading systems,” in 2013 IEEE Int. Conf. on Communications Workshops, Budapest, Hungary, pp. 728–
732, 2013.

[9] S. Sardellitti, G. Scutari and S. Barbarossa, “Joint optimization of radio and computational resources for multicell
mobile-edge computing,” IEEE Transactions on Signal and Information Processing over Networks, vol. 1, no. 2,
pp. 89–103, 2015.

[10] L. Chen, S. Zhou and J. Xu, “Computation peer offloading for energy-constrained mobile edge computing in
small-cell networks,” IEEE/ACM Transactions on Networking, vol. 26, no. 4, pp. 1619–1632, 2018.

[11] J. J. Han and Q. H. Li, “Dynamic power-aware scheduling algorithms for real-time task sets with fault-tolerance
in parallel and distributed computing environment,” in 19th IEEE Int. Parallel and Distributed Processing
Symp., Denver, CO, USA, pp. 10–14, 2005.

[12] Y. Wang, M. Sheng, L. Wang, Y. Zhang, Y. Shi et al., “Energy-optimal partial computation offloading using
dynamic voltage scaling,” in 2015 IEEE Int. Conf. on Communication Workshop, London, UK, pp. 2695–
2700, 2015.

[13] Y. Wang, M. Sheng, X. Wang, L. Wang and J. Li, “Mobile-edge computing: Partial computation offloading using
dynamic voltage scaling,” IEEE Transactions on Communications, vol. 64, no. 10, pp. 4268–4282, 2016.

[14] Y. Wang, M. Sheng, X. Wang and J. Li, “Cooperative dynamic voltage scaling and radio resource allocation for
energy-efficient multiuser mobile edge computing,” in 2018 IEEE Int. Conf. on Communications, Kansas City,
MO, USA, pp. 1–6, 2018.

[15] N. Yuan, C. Jia, J. Lu, S. Guo, W. Li et al., “A DRL-based container placement scheme with auxiliary tasks,”
Computers, Materials & Continua, vol. 64, no. 3, pp. 1657–1671, 2020.

[16] L. Li, Y. Wei, L. Zhang and X. Wang, “Efficient virtual resource allocation in mobile edge networks based on
machine learning,” Journal of Cyber Security, vol. 2, no. 3, pp. 141–150, 2020.

1654 IASC, 2022, vol.31, no.3

	An Energy Aware Algorithm for Edge Task Offloading
	Introduction
	Related Work
	Problem Formulation
	Proposed Algorithm
	Performance Evaluation
	Conclusion
	References

