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Abstract: Automated diagnosis based on medical images is a very promising
trend in modern healthcare services. For the task of automated diagnosis, there
should be flexibility to deal with an enormous amount of data represented in
the form of medical images. In addition, efficient algorithms that could be adapted
according to the nature of images should be used. The importance of automated
medical diagnosis has been maximized with the evolution of COVID-19 pan-
demic. COVID-19 first appeared in China, Wuhan, and then it has exploded in
the whole world with a very bad impact on our daily life. The third wave of
COVID-19 in the third world is really a disaster in current days, especially with
the emergence of the delta variant of COVID-19 that is widespread. Required
inspections should be carried out to monitor the COVID-19 spread in daily life
and allow primary diagnosis of suspected cases, and long-term clinical laboratory
monitoring. Healthcare professionals or radiologists can exploit AI (Artificial
Intelligence) tools to quickly and reliably identify the cases of COVID-19. This
paper introduces a DCNN (Deep Convolutional Neural Network) framework
for chest X-ray and CT image classification based on TL (Transfer Learning).
The objective is to perform multi-class and binary classification of the images
in order to determine pneumonia and COVID-19 case. The TL is feasible, when
using a small dataset by transferring knowledge from natural image classification
to medical image classification. Two types of TL are used. The first type is fine-
tuning of the DenseNet121, Densenet169, DenseNet201, ResNet50, ResNet152,
VGG16, and VGG19 models. The second type is deep tuning of the LeNet-5,
AlexNet, Inception naïve v1, and VGG16 models. Extensive tests have been car-
ried out on datasets of chest X-ray and CT images with different training/testing
ratios of 80%:20%, 70%:30%, and 60%:40%. Experimental results on 9,270 chest
X-ray ray and 2,762 chest CT images acquired from different institutions show
that the TL is effective with an average accuracy of 98.49%.
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1 Introduction

Apparently, at the end of 2019, the world witnessed an outbreak of COVID-19 (Coronavirus). It can be
easily transferred from person to person in the world leading to a very harmful effect on the whole world.
Statistics revealed by the WHO (World Health Organization) ensure that quarantine action is badly
needed in most countries. In addition, there is a need for efficient tools that can be used for the automated
diagnosis of COVID-19 to take fast decisions about suspected cases. Identifying clinical symptoms of
COVID-19 from CT and X-ray images is essential to detect the really-infected cases. Medical symptoms
may include fever, coughing, and shortness of breath [1]. Good detection results should be obtained from
the CT and X-ray images for the infected COVID-19 cases. The virus RNA sequence detection is also a
diagnostic tool for COVID-19. Nevertheless, this approach is time-consuming, and may be inappropriate
with the wide spread of COVID-19. In addition, its exact rate of diagnosis ranges from 30% to 50%.
Different diagnosis tools can be used in order to obtain accurate decisions [2]. In most third-world
countries, due to the lack of human resources and funding for healthcare services, the treatment of
COVID-19 cases is inefficient. Hence, automated medical diagnosis based on AI tools is recommended to
solve the healthcare system problems due to the high accuracy of automated diagnosis, ease of
implementation, and low cost.

The need to interpret radiographic images has inspired a series of deep learning AI systems [3], which
have shown promising accuracy results in detecting COVID-19 cases from radiographic imagery [4,5]. Most
of the AI systems that have come to practical applications on chest radiographic images were designed to
classify pneumonia and normal cases. Hence, there is a need for more generalized classification systems
that can also identify COVID-19 cases. The reason is that the X-ray and CT patterns corresponding to
COVID-19 cases differ from those of normal and pneumonia cases [2].

With the number of infected COVID-19 patients increasing, radiologists find it increasingly difficult to
finish the diagnosis process, promptly [6]. They find it necessary to urge the research community to develop
highly-efficient software tools that can work on chest images of both X-ray and CT types in order to come to
fast diagnosis decisions that may be suitable to the explosive scenario of COVID-19 spread. Recently, much
research has been introduced for medical image analysis based on DL (Deep Learning) tools. In this context,
DL algorithms [7] have performed better in pneumonia detection compared to traditional machine learning
algorithms that depend on feature extraction and neural classification. The CNNs (Convolutional Neural
Networks) are good DL candidates to work on chest X-ray and CT images. In such CNNs, the feature
extraction is an embedded step that is performed through the use of convolutional masks. In addition,
feature reduction is performed through appropriate pooling scenarios. Finally, the classification task is
performed through a fully-connected neural network.

The DL models that can be developed for COVID-19 detection and for the classification of COVID-19,
pneumonia, and normal cases need to be embedded in commercial software as soon as possible. They need to
be used by the medical community, nowadays. That is why several DL models and algorithms need to be
introduced and compared for the selection of the best of them in order to build a CAD (Computer-Aided
Diagnosis) system for different types of viral infections including COVID-19 infection. Building such
models from scratch may be a tedious task now requiring several design strategies in addition to large
datasets of different types and different optimization tools. A good alternative to the design from scratch
is the utilization of TL.

Deep TL is an efficient machine learning strategy that is used to speed up training and get better
performance. In TL, a pre-trained model for a certain application is developed to be appropriate for
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another application. Some researchers have adopted deep TL to deal with the COVID-19 diagnosis problem
to save the consumed time in designing a model from scratch and training it due to the tiny available datasets
of chest X-ray and CT images [8–10]. Any TL model comprises three stages. The appropriate pre-trained
model with large data is selected in the first stage. In the second stage, the output layers are modified to
fit the new task. Finally, the TL model is adapted and tuned during training until it accomplishes the
highest accuracy for the task of interest.

This research introduces different scenarios of TL models based on fine-tuning and deep-tuning
processes. The fine-tuning process aims to train some layers by changing the learning parameters to
achieve a high classification accuracy with networks such as DenseNet121, Densenet169, DenseNet201,
ResNet50, ResNet152, VGG16, and VGG19. The deep-tuning process is presented to retrain all layers in
the employed TL models to improve the classification accuracy using networks such as LeNet-5,
AlexNet, Inception naïve v1, and VGG16. Two different datasets are examined in this work for
COVID-19 diagnosis with different training/testing ratios of 80%:20%, 70%:30%, and 60%:40%. The
obtained results demonstrate that the suggested CNN models achieve an average accuracy of 98.49% for
multi-class classification, and 97.64% for binary classification to detect COVID-19. We can summarize
the contributions of this paper is the following points:

� Different full-trained and pre-trained CNN models are investigated for the detection of COVID-19.

� These models are tested on two different datasets of X-ray and CT images.

� Extensive comparisons are presented between the different models for COVID-19 detection with
different training/testing ratios in order to select the best candidates to be involved in CAD
diagnosis systems.

The rest of this research work is coordinated as follows. The recent related studies are discussed in
Section 2. The suggested classification framework is presented in Section 3. Simulation results and a
comparison are given in Section 4. The concluding remarks are summarized in Section 5.

2 Related Work

In [8], the authors proposed a model for the classification of chest CT images in order to detect
COVID-19 cases. In this model, TL is utilized based on a pre-trained DenseNet201 architecture for deep
feature extraction. Three activation functions (ReLU, PReLU, and TanhReLU) are adopted in this
structure. In addition, an ELM (Extreme Learning Machine) classifier is utilized for performance
evaluation. Finally, the decision is taken with a the majority voting algorithm that is applied on the
generated results from the three activation functions. This model achieved an accuracy of 98.36%.

In [9], a model for automated diagnosis of COVID-19 from chest X-ray images was introduced. In this
model, deep TL is exploited to enhance the detection performance compared to that obtained from the state-
of-the-art models. Unfortunately, this model has been investigated on a small dataset of images. In addition,
the authors of [9] presented a modified ResNet18 model for the classification of normal, pneumonia, and
COVID-19 cases. With this modification, an accuracy level of 96.73% has been achieved. This level is
better than those of the traditional ResNet18 and ResNet50 models.

In [10], the authors investigated the utilization of eight pre-trained models to classify chest X-ray images
into healthy, bacterial, viral, COVID-19, and SARS classes. These models have been tested on the ImageNet
dataset. Simulation results prove that DenseNet121 achieves the best accuracy, F1-score, recall, and
precision levels. In [11], the authors introduced a DL model from scratch called COVID-Net for the
classification of pneumonia and COVID-19 cases. It achieved an accuracy of 92.43%.

For DL-based COVID-19 detection from X-ray images, the authors of [12] developed a COVIDX-Net
platform comprising seven CNN frameworks. In [13], the authors used an SVM (Support Vector Machine)
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and various CNN models for X-ray image classification. The best accuracy has been achieved with the
ResNet50 model using an SVM classifier. An efficient DL classification model for binary and ternary
classification scenarios was introduced in [14]. This model achieved accuracy levels of 98.75% for binary
classification and 93% for ternary classification. The authors of [15] achieved an accuracy level of 98%
for the classification of chest X-ray images with the ResNet50 model.

In [16], the authors presented an automatic COVID-19 detection model to speed up the interpretation
process of lung CT images in order to allow fast and accurate diagnosis of COVID-19 cases. This model
allows fusion of the features of CT scans with time information about these scans to follow up the patient
case. The decision-tree method has been used for binary classification of the fused data. The LinkNet
network has been utilized with a lesion segmentation network in order to obtain a high classification
accuracy. The obtained accuracy, precision, recall, and F1-score results of this model were 94.4%, 96.7%,
95.2%, and 96.0%, respectively.

The authors of [17] studied the classification of CT scans based on TL using five pre-trained networks:
DenseNet, Inception, MobileNet, ResNet50, and VGG16. The TL was adopted in these networks to enhance
the performance as the authors worked on small datasets in order to eliminate the network training from
scratch and avoid the large complexity of training. The feature extraction and classification are performed
using the embedded CNN in each model to determine the infected and non-infected cases. The simulation
experiments achieved an accuracy of 94%, a sensitivity of 96%, and a specificity of 92%.

In [18], the authors introduced a framework to classify X-ray images based on the pre-trained
GoogLeNet model. The traditional GoogLeNet is adapted by modifying the final network layers and
adopting 20-fold cross-validation to reduce the over-fitting problem. The hyperparameters of this
framework are optimized using a multi-objective genetic algorithm to obtain a good performance. The
experiments proved outstanding results that are suitable for real-time COVID-19 diagnosis.

An efficient COVID-19 detection model was presented in [19] with an FKNN (Fuzzy K-Nearest
Neighbor) classifier and HHO (Harris Hawks Optimization). This model determines the COVID-
19 severity degree as it performs the feature extraction operation and finds the best parameters,
simultaneously. In [20], the authors introduced the DeTraC network to diagnose COVID-19 from chest
X-ray images. This model adapts class boundaries to accommodate for any irregularities in X-ray images.
It achieved an accuracy of 93.1% with a sensitivity of 100%.

In [21], the authors presented a hybrid framework for COVID-19 diagnosis from X-ray images to allow
treatment in real clinical centers. Firstly, the CLAHE (Contrast-Limited Adaptive Histogram Equalization)
CLAHE and Butterworth bandpass filter are utilized to improve the image contrast and remove noise.
Then, the classification is performed on fused features extracted with two pre-trained models:
ResNet34 and HRNet. Such framework achieves an outstanding performance with an accuracy of
99.99%, a sensitivity of 99.98%, a specificity of 100%, and a precision of 100%. In [22], the authors
utilized CLAHE and Butterworth bandpass filter for image enhancement, while merging DBN (Deep
Belief Network) and CDBN (Convolutional Deep Belief Network) models in a unified framework for
binary X-ray image classification. The experimental results revealed an accuracy of 99.93% and a
sensitivity of 99.90%.

3 Proposed Automated COVID-19 and Pneumonia Diagnosis Framework

In this section, an automated diagnosis framework is suggested based on DL and TL algorithms to
distinguish non-COVID-19 cases from COVID-19 cases. As demonstrated in Fig. 1, the framework
comprises three stages: image acquisition, pre-processing, and classification. The image acquisition stage
aims to collect images from various sources. The second pre-processing stage reads the dataset and
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resizes it using a selected interpolation technique, because the images have different sources and sizes. The
input image size is modified to 224 × 224 × 3 to be suitable for the input size of the employed TL models. The
third stage is employed for classification using TL models.

Recently, DL techniques have exhibited tremendous capabilities in computer vision and image
processing applications. They have been used on various medical image modalities with superior
efficiency of classification, identification, and segmentation. The CNN is motivated by the operation
principles of the visual cortex of the human brain. The availability of large datasets leads to the success
of CNN operations. Unfortunately, to guarantee high classification results with CNNs, large
computational resources are required for the training process. In addition, deep CNNs with a large
number of parameters need to work on massive datasets to prevent over-fitting during the training
process. Due to the unavailability of large-enough datasets for COVID-19 cases, our objective is to use
TL scenarios. The rationale behind the utilization of TL is to transfer knowledge from generic image
classification to medical image classification. In addition, the computational cost is reduced and the over-
fitting problem is eliminated, while achieving high accuracy and stability.

There are two adopted scenarios in this paper. The first one is fine-tuning of the upper layers of the
DenseNet121, Densenet169, DenseNet201, ResNet50, ResNet152, VGG16, and VGG19 networks.
DenseNet versions are distinguished with their high ability to deal with X-ray and CT scans and
differentiate between various diseases that affect the lung. ResNet is a deep network that depends on skip
connection, which makes it suitable to work on all image features in order to achieve the highest possible
efficiency. The VGG is used, because it has several parameters, which can control its behavior. The
second scenario is the deep tuning of all layers with the last layer changed to be suitable for the number
of categories of LeNet-5, AlexNet, VGG16, and Inception naïve v1. Inception is used to have a small
number of parameters, while achieving a relatively high efficiency.

4 Experimental Results and Comparison

Our contributions in this paper for automatic binary and multi-class classification are implemented on
chest CT and X-ray datasets [23–26]. The subsequent sub-sections reveal in detail the main phases of the
proposed work.

4.1 Dataset

We worked on the subsequent image datasets:

1. COVID-19 CT dataset on GitHub [23]. This dataset includes 349 COVID-19 and 397 non-
COVID-19 images.

Figure 1: The proposed TL-based COVID-19 diagnosis framework
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2. COVID-19 collection on GitHub [24]. This is a growing array of globally identified CT and CXR
(chest X-ray) scans for COVID-19 patients.

3. Chest X-ray images for pneumonia known as being a challenge detection dataset [25]. This dataset is
present on Kaggle. It is divided into three different folders, and it includes subfolders for every
normal/pneumonia group of images. It consists of 5,863 JPEG X-ray images and two (Normal/
Pneumonia) groups.

4. Augmented and extensive COVID-19 chest CT and X-ray image dataset [26]. This data collection is
available on Mendley. It consists of both X-ray and CT images for non-COVID-19 and COVID-
19 instances.

4.2 Data Pre-Processing

All input images are pre-processed to have the same size. They are resized to the size of 224 × 224 × 3, to
be appropriate for the TL models. The INTER_AREA method from the OpenCV library is used in oeder to
resample the images using a pixel area relation. This library gives moiré-free results and eliminates the
artifacts resulting from image zooming with the INTER_NEAREST method. Therefore, local information
can be improved. To prevent over-fitting, because the number of CT scans is small, we have employed
data processing strategies like arbitrary transformations. Such transformations accommodate for the range
of rotation, the range of change in width, and the range of brightness. The transformation parameters are
generated randomly for each training sample, and the augmentation is applied identically for every slice
in the tested digital image. Additional aspects about the utilized medical images are given in Tab. 1.

For data splitting, we adopted different ratios for training and testing (80%:20%, 70%:30%, and
60%:40%), to ensure that the models work well in different scenarios. We guarantee that the medical
images selected for cross-validation are not utilized throughout the training step to execute multi-class
and binary classification, effectively. Furthermore, it is noticed that the utilized X-ray dataset is
imbalanced. Indeed, 46.1% of the images represent the pneumonia class, 41.4% of the images represent
the normal class, and 12.5% of the images represent the COVID-19 class. The dataset imbalance problem
causes over-fitting. To solve this problem, we used a dropout strategy with all employed TL models. On
the other hand, the utilized CT dataset is balanced. Samples for the utilized medical images are
demonstrated in Fig. 2.

Table 1: Data augmentation processes

Argument Parameter value Description

Rotation range 4 Degree range of the random rotations

Width shift range 2.0 Shifted image by factor

Feature-wise center True Boolean. Set input mean to 0 over the dataset, feature-wise.

Sample-wise center True Boolean. Set each sample mean to 0.

Brightness range (0.5, 1.5) Range for picking a brightness shift value.

4.3 Training/Classification Dataset

After using data augmentation, splitting, and pre-processing procedures, the size of the training dataset is
enlarged to accommodate for the operation of TL models to allow proper feature extraction. To construct the
feature vector, the extracted attributes of each suggested TL model are floored, collectively. To categorize
every medical image into a related group, the produced feature vector is forwarded to a multi-layer
perceptron. Finally, the efficiency of the suggested model is assessed on test images. We replicate every
experiment six times and estimate the average outcomes.
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4.4 Implementation Setup

We have performed binary and multi-class classification on chest CT and X-ray datasets. The utilized
medical images are resized to 224 × 224 to be appropriate for the classification models. Different batch
sizes are considered with different numbers of epochs. The validation and training processes are
performed with different ratios. The Adam's optimizer with β2 = 0.999, and β1 = 0.9 is utilized for the
optimization purpose within the classification models. The learning rate is firstly set to 0.0001 and
reduced to 0.000001.

Furthermore, we have used a dropout strategy to decrease the probability of over-fitting of the TL
models. The realization of the suggested CNN models is accomplished using a Kaggle platform that
provides notebook editors with free access to NVIDIA TESLA P100 GPUs and 13 GB RAM operating
on professional Microsoft Windows 10 (64-bit). For simulation tests, Python 3.7 is utilized, and
TensorFlow and Keras are employed as DL backend.

4.5 Evaluation Metrics

After obtaining the proper features, the final stage is to categorize the obtained data [27]. Hence, we
measure the efficiency of the classification stage. Throughout our assessment, we use the accuracy, recall,
F1-score, and precision shown in Eqs. (1)–(4) [27]. In addition, the AUC (Area Under Curve) of the
ROC (Receiver Operating Characteristic) curve [28], cross-entropy loss, aka logistic loss, and log loss
[29] given in Eq. (5), are used to evaluate the proposed CNN models.

Accuracy ¼ TP þ TN

TN þ TP þ FN þ FP
(1)

(a) (b)

(d) (e)

(c)

Figure 2: Samples of chest X-ray and CT scans (a) Normal X-ray. (b) Pneumonia X-ray. (c) COVID-19
X-ray. (d) COVID-19 CT (e) Non-COVID-19 CT
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Precision ¼ TP

TP þ FP
(2)

Recall ¼ TP

TP þ FN
(3)

F1� score ¼ 2� precision þ recall

precision � recall
(4)

log loss ¼ � logPðyT=yPÞ ¼ �yT logðyPÞ þ ð1� yT Þ logð1� yPÞ (5)

where TN is True Negative, FN is False Negative, TP is True Positive and FP is False Positive. yT represents
ground-truth (correct) labels, and yP represents predicted labels.

4.6 Results and Discussions

The binary and multi-class classification results are presented in this section for chest CT and X-ray
images for the full-training of all layers of the LeNet-5, AlexNet, VGG16, and Inception naïve v1 and the
fine-tuning of the top layers of the DenseNet121, Densenet169, DenseNet201, ResNet50, ResNet152,
VGG16 and VGG19. Additionally, to verify the robustness and performance of every utilized CNN
model, numerous tests have been performed on the chest CT and X-ray datasets.

The training curve is estimated on the training dataset. It indicates how properly the employed CNN
model is learned, while the test curve or validation curve is estimated on a validation hold-out dataset,
which shows how properly the employed framework is over-simplified. The loss of validation and
training is characterized as the number of mis-classifications resulting from every instance of training or
validation. To sum up, the best CNN model is the one that performs well with neither over-fitting nor
under-fitting. Besides, the confusion matrix demonstrates a comprehensive interpretation of what happens
after grading with images [11].

When it is needed to visualize or check the multi-class or binary classification performance, the AUC-
ROC curve [28] is used. It is one of the essential assessment metrics for examining the performance of any
classification model. The ROC curve is a likelihood curve, and the AUC signifies the measure or degree of
separability. It reveals how much the CNNmodel can discriminate between different classes. The ROC curve
is mapped with the FPR against the TPR, where FPR is on the x-axis and TPR is on the y-axis. The FPR is the
False Positive Rate and the TPR is the True Positive Rate. Precision-Recall curve [28] is a useful predictive
indicator of performance, while the groups are incredibly imbalanced. Precision is an assessment of the
importance of the results in information retrieval, while recall is an assessment of how often genuinely
valid data are retrieved. Therefore, the curve of precision-recall indicates the compromise between the
accuracy of various thresholds and their recall. A large area under the curve means high precision and
high recall, where high precision is related to a low FPR, and high recall is associated with a high FPR.

For simplicity, we will present the best obtained curves for the CNN models. For the X-ray dataset, the
ResNet152 model achieves a superior performance compared to those of other examined models. According
to Tab. 2, the ResNet152 for the X-ray dataset has high stability and high accuracy for different training and
testing ratios. For the 80:20 ratio, the training accuracy equals 98.95%, the testing accuracy equals 98.11%,
the training loss equals 0.0360, and the testing loss equals 0.0573 for 24 epochs. For the confusion matrix, the
true positives equal 230 for COVID-19 case, 750 for normal case, and 840 for pneumonia case. The ROC
curve indicates that the TPR and FPR nearly equal 98%. Precision-recall curve has a high AUC with high
precision and high recall. The computational time of the training process is 38 sec for every epoch.
Hence, the total time of all epochs is 15.5 min.
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For simplicity, we will present the best obtained curves for the tested CNN models. For the CT dataset,
the DenseNet201 model achieves superior results compared to those of other examined models. According to
Tab. 3, the DenseNet201 on the CT dataset has high stability and high accuracy for different training and
testing ratios. For the 80:20 ratio, the training accuracy equals 99.00%, the testing accuracy equals
96.61%, the training loss equals 0. 0272, and the testing loss equals 0.0719 for 49 epochs. For the
confusion matrix, the true positives equal 260 for the COVID-19 case and 280 for the normal case. The
ROC curve indicates that TPR and FPR nearly equal 97%. Precision-recall curve has high AUC with
high precision and high recall. The computation time of the training process is 10 sec for every epoch.
So, the total time of all epochs is 8.2 min.

Table 2: Simulation results of the pre-trained ResNet152 CNN model on X-ray dataset

04:0603:0702:08tseT:niarT
Accuracy
Curve
Accuracy
on the y-axis
and No. of
Epochs
on the x-axis  

Loss Curve
loss on y-axis
and No. of
Epochs on
x-axis 

Confusion 
Matrix 

ROC 
Curve 

Precision-
Recall 
Curve 
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4.7 Comparison Between TL Models on X-ray and CT Datasets

The comparison outcomes in terms of F1-score, loss, log loss, recall, accuracy, and precision of various
CNN models of multi-class and binary classification scenarios on the X-ray and CT datasets at different
training/testing ratios (80:20, 70:30, 60:40) are presented in Tabs. 4 and 5. It is observed from Tabs.
4 and 5 that the fine-tuned DensNet121, DensNet169, DensNet201, ResNet50, ResNet152, and
VGG19 TL models achieve better outcomes in terms of the validation and training accuracies on the CT
and X-ray datasets. They outperform other deep-tuning LeNet-5, AlexNet, VGG16, Inception naïve v1,
ResNet50, and VGG16 TL models.

Table 3: Simulation results of the DenseNet201 CNN model for CT dataset (pre-training)

04:0603:0702:08tseT:niarT

Accuracy
Curve

Accuracy on
the y-axis
and No. of
Epochs on
the x-axis  

Loss Curve
loss in y-axis
and No. of
Epochs on

x-axis  

Confusion 
Matrix 

ROC Curve 

Precision-
Recall Curve 
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Table 4: Comparison between the CNN models on X-ray dataset

Model name Resolution Train:
Test

Accuracy
(%)

Loss Precision
(%)

Recall
(%)

F1-score
(%)

Log
loss

LeNet-5 (deep tuning) (224,224,1) 80:20 93.47 0.1763 93 92 93 2.2542

70:30 92.27 0.2199 92 91 92 2.6402

60:40 91.18 0.2554 92 90 91 3.0458

AlexNet (deep tuning) (224,224,1) 80:20 95.63 0.1305 96 96 96 1.5089

70:30 93.28 0.1785 93 93 93 2.3224

60:40 93.04 0.1972 93 93 93 2.4032

VGG16 (deep tuning) (224,224,1) 80:20 95.47 0.1304 96 95 95 1.5649

70:30 95.29 0.1445 96 96 96 1.6269

60:40 94.55 0.1612 95 94 95 1.8816

Inception naïve v1
(deep tuning)

(224,224,1) 80:20 94.66 0.1478 94 93 94 1.8443

70:30 94.25 0.1559 94 93 93 1.9871

60:40 93.12 0.1868 93 92 93 2.3752

DenseNet121 (fine-
tuned)

(224,224,3) 80:20 97.85 0.0732 98 98 98 0.7444

70:30 96.73 0.1068 97 97 97 1.1298

60:40 96.71 0.1093 97 97 97 1.1358

DenseNet169 (fine-
tuned)

(224,224,3) 80:20 97.79 0.0673 98 98 98 0.7629

70:30 96.87 0.1041 97 97 97 1.0801

60:40 96.12 0.1238 97 97 97 1.3406

DenseNet201 (fine-
tuned)

(224,224,3) 80:20 97.04 0.1064 97 97 97 1.0235

70:30 96.91 0.1128 97 97 97 1.0677

60:40 96.17 0.1174 96 97 97 1.3219

ResNet50 (fine-tuned) (224,224,3) 80:20 97.74 0.0966 98 98 98 0.7950

70:30 97.69 0.0815 98 98 98 0.7946

60:40 97.73 0.0788 98 98 98 0.7820

ResNet152 (fine-
tuned)

(224,224,3) 80:20 98.11 0.0801 98 98 98 0.6513

70:30 97.38 0.0954 98 98 98 0.9063

60:40 97.23 0.1243 98 98 98 0.9496

VGG16 (fine-tuned) (224,224,3) 80:20 95.74 0.1275 96 97 96 1.4701

70:30 96.95 0.0981 97 97 97 1.0553

60:40 95.96 0.1639 96 97 96 1.3965

VGG19 (fine-tuned) (224,224,3) 80:20 96.39 0.1250 97 97 97 1.2468

70:30 96.08 0.1379 96 97 96 1.3533

60:40 96.55 0.1136 97 97 97 1.1916
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Table 5: Comparison between the CNN models on CT dataset

Model name Resolution Train:
Test

Accuracy
(%)

Loss Precision
(%)

Recall
(%)

F1-
score
(%)

Log
loss

LeNet-5 (deep tuning) (224,224,1) 80:20 90.77 0.2329 91 91 91 3.1853

70:30 91.16 0.2447 91 91 92 2.9164

60:40 87.51 0.3512 87 87 87 4.3134

AlexNet (deep tuning) (224,224,1) 80:20 95.12 0.1586 95 95 95 1.6863

70:30 92.28 0.3168 92 92 92 2.6664

60:40 90.32 0.2862 90 90 90 3.3445

VGG16 (deep tuning) (224,224,1) 80:20 95.66 0.1906 96 96 96 1.4989

70:30 93.12 0.2369 93 93 93 2.3748

60:40 93.12 0.2840 93 93 93 2.3755

Inception naïve v1
(deep tuning)

(224,224,1) 80:20 84.99 0.3429 85 85 85 5.1839

70:30 85.16 0.3496 85 85 85 5.1246

60:40 83.08 0.3884 83 83 83 5.8450

DenseNet121 (fine-
tuned)

(224,224,3) 80:20 96.38 0.1143 96 96 96 1.2491

70:30 93.74 0.1642 94 94 94 2.1639

60:40 89.05 0.2436 89 89 89 3.7820

DenseNet169 (fine-
tuned)

(224,224,3) 80:20 96.56 0.1079 97 97 97 1.1867

70:30 95.54 0.1622 96 96 96 1.5397

60:40 88.42 0.3707 88 88 88 4.0008

DenseNet201 (fine-
tuned)

(224,224,3) 80:20 97.29 0.0901 97 97 97 0.9369

70:30 95.30 0.1343 95 95 95 1.6229

60:40 91.86 0.1985 92 92 92 2.81311

ResNet50 (fine-tuned) (224,224,3) 80:20 94.58 0.1601 95 95 95 1.8737

70:30 94.58 0.1361 95 95 95 1.8726

60:40 94.21 0.1404 94 94 94 2.0004

ResNet152 (fine-
tuned)

(224,224,3) 80:20 96.56 0.1166 97 97 97 1.1866

70:30 94.22 0.1527 94 94 94 1.9974

60:40 94.48 0.1578 94 95 94 1.9066

VGG16 (fine-tuned) (224,224,3) 80:20 94.76 0.2499 95 95 95 1.8113

70:30 93.62 0.2457 94 94 94 2.2055

60:40 90.59 0.2897 91 90 91 3.2507

VGG19 (fine-tuned) (224,224,3) 80:20 96.75 0.1009 97 97 97 1.1242

70:30 96.39 0.1029 96 96 96 1.2484

60:40 93.03 0.1958 93 93 93 2.4068
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Fig. 3 presents a summary of the accuracy results of the TL models on the X-ray dataset compared to the
results of the TL models on the CT dataset. It is noticed that the TL models in the case of X-ray dataset reveal
superior classification accuracies compared to those obtained on CT images by obtaining accuracy levels
greater than 98% on X-ray images and accuracy levels greater than 96% on CT images.

5 Conclusions and Future Work

This paper presented different CNN models for the binary (COVID-19, Normal) and multi-class
(COVID-19, Normal, and Pneumonia) classification of COVID-19 cases. These models have been
investigated on different CT and X-ray datasets with TL concepts considering deep-tuning and fine-tuning
scenarios. A comprehensive comparison has been presented between TL models including LeNet-5,
AlexNet, VGG16, and Inception naïve v1 as deep-tuning models, and the DenseNet121, DenseNet169,
DenseNet201, ResNet50, ResNet152, VGG16, and VGG19 as fine-tuning models. Simulation
experiments have been performed on chest CT and X-ray datasets containing 12,032 images
(2,466 COVID-19, 4,273 pneumonia, and 5,293 normal). All models have been assessed with numerous
classification assessment metrics. The ResNet152 and DenseNet201 achieved superior results compared
to other TL models for the examined X-ray and CT images. Future research work will be directed to a
complete viral infection diagnosis system through deep-learning. Moreover, the classification performance
can be improved using more datasets, more advanced techniques for extracting DL features, such as
VDSR (Very-Deep Super-Resolution) and other optimized generative models for single-image super-
resolution.
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Figure 3: Accuracy of all tested models on X-ray and CT datasets. DT means deep-tuning and FT means
fine-tuning
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