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Abstract: In this article, the maximum possible numbers of periodic solutions for
the quartic differential equation are calculated. In this regard, for the first time in
the literature, we developed new formulae to determine the maximum number of
periodic solutions greater than eight for the quartic equation. To obtain the max-
imum number of periodic solutions, we used a systematic procedure of bifurcation
analysis. We used computer algebra Maple 18 to solve lengthy calculations that
appeared in the formulae of focal values as integrations. The newly developed for-
mulae were applied to a variety of polynomials with algebraic and homogeneous
trigonometric coefficients of various degrees. We were able to validate our newly
developed formulae by obtaining maximum multiplicity nine in the class C4,1

using algebraic coefficients. Whereas the maximum number of periodic solutions
for the classes C4,4; C5,1; C5,5; C6,1; C6:6; C7,1 is eight. Additionally, the stability
of limit cycles belonging to the aforementioned classes with algebraic coefficients
is briefly discussed. Hence, we conclude from the above-stated facts that our new
results are a credible, authentic and pleasant addition to the literature.

Keywords: Limit cycle; nonlinear equation; quartic differential equation;
algebraic and trigonometric coefficients; focal values

1 Introduction

Most of the real-world problems in nature are multidimensional and when modeled, they arise as higher-
order ordinary differential equations. We are interested in those models which are periodic and depend on
time and are usually known as non-autonomous. This article contains several recent developments and
advances in calculations of periodic solutions and their applications in various areas of the mathematical,
physical and engineering sciences. We have investigated upper bounds for the non-autonomous ordinary
differential equation (ODE) of the cubic degree [1–3]. The primary question striking in our minds is to
investigate the maximum number of periodic solutions when the degree of non-autonomous (ODE) is
increased from three to four; so, we started working for the quartic system. The analysis of periodic
solutions is vital because they frequently arise as real-world problems from financial matters such as
modelling economic processes to complex space robotics, from galaxies to weather forecasting models.
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Many physics problems are related to nonlinear analysis like relativity, elasticity, chaotic dynamics and
Navier stokes equation in fluid dynamics. Bendixson’s negative criterion, based on the connection
between compound matrices and (ODE’s), is applied to prove the nonexistence of periodic orbits and
then nonexistence of Hopf bifurcation. Almost every bit of life needs this analysis, even inside the body
as cardiac rhythms as blood flow, please see the example, [4–6]. The aesthetic appeal of periodic
solutions may explain why so many people have become intrigued by these ideas. Alwash et al. [7,8]
developed the theoretical foundations of periodic solutions of differential equations.

Alwash et al. [8] examine equation of the form:

_y ¼ gðzÞy3 þ dðzÞy2 þ uðzÞy; (1)

to find the upper bound for the number of limit cycles for such system (1) in accordance with the second part
of Hilbert’s sixteenth problem. The coefficients g; d; and u are real-valued continuous functions, but the
independent variable is complex. We are principally concerned about the multiplicity of y ¼ 0 as a
periodic solution, i.e., solutions satisfying

yð0Þ ¼ yðrÞ; (2)

for r ∈ R and look for information about the number of periodic solutions. We refer the reader to [8] for
more extra pieces of information, however right here we do not forget that the multiplicity of a solution
ϕ(t) of Eq. (1) satisfying Eq. (2) is the multiplicity of fð0Þ as a root of the holomorphic function
q : c ! y t; 0; cð Þ � c; yðt; t1; cÞ is the solution satisfies yðt; t1; cÞ ¼ c. Here we take a multiplicity of the
periodic solution as ‘k’ of the function fðtÞ. Rouche’s theorem is used for the function q, it is assumed
that we have at most k periodic solutions in the regions nearby ϕ (counting multiplicity): see, for
example, ([2], Theorem 2.4) when sufficiently small perturbation of the equation is in an account for the
following quartic equation:

_y ¼ ey4 þ gðzÞy3 þ dðzÞy2 þ uðzÞy; (3)

For sufficiently small perturbation e; the quartic equation preserves the same number of periodic
solutions as Eq. (1). We used scaling y ! e1=3y to get the leading coefficient of Eq. (3) as one and this
Eq. (3) becomes as:

_y ¼ y4 þ e�2=3ðzÞy3 þ e�1=3ðzÞy2 þ uðzÞy; (4)

To make the above equation simple, which is helpful for lengthy calculations that arise in numerical
integration, we rewrite Eq. (4) as:

_y ¼ y4 þ gðzÞy3 þ dðzÞy2 þ uðzÞ; (5)

We are mainly focused on finding the multiplicity of periodic solutions of y = 0 greater than one for
Eq. (1) as was done by researchers in [7], without loss of generality; we could take u(z) ≃ 0; as was
taken in [1]. In this paper, we are considering the corresponding equation:

_y ¼ y4 þ gðzÞy3 þ dðzÞy2; (6)

There is another reason for our interest in Eq. (5). We say this system to be non-autonomous, nonlinear
because all the ‘y’ on the right-hand side appear to a power greater than one. Because of the non-autonomous
equation, equilibrium states are not usually associated with Eq. (6). The general form of the above Eq. (6) is
as follows:
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_y ¼ yn þ p1 zð Þyn�1 þ p2 zð Þyn�2þ; . . . ;þp0ðzÞ; here p0ðzÞ ¼ 1: (7)

Moreover, the coefficients were considered to be periodic functions, please see the example, [8–11].
However, the questions related to Hilbert’s sixteenth problem are reduced to polynomial equations in
which p0 has zeros. They showed that for n = 3, Eq. (7) has precisely three periodic solutions. Here, the
results of [12] no longer hold; they have presented some examples in [13] which showed that there is no
idea about the upper bound for the number of periodic solutions when n � 4 and p0ðzÞ = 1; until some
coefficients are restricted. Earlier, Shahshahani [14]; determined the multiplicity of Eq. (6) when
gðzÞ; dðzÞ and uðzÞ are polynomial functions of z. We also present in Section 3 that the conjecture made
in [14] is false.

In Section 2, some results from the literature are employed and formulae for calculating the maximum
number of periodic solutions, greater than eight are formulated and presented. In Section 3, we calculated the
periodic multiplicity for various classes of coefficients. In the last section, we present conclusions and
discussions.

2 Calculation of Multiplicity

In this section, we recall some important concepts necessary to understand the presented method; for
instance, see [1]. For the sake of multiplicity of the zero solution of Eq. (5), we observe that in a
neighborhood of y ¼ 0, we can write

yðz; 0; cÞ ¼
X1
i¼0

uiðzÞci (8)

for 0 � z � r; the functions uiðzÞ are continuous and u1ð0Þ ¼ 1 and uið0Þ ¼ 0 for i. 1. The multiplicity
ðlÞ is “l ¼ k” if

u1ðrÞ ¼ 1;
u2ðrÞ ¼ u3ðrÞ ¼ . . . ¼ ui�1ðrÞ ¼ 0:

�
(9)

However, uiðrÞ 6¼ 0. To calculate the functions uiðzÞ, we placed the expression (8) into (5) and achieved
a set of linear differential equations which can be solved recursively. We will study from Eq. (9) that
u1ðzÞ ¼ u1ðzÞtðzÞ, where u1ðzÞ is set as:

u 1ðzÞ ¼ e
R r

o
v sð Þds

:

Hence, y ¼ 0 is a multiple solution iff
R r
o vðsÞds. Since we were right here interested in equations,

wherein the multiplicity of the origin is greater than one, we recall that
R r
o v ¼ 0. At that point, we apply

the transformation y ! ypn�1, wherein pðzÞ ¼ e
R z

o
v and obtain

y ¼ ðpðzÞÞ3y4 þ ðpðzÞÞ2y3 þ pðzÞtðzÞy2: (10)

Since p is periodic, the function q is unchanged through the transformation and therefore the periodic
solution of Eq. (5) and Eq. (10) have identical preliminary points and multiplicities. Additionally, the
transformation of the independent prompts to the Eq. (6). For Eq. (6), the functions uiðzÞ, for i. 1 are
calculated by the following relation:
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_ui ¼
P

jþ k þ l þ m ¼ i
j; k; l;m � 1

0
@

1
A ujukulum
� �þ c zð Þ

P
jþ k þ l ¼ i
j; k; l � 1

0
@

1
A ujukul
� �þ d zð Þ

P
jþ k ¼ i
j; k � 1

0
@

1
A ujuk
� �

: (11)

With u1ðzÞ ¼ 1. For i � 8 functions uiðzÞ and ϰi are provided in [1], for i ¼ 9, we have calculated u9ðzÞ
and ϰ9; and present them below in Theorems 2.1 and 2.2. Some tremendously complicated computations are
involved; hence, we omit some details and we write results.

In this article, we present a novel approach for finding periodic solutions. By using Theorem 2.2, we can
find the highest periodic solutions as 9. We base this method on the construction of Akram et al. [1]. The
approach can apply to other planar systems as well.

When we started working for quartic non-autonomous (ODE), for this investigation, formulae for
finding upper bounds greater than 8 are not present in the literature up to now. We came up with many
challenges while working with this problem of quartic type. The first task is to compute these new
formulas, which are previously unavailable in the literature. By putting in many efforts, we succeeded in
constructing the new formula u9 and ϰ9, which are given in theorems 2.1 and 2.2. In the below theorem,
we use the notation “ :ð Þ” for indefinite integral such as �d ¼ R dðsÞds.

Theorem 2.1 For Eq. (6); the functions u2, u3, … , u9 in the expansion (11) are as follows:

u2 ¼ �d;

u3 ¼ �d2 þ �c;

u4 ¼ �d3 þ 2�d�cþ �dcþ z;

u5 ¼ �d4 þ 3�d2�cþ �d
2
cþ 3�d�dcþ 2 ��dþ 3

2
�c2 þ 2z�d;

u6 ¼ �d5 þ 4�d3�cþ �d
3
cþ 3�d2 �dcþ 3�d

2 þ 4�d��dþ 2�d�d
2
c� 1

2
d�c2 þ 9

2
�d�c2 þ 3�dc�cþ ��cþ 3zð�d2 þ �cÞ;

u7 ¼ �d6 þ 5�d4�cþ �d
4
cþ 4�d3�dcþ 2�d�d

3
cþ 4�d

3 þ 3�d2�d
2
cþ 6�d�d

2 þ 6�d2��dþ 27

2
�d2�c2 þ 3�d

2
c�c

� d�c2�d� 2d�d�c2 þ 6ð�dcÞ2 þ 2�d��cþ 4�d�c� 4ðd�cÞ2 þ 6��d�cþ 5

2
�c3 þ 4zð�d3 þ 3�dcþ 2d�cÞ þ 2z;

u8 ¼ �d7 þ 6�d5�cþ �d
5
cþ 2�d�d

4
cþ 5�d4�dcþ 3�d2�d

3
cþ 4�d3�d

2
cþ 8�d�d

3 þ 9�d2�d
2 � 8�d3��dþ 5�d

4

þ 75

2
�d3�c2 þ 3�d

3
c�cþ 12�d

2
c�d�c� �d

2
d�cc� 6�d

2
d�c2 � 25�d2d�c�c� 3

2
�d2d�c2 � 4�d

2
cd�cþ 5�dðd�cÞ2 � 4�dd�d�c2

þ 9�d
2
�c� �d

2
c� 2��d�dcþ 9�d

2
�cþ 3�d2�cþ 16�d��d�cþ 8�d�d�cþ 10��d�dc� 2

���d� 1

2
d�c3 � 3

2
d�c2�cþ 10�d�c3

þ 15

2
�dc�c2 þ 3

2
�c2 þ 3�c��cþ zð5�d4 þ 15�d2�cþ 5�d

2
cþ 10�d�dcþ 10��cþ 15

2
�c2Þ þ 5z2�d;
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u9 ¼ �d
8 � �d

3
�cþ 4�d

3
cþ 58�dc�d

2 þ 12�d
2 þ 20ð��dÞ2 þ 10�d

2
c�d� 2d�c2 þ 2�d�c2 þ 24�dc�c� 2���c

þ 38z�d
2 � 38z�d

2 þ 24z��cþ 3

5
�d
6
c� 161

2
�d
4
�c2 þ 3�d

4
c�cþ 30�dc�d

3
�cþ 90d�d

2�dcþ 4�d
3
c�c�d� 4�d

3
c�cd

þ 12�d
3
�cþ 11�c�d

2�d
2
cþ 36

3
�c�d�d

2 þ 34�c�d
2��dþ 39

2
�d
2
�c3þ 15

2
�c2�d

2
cþ 21�cð�dcÞ2 � 2�c�dd�c2 þ 4�c��c�d

þ 35

8
�c4 þ 12�c�d�cþ 15�c2��dþ 58

3
�c�d

3
z� 58�cd�d

2
zþ 24�cd�c� 24�c2dþ 9�cz2 � 36c�c�d�dc

� 66�cd�d
2
zþ 42�c�dcz� 42�c�dc� 42�c2�dzþ 42�c2dzþ 9�c�d

3�d
2
c� 9�c�d

5
cþ 27�cd�d

2�d
2
c

� 12�c d�c
� �2 þ 24�c2dd�c� 6cd�d�c2 þ 2�d�d

5
cþ 7�c�d

6 þ 3�d
2�d

4
cþ 32

5
�d
5�dcþ 4�d

3�d
3
cþ 5�d

4 �d
2
c

þ 12�d
3�d

2 þ 12�d
2�d

3 þ 10�d
4��dþ 10�d�d

4 þ 101

3
�d
4
�cþ 8�c�d�d

3
cþ 19�c�d

2�d
2
c� 2�d�d

2
d�ccþ 82

3
c�d

3
d�c

� 12�d�c2d�d
2 � 52

3
�c�d

3
d�c� 2�d

3
d�c2 � 8d�d

2
cd�cþ �d

2
d�c
� �2 � 6�d

2
d�d�c2 þ 18�d�d

2
�c� 2d�d

2
c

� 4�d��d�dcþ 12�c�d�d
2 þ 4��c�d

3 � 12�c��d�d
2 þ 12�d

2 �dcþ 10�d
2�dc� 10�d

3
c� 4�d

���d� d�c3�dþ 2�c�dd�c2

þ 49

2
�c3 �d

2 þ 24�c2�d�dcþ 3�c2 �dþ 8�cd�c� 20��c�dþ 10�d
3
�c�dcþ 4��d�d�dc� 4��d�d

2
cþ 2�dc�d�d

2
c

� 2�d
2
c�d

2
cþ �d

5
zþ 56

3
�c�d

3
zþ 12d�d

2
czþ 10�d

2�dczþ 20��c�dz� 20�c�dzþ 24�c2�dz� 9�d
2
d�cz

þ 9�d
2
d�czþ 9�d

2ð�dcÞ2zþ 4��d�dzþ 9�d
2
z2:

By using the above mentioned functions of Theorem 2.1, we can obtain Theorem 2.2, under some
suitable conditions.

Theorem 2.2 The solution y ¼ 0 of (6) has a multiplicity k, wherever 2 � k � 9 if and only if
ϰ2 ¼ ϰ3 ¼; . . . ; ϰk�1 ¼ 0 and ϰk 6¼ 0 where

ϰ2 ¼
Z r

o
d;

ϰ3 ¼
Z r

o
c;

ϰ4 ¼
Z r

o
ðc�dþ 1Þ;

ϰ5 ¼
Z r

o
ðc�d2 þ 2�dÞ;

ϰ6 ¼
Z r

o
ð2c�d3 þ 6�d

2 � d�c2 þ 2�cÞ;

ϰ7 ¼
Z r

o
ðc�d4 þ 4�d

3 � 2d�d�c2 þ 4�d�cÞ;
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ϰ8 ¼
Z r

o
ðc�d5 þ 5�d4 � 6�d

2 � �d
2
d�cc� �d

2
cþ 9�d

2
�c� 2c�d��d� 1

2
�c3d� 2��dþ 3

2
�c2Þ;

and

ϰ9 ¼
Z r

0
ðc�d6 þ 10�d

5 þ 95

9
�c�d

3 þ 290

3
�dc�d

2 þ 20�d
2 þ 50

3
�d�d

2
c� 10

3
d�c2 þ 10

3
�d�c2 þ 40�c�dc� 100

3
��c

þ 150d�d
2�dc� 20

3
�cd�d

3
c� 60c�c�d�dc� 70�c�dc� 15�d

5
�ccþ 40d�cd�cþ 45d�d

2
�c�d

2
c� 10cd�d�c2

þ 410

9
c�d

3
d�c� 40

3
d�d

2
cd�c� 100

3
�d��cþ 15�d

2
d�cþ 24d�c2d�c� 20

3
�d
2��dc� 100

3
c�d

2�d
2
cþ 70d�c2z

� 620

3
�c�d

2
dz� 100

3
�c�dzÞ:

Assume that ϰi ¼ uiðrÞ, at that point l ¼ i if ϰ1 ¼ 1 and ϰk ¼ 0 for 2 � k � i� 2 but ϰi 6¼ 0. These ϰi’s
are known as focal values.

Proof By definition, the multiplicity of the zero solution is k if anðrÞ ¼ 0 for 2 � n � k � 1 and
ukðrÞ 6¼ 0. Write nk ¼ ukðrÞ and let ϰk be the value of nk when nn ¼ 0 for n, k.

Since u2ðzÞ ¼
R r
o d; we have n2 ¼

R r
o d. With n2 ¼ 0, we have n3 ¼

R r
o c and n4 ¼

R r
o ðc�dþ 1Þ; hence

ϰ3 and ϰ4 as stated. Next, suppose that n2; n3 ¼ 0 and substitute the relations
R r
o d ¼ R ro c ¼ 0 into the

expressions for u5ðrÞ and u6ðrÞ given in theorem 2.1; we obtain ϰ4 ¼
R r
o ðc�dþ 1Þ; ϰ5 ¼

R r
o ðc�d2 þ 2�dÞ.

Finally, we suppose that n4 ¼ 0 (as well as n2 ¼ n3 ¼ 0). We substitute the relationsR r
o d ¼ R ro c ¼ R ro ðc�dþ 1Þ ¼ 0 into the expressions for u7ðrÞ and u8ðrÞ; then ϰ7 ¼

R r
o ðc�d4 þ 4�d

3

�2d�d�c2 þ 4�d�cÞ,
and ϰ8 ¼

R r
o ðc�d5 þ 5�d4 � 6�d

2 � �d
2
d�cc� �d

2
cþ 9�d

2
�c� 2c�d��d� 1

2 �c
3d� 2��d�þ 3

2 �c
2Þ.

Continuing in the same way we get: ϰ9 ¼
R r
0 ðc�d6 þ 10�d5 þ 95

9 �c
�d3 þ 290

3
�dc�d2 þ 20�d

2 þ 50
3
�d�d

2
c

� 10
3 d�c

2 þ 10
3
�d�c2 þ 40�c�dc� 100

3
��cþ 150d�d2�dc� 20

3 �cd
�d
3
c� 60c�c�d�dc� 70�c�dc� 15�d5�ccþ 40d�cd�c

þ 45d�d2�c�d
2
c� 10cd�d�c2 þ 410

9 c�d3d�c� 40
3 d

�d
2
cd�c� 100

3
�d��cþ 15�d2d�cþ 24d�c2d�c� 20

3
�d��dc� 100

3 c�d2�d
2
c

þ 70d�c2z � 620
3 �c�d2dz� 100

3 �c�dz).

Now we are going to define the center and some necessary conditions for the center.

Definition An equilibrium point surrounded in its immediate neighborhood (not necessarily over the
whole plane) by a closed path is called a center.

Conditions for Center

Corollary 2.1 If any gðzÞ or dðzÞ is identically zero and the other has a mean value of zero, then the
origin is a center.

Corollary 2.2 For continuously odd differentiable functions gðzÞ and dðzÞ of period σ: The origin is a
center.

3 Main Results

We consider various classes in which two types of coefficients, namely (z or cos (z) and sin (z)) for gðzÞ
and dðzÞ in Eq. (6), are considered for the calculations of periodic solutions.
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3.1 Trigonometric Coefficients

We have to consider Eq. (6), with coefficients in sinðzÞ and cosðzÞ; here, the period is r ¼ 2p. We now
go off to various classes of Eq. (6). For this, we make use of theorem 2.2; to verify the calculations in this
module. The related computations are complicated and of a bulk extent. This symbolic representation likeR 2p
0 zcosmðzÞsinnðzÞdz was overcome using computer algebra programming Maple18.

Lemma 3.1 If possibly gðzÞ and dðzÞ are polynomials in sinðzÞ and cosðzÞ, all of whose terms are of odd
degree. Then multiplicity is μ = 4 or μ > 6.

The above lemma is from Alwash et al. [7], but after solving theorems in the next section, we have
concluded that this is also valid if gðzÞ and dðzÞ are of even degree, given in the following lemma.

Lemma 3.2 If gðzÞ and dðzÞ are polynomials in sinðzÞ and cosðzÞ; all of whose terms are of even degree.
Then multiplicity is μ = 4 or μ > 6.

Which are illustrated in the following theorems, throughout this paper, we use the symbol “C” to
represent the class and we show the maximum multiplicity for classes with μmax.

Homogeneous Polynomial for Classes C4,4, C5,5 and C6,6

Theorem 3.1 Consider the class C4,4 for Eq. (6). If the coefficients are:

cðzÞ ¼ acos4ðzÞ þ bcos3ðzÞsinðzÞ þ csin4ðzÞ þ fcos2ðzÞsin2ðzÞ;
dðzÞ ¼ dcos4ðzÞ þ esin4 zð Þ:

Then we calculate lmaxðC4;4Þ � 8:

Proof By using Theorem 2.2, we now calculate ϰ2 ¼ 3
4p d þ eð Þ,

ϰ3 ¼ p 3aþ 3cþ fð Þ
4

: (12)

From ϰ2; ϰ3 ¼ 0, we substitute d ¼ �e; f ¼ �3a� 3c and calculate ϰ4 ¼ p 16þbeð Þ
8 . From ϰ4 ¼ 0; by

using the value of “b” in terms of “e” we calculate ϰ5 as ϰ5 ¼ � pe2 aþcð Þ
16 .

If ϰ5 ¼ 0 then, either e ¼ 0 or:

aþ c ¼ 0: (13)

If e ¼ 0 then dðzÞ ¼ 0 and for ϰ3 ¼ 0, we can say from corollary 2.1, that the origin is a center. Utilizing
(11) we put a ¼ �c and get

ϰ6 ¼ p 3e3 � 4ð Þ
4e

: (14)

with ϰ7 as:ϰ7 ¼ � 2cp
9 : For ϰ7 ¼ 0, we substitute values of “c” and calculate ϰ8 as:

ϰ8 ¼ 1538563

419904

� �
p: (15)

Hence our conclusion is lmaxðC4;4Þ � 8.

Theorem 3.2 Let the class C5;5 for Eq. (6); with coefficients as follows:

cðzÞ ¼ asin5ðzÞ þ bcos3ðzÞsin2ðzÞ þ ccos4ðzÞsinðzÞ þ dcos5ðzÞ;
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dðzÞ ¼ esin5ðzÞ:
Then lmaxðC5;5Þ � 8 is presented.

Proof It is easily calculated that ϰ2 = ϰ3 = 0 and:

ϰ4 ¼ � p 161ebþ 689ed � 3840ð Þ
1920

: (16)

If ϰ4 ¼ 0, then, as p 6¼ 0, we substitute d ¼ 3840
689e � 161

689 b and calculate ϰ5 ¼ 0 with ϰ6 as:

ϰ6 ¼ e2p 7576305ebþ 2183801728ð Þ
1693286400

: (17)

If ϰ6 ¼ 0, then for e ¼ 0, gives that origin is the center. Thus we put b ¼ � 2183801728
7576305e

� �
and get

ϰ7 ¼ 64434587
363662640

� �
ecp:

Now, ϰ7 ¼ 0 gives c ¼ 0, because ep 6¼ 0 and ϰ8 is as follows:

ϰ8 ¼ p$
10687682598305969912832000e2

: (18)

where $ ¼ 3463030403249893347931717632þ 1080907356115092660813824e4a
þ455749311538699264881025e6.

Hence, lmaxðC5;5Þ � 8 is calculated.

Theorem 3.3 Consider class C6,6 for Eq. (6), with coefficients as follows:

cðzÞ ¼ asin6ðzÞ þ ccos5ðzÞsinðzÞ þ dcos6ðzÞ;
dðzÞ ¼ ecos6ðzÞ þ fsin4ðzÞcos2ðzÞ:

Then lmaxðC6;6Þ � 8.

Proof From theorem 2.2, we calculated ϰ2 ¼ p fþ5eð Þ
8 ; ϰ3 ¼ 5p aþdð Þ

8 : From ϰ2; ϰ3 ¼ 0, we substitute
a ¼ �d; f ¼ �5e and calculate ϰ4 ¼ p 1536þ49ceð Þ

768 and from ϰ4 ¼ 0, by using the value of “c” in terms of
“e” we calculate ϰ5 as:

ϰ5 ¼ 65

2048

� �
de2: (19)

If ϰ5 ¼ 0 then, as e 6¼ 0, so we put d ¼ 0 and get ϰ6 ¼ p �5529600þ443401e3ð Þ
1843968e .

Further, for ϰ6 ¼ 0 we put ¼ 5529600
443401

� �1
3 , which results ϰ7 ¼ 0 and ϰ8 as follows:

ϰ8 ¼ 1032896577437435266601938594527152689

134056056318983503541054008197120000
p: (20)

Here it is a nonzero constant number. So, lmaxðC6;6Þ � 8.

Now, for the polynomial z; we will explain the calculations of the maximum possible periodic solution
for many classes of the Eq. (6).

3.2 Polynomial Coefficient

Let Ci;j denotes the classes for the Eq. (6), where i,j denotes the degree for γ(z) and δ(z) accordingly.
Using polynomial coefficient “z” for various higher-order classes, we have calculated the possible
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maximum number of periodic solutions 9 for class C4;1 and 8 for the classes C5;1, C6;1, C7;1. The verification
of the presented below theorems stems from papers by Alwash et al. [7,8] and by Saima et al. please see the
example, [1–3].

Remark 1. In the perturbation strategies defined in [1], the whole complement of (j − 2) real periodic
solutions fails to yield; if it occurs, then there is j, k such that ϰj ¼ 0 whenever ϰj�1 6¼ 0. This occurs while
the multiplicity is necessarily odd. However, for the number of real periodic solutions, we will say from the
“exchange of stability” argument that, If multiplicity μ is even, the origin is stable for ϰl, 0 and unstable if
ϰl > 0. If l is odd, then the origin is stable on the right and unstable on the left if ϰl < 0; while it is stable on
the left and unstable on the right if ϰl > 0.

Theorem 3.4 Consider Ci;1 be the class of equations of the form (6) having degree i for cðzÞ and 1 for
dðzÞ, where i ¼ 4; 5; 6; 7. Then we conclude the results lmaxðCi;1Þ � 8, for i ¼ 5; 6; 7 and lmaxðC4;1Þ � 9
accordingly.

Proof Firstly, we start for the degree of cðzÞ as 7, i.e., C7;1. The remaining classes having a degree less
than 7 for cðzÞ are the special cases. Let
cðzÞ ¼ aþ bzþ cz2 þ dz3 þ ez4 þ fz5 þ gz6 þ hz7;

dðzÞ ¼ mþ qz:

�
(21)

1). For the class C7;1, we restrict coefficients and put e; f ; g ¼ 0, in (21). By using Theorem 2.2, we
calculate ϰ2 ¼ mþ q

2 and ϰ3 ¼ aþ b
2 þ c

3 þ d
4 þ h

8 :

Thus multiplicity of z ¼ 0 is l ¼ 2 if ϰ2 6¼ 0. And multiplicity is l ¼ 3 if ϰ2 ¼ 0 but ϰ3 6¼ 0. If suppose
ϰ2; ϰ3 ¼ 0, then ϰ4 is given as:

ϰ4 ¼ 1þ 7

1440
hqþ 1

240
dqþ 1

360
cq: (22)

If ϰ4 ¼ 0 then by substituting

h ¼ � 1440

7q
� 6

7
d � 4

7
c; (23)

we calculate ϰ5 ¼ � q 3360þ3dqþ2cqð Þ
110880 :

Now for ϰ5 ¼ 0, either q ¼ 0 or 3360þ 3dqþ 2cq ¼ 0. If q ¼ 0 then dðzÞ ¼ 0. Also ϰ3 ¼ 0 gives, the
mean value cðzÞ ¼ 0. From corollary 2.1, origin is the center. Substituting value of d as: d ¼ � 3360

3q � 2
3 c. We

obtain ϰ6 ¼ � 4 374cq�782880�1683q3ð Þ
1461915q : If ϰ6 ¼ 0, recalling that q 6¼ 0, we take

c ¼ 1683

374
q2 þ 782880

374

1

q

� �
: (24)

Using Eq. (24), we calculate ϰ7 as:

ϰ7 ¼ 88

28665

� �
bqþ ð 7487

1261260
Þq3 þ ð219888

273581
Þ:

If ϰ7 ¼ 0, substituting the value of ‘b’ in term of ‘q’ and calculate towards ϰ8 as:

ϰ8 ¼ � 837814915675132032q3 þ 143990207791969q6 � 99990153502176337920

5030608785872237568q2
:

For ϰ8 ¼ 0, we can’t proceed further. Therefore, lmaxðC7;1Þ � 8.
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As the outcome of obtained multiplicity is even having the negative sign. So, by using remark 1, it can be
concluded that the origin is stable.

2). Now, for the class C6;1, we put e; f ; h ¼ 0, in Eq. (21). By using theorem 2.2, we calculate

ϰ2 ¼ mþ q
2,

and

ϰ3 ¼ aþ b

2
þ c

3
þ d

4
þ g

7
:

If suppose ϰ2; ϰ3 ¼ 0, we calculate ϰ4 as:

ϰ4 ¼ 1þ 5

1008
gqþ 1

240
dqþ 1

360
cq:

If ϰ4 ¼ 0 then by substituting

g ¼ � 1008

5q
� 21

25
d � 14

25
c; (25)

we calculate

ϰ5 ¼ � q 13160þ 9dqþ 6cqð Þ
462000

:

Now for ϰ5 ¼ 0, either q ¼ 0 or 13160þ 9dqþ 6cq ¼ 0. If q ¼ 0 then dðzÞ ¼ 0. Also, ϰ3 ¼ 0 gives the
mean value of cðzÞ ¼ 0. From corollary 2.1, the origin is the center. By putting the value of ‘d’ we obtain ϰ6
as:

ϰ6 ¼ � 2694cq� 12123q3 � 7085960

2653560q
:

If ϰ6 ¼ 0, recalling that q 6¼ 0, we take

c ¼ 7085960

2694q
þ 12123

2694
q2: (26)

Using Eq. (26), we calculate ϰ7 as:

ϰ7 ¼ 449

147420
bqþ 2729

463320
q3 þ 105211651

88413039
:

If ϰ7 ¼ 0, substituting the value of ‘b’ in term of ‘q’ we proceed towards ϰ8 as

ϰ8 ¼ � 733717712507810077572q3 � 87991271201849989542520þ 125212920801745293q6

4404674611152546114384q2
:

Now, we cannot proceed further with more calculations. So, concluded that multiplicity is 8, i.e.,
lmaxðC6;1Þ � 8. Using remark 1, it can be concluded that the origin is stable due to its even and negative
behaviour.

3). For the class C5;1, we suppose that g; h ¼ 0 in Eq. (21). So

cðzÞ ¼ aþ bzþ cz2 þ dz3 þ ez4 þ fz5 and dðzÞ ¼ mþ qz:
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Then by using theorem 2.2, we calculate

ϰ2 ¼ mþ q

2
;

ϰ3 ¼ aþ b

2
þ c

3
þ d

4
þ e

5
þ f

6
:

If ϰ2; ϰ3 ¼ 0 then

a ¼ � b

2
� c

3
� d

4
� e

5
� f

6
; (27)

m ¼ � q

2
: (28)

Substituting these Eqs. (27) and (28), we have

cðzÞ ¼ bðz� 1

2
Þ þ cðz2 � 1

3
Þ þ dðz3 � 1

4
Þ þ eðz4 � 1

5
Þ þ f ðz5 � 1

6
Þ;

dðzÞ ¼ qðz� 1

2
Þ: (29)

Also we calculate ϰ4 as:

ϰ4 ¼ 1þ 5

1008
fqþ 1

210
eqþ 1

240
dqþ 1

360
cq:

If ϰ4 ¼ 0 then we put value of ‘e’

e ¼ � 5040

24q
� 21

24
d � 14

24
c� 25

24
f ; (30)

and calculate ϰ5 as:

ϰ5 ¼ � q �5fqþ 15120þ 3dqþ 2cqð Þ
604800

:

If ϰ5 ¼ 0, either q ¼ 0 or

f ¼ 324

q
þ 3

5
d þ 2

5
c: (31)

For q ¼ 0, from (29) dðzÞ ¼ 0. Also ϰ3 ¼ 0 gives that the mean value cðzÞ ¼ 0. Using corollary 2.1,
origin is the center. By using q 6¼ 0 and (31), we have

ϰ6 ¼ � 64350bqþ 37300cqþ 10632dq� 11918700� 39429q3

2882880q
:

Now if we take ϰ6 ¼ 0, then we put

b ¼ 11918700

64350q
� 37300

64350
c� 10632

64350
d þ 39429

64350
q2: (32)
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And we calculate ϰ7 as

ϰ7 ¼ � 827

1829520
cqþ 1060650323

797127581250
dq� 541753

5285280
þ 93081

22022000
q3:

If ϰ7 ¼ 0, by using value of ‘c’ in terms of ‘d’ and ‘q’, we find ϰ8 as;

ϰ8 ¼ �

56105028902377434984806250dqþ 10604160879626306419163625dq4þ
222680648946688729262610989d2q2 þ 14971274761300360631591290625q3þ

383832595451553004634864625q6 � 149276483225872273284531250
10370649116108410151022000000000q2

:

As q 6¼ 0 is considered above, we cannot calculate further. So, it is concluded that lmaxðC5;1Þ � 8. This
ϰ8 is even and its value has negative behavior. By using remark 1, it can be concluded that the origin is stable.

4). Let

c zð Þ ¼ aþ bzþ cz2 þ dz3 þ ez4;

and

dðzÞ ¼ mþ qz:

Utilizing theorem 2.2, we get

ϰ2 ¼ mþ q

2
;

ϰ3 ¼ aþ b

2
þ c

3
þ d

4
þ e

5
:

Thus multiplicity of z ¼ 0 is l ¼ 2 if ϰ2 6¼ 0. And multiplicity l ¼ 3 if ϰ2 ¼ 0 but ϰ3 6¼ 0. If
ϰ2; ϰ3 ¼ 0;then we calculate ϰ4 as:

?$4$ ¼ 1þ 1

210
eqþ 1

240
dqþ 1

360
cq:

If ϰ4 ¼ 0, we substitute

e ¼ � 5040

24q
� 21

24
d � 14

24
: (33)

By using Eq. (33) we compute ϰ5 ¼ � q 15120þ3dqþ2cqð Þ
604800 : If ϰ5 ¼ 0, either q ¼ 0 or

d ¼ � 15120

3q
� 2

3
c: (34)

If q ¼ 0 then dðzÞ ¼ 0. And ϰ2 ¼ 0, gives that mean value of cðzÞ is zero. So by corollary 2.1, origin is

the center. So q 6¼ 0, if Eq. (34) holds then ϰ6 ¼ � q 2cq�9q3�10080ð Þ
1980 .

If ϰ6 ¼ 0 then recalling that q 6¼ 0, we put

c ¼ 5040

q
þ 9

2
q2; (35)
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Moreover, ϰ7 takes form as:

ϰ7 ¼ 1

330
bqþ 8

1365
q3 þ 28

11
:

Now, if ϰ7 ¼ 0; then

b ¼ � 840

q
� 176

91
q2: (36)

Withholding Eq. (36), we have

ϰ8 ¼ 313021800þ 9409q6

8198190q2
:

If ϰ8 ¼ 0, then as q 6¼ 0, so only possible substitution for the value of ‘q’ is q ¼ � 313021800
9409

� �1=6
and

calculate ϰ9 as follows:

ϰ9 ¼ 193005492316097270013660400668166824453730263568721875

50158432950253127263308993705898641
:

This ϰ9 is a non-zero constant number. It is concluded that the class C4;1 has nine periodic solutions, i.e.,
lmaxðC4;1Þ � 9.

The multiplicity of this class is the highest one up to date. The outcome of maximum multiplicity for ϰ9
is odd and the sign assigned with it is positive. Using remark 1, it can be concluded that the origin is unstable
on the right and stable on the left.

3.3 Perturbation Method

After calculating the periodic solutions, we will make a series of perturbations of the coefficients
resulting from the periodic solution to bifurcate out of origin. In Hopf bifurcation, the creation of limit
cycles near a fixed point is described. As the bifurcation parameter approaches some critical value, the
limit cycle approaches the fixed point and the amplitude of the limit cycle approaches zero. The presented
below method is followed by Alwash et al. [8] and Saima et al., please see the example, [3–5].

Theorem 3.6 For the class C4;1; suppose that

cðzÞ ¼ aþ bzþ cz2 þ dz3 þ ez4 and dðzÞ ¼ mþ qz;

where

q ¼ � 313021800

9409

� �1=6

þ e1;

m ¼ � 313021800

9409

� �1=6

� 1

2

� �
e1 þ e7;

b ¼ �ð 840ð Þ
� 313021800

9409

� �1=6 þ e1
� �Þ � ð176

91
Þð � 313021800

9409

� �1=6

þ e1Þ2 þ e2;

c ¼ ð 5040ð Þ
� 313021800

9409

� �1=6 þ e1
Þ þ ð � 313021800

9409

� �1=6

þ e1Þ2 þ e3;
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e ¼ � 3150

� 313021800
9409

� �1=6 þ e1

 !
� 7

8

� �
d � 21

8

� �
� 313021800

9409

� �1=6

þ e1

 !2

� 7

12

� �
e3 þ e4;

d ¼ � 8400

� 313021800
9409

� �1=6 þ e1

 !
� � 313021800

9409

� �1=6

þ e1

 !2

� 2

3

� �
e3 þ e5;

and

a ¼ �bz� cz2 � dz3 � ez4 þ e6:

Then seven real non-trivial periodic solutions exists, if ep is small as compared to ep�1, 8p � 7:

Theorem 3.7 For Eq. (6), with:

cðzÞ ¼ � 80330459

1397630q
þ 37282651

69881500
q2 þ 901656327079

1141514302500
d þ 578

6435
e1 � 1

2
e2 þ 1

24
e3 � 1

5
e4 þ e6þ�

44256805

139763q
� 1343747

279526
q2 � 1546741671872

285378575625
d � 746

1287
e1 þ e2

�
zþ

�
� 4875777

21502q
þ 2513187

268775
q2þ

2513187

268775
d þ e1

�
z2 þ dz3 þ

�
� 3448284

10751q
� 5832699

537550
d � 2513187

268775
q2 � e1 � 25

24
e3 þ e4

�
z4þ

12540843

53755q
þ 5832699

1343875
d þ 5026374

1343875
q2 þ 2

5
e1 þ e3

� �
z5;

and

dðzÞ ¼ � 1

2
qþ e6 þ qz:

If ep ð1 � p � 6Þ, are taken to be non-zero and also e6j j � e5j j �; . . . ;� je1j. Then there exist six
distinct non-trivial real periodic solutions.

Theorem 3.8 For the Eq. (6), consider that

cðzÞ ¼ � 97077325

3009391q
þ 1679

7744
q2 � 1

2
e1 � 1

6
e2 � 1

7
e3 � 1

8
e4 þ e6 þ ð� 112555170

429913q
� 7487

3872
q2 þ e1Þzþ

ð9
2
q2 þ 391440

187q
þ e2Þz2 þ ð� 470400

187q
� 3q2 � 2

3
e2 þ e3Þz3 þ 5280

7q
� 6

7
e3 þ e4Þz7;

dðzÞ ¼ � 1

2
qþ qzþ e5:

If epð1 � p � 6Þ, are taken to be non-zero and also e6j j � e5j j �; . . . ;� je1j. Then, it has six distinct
non-zero, non-trivial real periodic solutions.

Proof The proof of theorems 3.5, 3.6 and 3.7 are similar as in ([3], theorem 4.2). Therefore, it is omitted.

Finally, the concluding remarks of the article are described below.

1480 IASC, 2022, vol.31, no.3



4 Conclusion

In this article, we calculate the possible maximum number of periodic solutions of the quartic differential
equation. Earlier in the literature, there are no formulae available to calculate maximum multiplicity greater
than 8. Therefore, we calculated the formulae u9 and ϰ9 given in Section 2. By using them we can calculate
multiplicity greater than eight. The second task is to check the authenticity and validity of these formulae.
So, by using them, we succeeded in calculating the maximum number of periodic solutions 8 for classes
C4,4; C5,5; C6,6; C7,1; C6,1; C5,1; where we consider homogenous trigonometric and algebraic coefficients
for the sake of variety regarding different polynomials. The most challenging task is to get the
multiplicity of any class greater than eight, which assures us that the newly developed formula ϰ9 works
as desired. We get multiplicity nine for the polynomial class C4,1. In this way, we develop new formulae
and validate them through the use of previous literature. As future work, one can develop formula ϰ10 for
calculating multiplicity greater than nine concerning quartic equation.
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