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Abstract: Modern healthcare systems have become smart by synergizing the
potentials of wireless sensors, the medical Internet of things, and big data science
to provide better patient care while decreasing medical expenses. Large healthcare
organizations generate and accumulate an incredible volume of data continuously.
The already daunting volume of medical information has a massive amount of
diagnostic features and logged details of patients for certain diseases such as dia-
betes. Diabetes mellitus has emerged as along-haul fatal disease across the globe
and particularly in developing countries. Exact and early diagnosis of diabetes
from big medical data is vital for the deterrence of disease and the selection of
proper therapy. Traditional machine learning-based diagnosis systems have been
initially established as offline (non-incremental) approaches that are trained with a
pre-defined database before they can be applied to handle prediction problems.
The major objective of the proposed work is to predict and classify diabetes mel-
litus by implementing a Hybrid Online Model for Early Detection of diabetes dis-
ease (HOMED) using machine learning algorithms. Our proposed online
(incremental) diabetes diagnosis system exploits (i) an Adaptive Principal Com-
ponent Analysis (APCA) technique for missing value imputation, data clustering,
and feature selection; and (ii) an enhanced incremental support vector machine
(ISVM) for classification. The efficiency of HOMED is estimated on different
performance metrics such as accuracy, precision, specificity, sensitivity, positive
predictive value, and negative predictive value. Experimental results on Pima
Indian diabetes dataset (768 samples: 500 non diabetic and 268 diabetic patients)
reveal that HOMED considerably increases the classification accuracy and
decreases computational complexity with respect to the offline models. The pro-
posed system can assist healthcare professionals as a decision support system.

Keywords: Adaptive principal component analysis; clustering; diabetes; missing
value imputation; support vector machine

1 Introduction

Diabetes is one of the most common chronic endocrine sickness or set of metabolic disorders where
people suffer from high blood sugar (glucose) in their body. The pathologic sources of diabetes are the
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failure of the pancreas to secrete adequate insulin and the body’s cells do not react well to insulin.
Continuously, there is substantial growth in the number of persons suffering from diabetes in several
healthcare organizations. It has reached the dubious distinction of becoming the 5th leading cause of
disease-related death [1]. Besides contributing to cardiovascular diseases, diabetes also upturns the risks
of increasing blindness, blood vessel damage, nerve damage, and kidney disease. Of late, research
revealed that around 552 million individuals are estimated to get affected owing to diabetes mellitus by
2030 [2]. As stated by the International Diabetes Federation (IDF), this number is anticipated to the
extent of 628 million by 2045 and is claimed to cause one death every 6 s due to diabetes related issues
[3,4]. Furthermore, 46.5% of those with diabetes have not been diagnosed [5]. The only way for the
diabetic patient to live with this disease is to maintain the blood glucose as normal as possible deprived
of severe low or high levels, and this is realized when the patient uses an appropriate treatment which
may comprise consuming oral diabetes drugs or using some form of insulin, exercising, and nourishment
[6]. Moreover, treating diabetes mellitus is also a challenging, costly, and complex endeavor for
healthcare professionals. There is several significant information to log about the diseases and patients
that helps the physician in making an optimal decision to enhance patient life expectancy. This brings the
traditional analysis methods to a halt or depreciates the learning process as the learning algorithm
becomes prone to over-fitting owing to the massive redundant and irrelevant features in a high-
dimensional dataset.

As such diabetes has become a significant issue in the healthcare industry to find solutions to combat the
disease, which include using cutting-edge techniques and tools in information and communication
technologies for the early diagnosis of diabetes in order to reduce the human fatal rate. One of the widely
recognized and influential approaches in any disease diagnosis is the application of machine learning
techniques. Machine learning deals with the development of technologies that enable machines to learn.
In this usage, “learning” denotes developing a data model, often with the objective of making predictions
about new data that are assumed to come from the similar population that produced the data employed
for the model. The challenge is to develop systems that can consider a set of patterns (i.e., the available
information) and inevitably make new inferences from the early statistics, with or without human
involvement. In this work, we propose a hybrid online model for early detection of diabetes disease using
an adaptive principal component analysis technique for missing value imputation, data clustering, feature
selection, and an incremental support vector machine algorithm for classification.

The primary challenge in mining clinical datasets for extracting hidden knowledge is handling missing
data. One way of dealing with missing values is just neglecting that portion of the data from the further study
[7]. However, eliminating the data variable with missing value is the bad practice for predicting disease [8].
Removing rows of data due to the deficiency of a few variables causes a loss of significant information
observed that would have been useful for analyses. This could cause unfair evaluations. Missing value
can also be predicted from medical records by means of Natural Language Processing (NLP) and rule-
based algorithms [9]. On the other hand, trying to calculate missing data by a close estimation according
to the data context is known as data imputation.

Several authors tried to develop methods for filling in missing data components. An example includes
‘mean value imputation’ [10,11], carrying forward the last observation, and probability-based techniques
such as multiple imputations (MI) and hot-deck imputation. However, there is an opportunity that these
approaches may result in biased results and therefore they are considered suboptimal [12]. Additionally,
these methods do not directly utilize information gained from the perceived values. Classification of the
disease helps the clinicians in predicting the risk elements that cause diabetes, taking preventive actions,
and efficient therapy at an early stage. Accessibility of huge categorized clinical data associated with
diabetes is an advantage for scientists to combat diabetes. But, using a conventional approach to estimate
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and process huge data will initiate complications, since most of the data have a higher degree of complexity
and uncertainty [13,14].

The clustering problem has been addressed in numerous disease diagnosis systems [15,16]. This reveals
its extensive application and effectiveness as one of the phases in investigative medical data analysis.
Clustering is the common technique in machine learning approaches that cluster data based on likelihood
metric. The proposed APCA uses the Gaussian Mixture Model (GMM) to perform clustering. In this
model-based approach, the expectation-maximization (EM) algorithm is employed to calculate the model
parameters.

Feature selection is very decisive for enhancing the enactment of the classification process, particularly
in the case of high-dimensional data classification [17]. It is an important preprocessing technique to
eliminate redundant and inappropriate features. In this work, a PCA-based dimensionality reduction
method is selected to transform the original set of features, thus solving the correlation problem, which
makes it problematic for the classification method to obtain associations between the data. Our proposed
APCA aids to filter out inappropriate features, thus decreasing the training time, cost, and also improve
the performance of the model [18].

From the machine learning perception, classification is the problem of categorizing a group of elements
into different classes, according to the training result of a subset of observations whose fitting class is
identified [19,20]. Several researchers in the healthcare sector have intensified efforts to enhance
classification in order to gain improved results when detecting or diagnosing related diseases. A large
number of notable studies have been carried out for predicting and classifying diabetes at the earliest but
still with a lack of accuracy. SVM is extensively used in disease diagnosis systems for their effectiveness
and consistency. It is a powerful classification method that has been employed in many studies on disease
classification [21].

There are several methods employed in data mining, particularly for supervised machine learning
approaches; hence, applying a suitable method has been a challenge among researchers in designing the
diabetes diagnosis systems [22]. Even though these data mining approaches can be employed to predict
diabetes mellitus over large real-life datasets, the majority of the techniques developed by supervised
learning in the previous research do not support the incremental (online) methods for predicting diabetes
disease. Additionally, standard supervised learning often cannot be carried out on line and hence they
need to compute all the training data again to perform the classification process. Therefore, to enhance
the classification accuracy and to reduce the computation complexity of disease prediction, a new hybrid
approach is developed using intelligent clustering, feature selection, and classification techniques [23].
Furthermore, since clinical datasets require continuous data updating, it is necessary to incrementally
update the once trained models to decrease computation time in data classification and is more effective
in terms of memory requirement.

The main objective of this work is to develop an effective and accurate aboriginal diagnostic system for
detecting diabetes, notwithstanding the existence of numerous recognized prevailing approaches, which have
already been implemented or are in use for the diagnosis of diabetes. The contributions of this paper are two-
fold:

� We propose an APCA technique for missing value imputation, data clustering and feature selection.

� We devise an enhanced ISVM to predict and classify the diabetes mellitus.

� The efficiency of HOMED is estimated on different performance metrics such as accuracy, precision,
specificity, sensitivity, positive and negative predictive values.

We conduct extensive experimentation on Pima Indian diabetes dataset. The experimental results reveal
that HOMED considerably increases the classification accuracy and decreases computational complexity
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with respect to the offline models [24]. The proposed system can assist healthcare professionals as a decision
support system.

2 Related Work

There are several research studies, which have been employed for the classification of diabetes mellitus.
In this section, we discuss the past related research which focuses on predicting and classifying diabetes
dataset that machine learning algorithms reselected as the key technique. Wang et al. [25] suggested an
artificial neural network (ANN) as a classification technique for diabetes mellitus. According to this
study, the authors proved that computational intelligence techniques deliver a more accurate result as
related to regression models. Varma et al. developed a decision tree modeling for classifying diabetes.
However, conventional decision tree models are disadvantaged by a problem of sharp cutoffs [26]. The
authors also proposed a fuzzy computation technique for eliminating the crisp boundaries in order to
improve the performance of the decision tree. This work used 336 samples, which were analyzed by
means of MATLAB, and lead to 75.8% accuracy.

Osman et al. [27] developed a unified method of the K-means clustering and SVM algorithms to classify
diabetes data. The authors also introduced an unsupervised learning approach based on K-means clustering,
and diagnose diabetes using the supervised SVM classifier. The suggested approach considered the medical
data collected from pancreas cell and laboratory test results (i.e., glucose level in urine and blood). The
clustering is employed to gather all similar instances in feature data, which improves and raises the
likelihood and accuracy of diagnosis prediction. The clustering output will then be applied as input to
the SVM classifier. Kandhasamy et al. employed Decision Random Forest (RF), SVM, and KNN
Classifier for classifying diabetes. The performance of the proposed system was evaluated by a confusion
matrix, specificity, and sensitivity. Zou et al. [28] introduced a diabetes prediction model using machine
learning algorithms. The authors used a random forest, decision tree, and neural network for diabetes
prediction. Random forest and decision tree are implemented using the Weka tool, whereas the neural
network is implemented by MATLAB.

Kumar et al. [29] developed SVM-based technique to classify the most discriminatory gene target for
diabetes mellitus. Barkana et al. [30] carried out analysis is related to the performance of descriptive
statistical features to specify retinal vessel segmentation due to diabetes mellitus problems known as
diabetic retinopathy. This study was assessed using ANN, SVM, and Fuzzy Logic classifiers. Several
research studies are carried out with different machine learning techniques for early prediction and
classification of diabetes mellitus but still with a lack of accuracy. In the chorus, mining the diabetes data
is one of the crucial problems. To resolve this issue, this research develops a new hybrid online model
using APCA and ISVM for the early detection of diabetes disease with high accuracy.

3 Proposed System

Focusing on the classification and prediction of diabetes diseases, HOMED exploits the outcomes of
clinical laboratory assessments as input, extracts a reduced dimensional feature subset, and delivers
diagnosis of diabetes. At first, the input data are pre-processed for eliminating the irrelevant and
unwanted data and for missing value imputation. Then, the most effective and best features are extracted
by the proposed APCA and they are utilized for the further classification process. From the extracted
optimal features, diabetes mellitus can be classified and predicted by the ISVM algorithm. As the health
records are continuously gathered from the new observations, it is useful to incrementally update the
earlier model of classification by considering only new input in order to decrease the time complexity in
the classification process. Hence, we propose a model to support incremental updates to re-learn the data
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which can be more effective in terms of space complexity. Fig. 1 depicts the overall structure of the proposed
HOMED system.

3.1 Adaptive Principal Component Analysis

The proposed APCA technique is implemented to perform missing data imputation, clustering, and
dimensionality reduction. APCA exploits a weighted adaptive data imputation technique for missing
value imputation. Also, it adopts an EM algorithm to group data points into appropriate clusters. The key
notion is to decrease the number of data dimensions while maintaining as much as possible the variations
in the original dataset.

3.1.1 Missing Data Imputation
In this work, we propose a weighted adaptive input imputation technique for the missing value. This

technique can be carried out for each class of the designated data for the training process. Here, we
construct a small size weighted vector as M � N which signifies the topological features as a weighted
vector of the complete class. This vector enables us to find adjacent groups with reduced computational
overhead. The estimated weighted vector u for class c is denoted as xc

u. To find the missing data, the
selected weights take adjacent weighting vectors and the weight pciu of each vector is calculated by the
distance between the obtained weighting.

Vector and current object x is expressed as given in Eq. (1).

pciu ¼ e�bEciu (1)

where

b ¼ cNM cNM� 1ð Þ
2
P

i:j eðxi;xjÞ (2)

and eciu indicates the Euclidean distance between x and adjacent vector and E xi;xj

� �
denotes the

distance between two weighting vectors xi and xj. Now, the designated weighting vector for class c are
employed for estimating the weighted mean as x̂c

i , this is used for imputing the missing data and it can
be calculated as Eq. (3).

Figure 1: System architecture of HOMED
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(3)

The calculated values are imputed as the missing data in the same dimensions and the ultimate pre-
processed data can be used for further process.

3.1.2 Clustering
The clustering process groups the data with related characteristics into the diabetes group. This task also

aids to predict diabetes albeit the data is unsupervised or the class labels are not present. Therefore, it
improves the consistency of classifier performance. The proposed APCA employs EM technique for
clustering owing to its effective iterative nature in calculating the maximum probability. Since it is
difficult to exploit the log-likelihood directly, EM algorithm maximizes the expectation of the entire log-
likelihood as an alternative. The entire data in EM algorithm are designated as (x, z), where z is the
missing value designating the mixture component origin label of each data and is expressed as Eq. (4)

z ¼ z1; z1 . . . . . . :zn (4)

where zi ¼ n when Xi belongs to the component n. The complete log-likelihood is defined in Eq. (5)

CL f; ZjXð Þ ¼
XN
n¼1

XN
n¼1

zinlogðpnfnðxjhnÞ (5)

where pn is the mixture weight of nth element, fn represents the density functions for the nth element, and hn
are parameters that describe the density function for the nth element. In APCA, each fn is either a uniform
distribution for n is a single parameter or a multivariate normal distribution for hn ¼ ln; �nð Þ. The
uniform distribution is used for modeling a noise component. There is at most one such noise component
in the GMM.

EM algorithm begins with the initial parameter and then estimates the expectation (E step) and the
maximization (M step) iteratively:

� E step: In this step, the expected value of the entire log-likelihood function is considered. The
calculation is related to the conditional distribution of z given x under the current estimation of the
parameters f

Q f; f qð Þ
� �

¼ E Pð Þ (6)

P ¼ logðCL f;ZjX Þð Þ (7)

That is, compute the posterior likelihoods tqin of xi belonging to the nth element as

tqin ¼ p qð Þ
n fnðxjh qð Þ

n (8)

� M step: In this step, the parameter f qþ1ð Þ is calculated that maximizes the expectation

f qþ1ð Þ ¼ argmaxQðfjf qð ÞÞ (9)

3.1.3 Feature Extraction
In general, principal component analysis is a statistical method for multivariate analysis and is employed

as a feature extraction method in data compression to preserve the vital information and is easy to visualize
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[31]. The proposed APCA technique finds patterns in data and signifies the data in a way that highlights
resemblances and dissimilarities. The key concept is to decrease the data dimensions while retaining as
much as possible the variations in the original dataset [32]. APCA has four objectives regarding feature
reduction.

� To mine the maximum information from the data.

� To reduce the dimensionality of the data by only preserving the most characterizing information.

� To simplify the data description.

� To provide the structure analysis of the observations.

The analysis provides conclusions about the used variables and their relationships. Feature extraction is
carried out by transforming the data into a new set of variables which is known as principal components
(PCs). The PCs are uncorrelated and organized in such a way that the first few PCs preserve most of the
variations of the entire dataset [33]. The first principal component denotes the dimension in which
the data have the maximum variation (variance) and the second PC denotes the dimension in which it has
the second-largest variation (variance). If the data have linear relations and are correlated, as data often
are in clinical records, APCA will achieve a compression as well as preserves a high amount of the
information in the initial dataset. The defined solution hoards compressed data, which is derived by
applying ideas from statistics to enable an analysis while keeping its important features. In this work, we
implement an algorithm for APCA developed by Hall et al. that appraises eigenvalues and eigenvectors
incrementally [34].

3.2 Incremental Support Vector Machine Classification

SVM is a maximum-margin classification method that has found several popular applications in various
scientific meadows including engineering [35], information retrieval, disease diagnoses business and finance
[36], etc. A central and critical idea in the SVM design is that it can deliver a good generalization irrespective
of the distribution of training data by exploiting the principle of structural risk minimization. This idea offers
a trade-off between the quality of a suitable training sample (generalization-empirical error) and the
complexity of the classification method (accuracy in the training set). Hence, the SVMs belong to a class
of algorithms which are called large-margin classification. The size of the gap is decided upon by the
training data which are between the margins [37]. These data are the known as support vectors.
Traditional SVMs approach has been initially established as offline classifiers that are trained with
predefined samples before they can be employed for classification problems. Cauwenberghs et al. [38]
developed ISVM by evaluating the variations of the Karush–Kuhn–Tucker (KKT) conditions for
incremental learning when a new data was appended to the previous dataset.

Employing a partition of the dataset, ISVM trains an SVM which reserves only the support vectors at
every phase of training and generates the training dataset for the next phase with these support vectors.
Therefore, the central idea of ISVM is to keep the KKT conditions on all available training samples while
adding a new sample. Suppose the present working set is X and the new set is I. First, X is clustered by
APCA; therefore, X is grouped to X1; X2; . . . :Xb; ::Xmf g where b ¼ 1; 2 . . .M and M is the number of
clusters. Then, each Xb is trained by SVM, correspondingly, and its equivalent training functions f xð Þ can
be gained. For each data xc; ycð Þ in I, its distance to each group is first considered (Euclidean distance
between the cluster center and the observation), and after executing APCA, incremental learning is
performed using ISVM.

3.3 Dataset for the Experiments

For experimentation, we have used an Intel Core i5 processor with Windows 10 operating system. All
the algorithms are simulated using MATLAB R2009b. The dataset for the experimentation is obtained from
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the National Institute of Diabetes and Digestive and Kidney Diseases [39]. This dataset consists of
768 clinical records of Pima Indian heritage, a population living near Phoenix, Arizona, USA. There are
eight features related to this dataset (i.e., plasma glucose concentration, 2-h serum insulin, the number of
times pregnant, diastolic blood pressure, function of diabetes nutrition, triceps skin fold thickness, body
mass index (BMI), and age). Tab. 1 shows the statistical report of each instance in this dataset. The range
of binary variables is limited to ‘0’ or ‘1’. The target variable ‘1’ represents a positive result for diabetes
disease (i.e., diabetic), ‘0’ is a negative result (i.e., non-diabetic). After preprocessing of dataset, there are
392 existing cases with no missing values.

The range of binary variables is limited to ‘0’ or ‘1’. The target variable ‘1’ denotes a positive result for
diabetes disease (i.e., diabetic), ‘0’ is a negative result (i.e., non diabetic). The number of cases in class ‘1’ is
268, and the number of cases in class ‘0’ is 500.

4 Result and Discussion

The experimental results of the proposed method prompted on Pima Indian datasets are described in this
section. The efficiency and accuracy of any predictive and diagnostic model are of vital significance and
should be confirmed before such a model is used for implementation. We compare HOMED with other
five existing classification methods viz. support vector machine [39], Random forest Naïve Bayesian [40],
decision tree [41] and K-nearest neighbor [42]. The performance assessment of the diabetes classification
methods is carried out using several performance metrics including accuracy, precision, specificity,
sensitivity, positive predictive value, and negative predictive value.

� Accuracy: Accuracy is defined as a rate of correct classification. It is the ratio of the number of true
classified samples (sum of the true positive and true negative) against the total number of samples. It
can be expressed as:

ACC %ð Þ ¼ TP þ TN

TP þ TN þ FP þ FN
(10)

Table 1: Statistical analysis of the dataset

S.
No

Feature Min/
Max

1 Number of times pregnant 0/17

2 Plasma glucose concentration is estimated in 2-h after consuming a 75 g oral glucose
(glucose tolerance test).

0/199

3 Diastolic blood pressure (mm Hg) 0/122

4 Triceps skin fold thickness (mm) 0/99

5 2-h serum insulin (mu U/ml) 0/846

6 Body mass index (kg/m2) 0/67.1

7 Diabetes pedigree function 0.078/
2.42

8 Age (in years) 21/81
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� Sensitivity: Sensitivity is the proportion of the number of correctly classified positive samples (TP) to
the total number of positive samples (TP + FN):

SEN ¼ TP

TP þ FN
(11)

� Specificity: It is the ratio of the number of true negative samples (TN) to the total number of positive
samples (TP + FN):

SPE ¼ TN

TN þ FP
(12)

� Precision: Precision is the ratio of the number of true positives (TP) samples predicted as class 1 to the
total number of samples (TP + FP) predicted as class 1:

PRE ¼ TP

TP þ FP
(13)

Tab. 2 shows the results of the classification technique. The results show that the KNN classifier can
predict 63.04% properly while Naive Bayesian can predict 67.89% properly. The decision tree classifier
performed 73.18%, random Forest 75.39%, and support vector machine 77.73% respectively.

Furthermore, the proposed HOMED classifier proved to be the most accurate classifier for the accuracy
of 78.38% as shown in Fig. 2.

Table 2: Results of classification techniques

Classification technique Correctly classified Incorrectly classified Accuracy (%)

KNN 145 85 63.04

Naïve Bayesian 129 61 67.89

Decision tree 562 206 73.18

Random forest 579 189 75.39

SVM 597 171 77.73

HOMED 602 166 78.38

Figure 2: Accuracy of different classifiers
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The performance of the proposed technique is compared with other methods in terms of different
performance metrics as given in Tab. 3. From the results shown in this table, our HOMED proves to have
a better precision (81.2%) in relation to the other classification systems. Compared to KNN (74.8%),
Naïve Bayesian (77.0%), Decision tree (79.7%), Random forest (7.91%), and SVM (78.1%), our
classification, clustering, and missing value imputation techniques aid to enhance the precision of the
classifier [43]. HOMED achieves 98.71% specificity, 93.20% sensitivity, 79.55% negative predicted
value, and 89.56% positive predicted value as shown in Tab. 3.

Our proposed HOMED proves to have a better specificity, sensitivity, positive predictive value, and
negative predictive value compared to KNN, Naïve Bayesian, Decision tree, Random forest, and SVM.
Our classification, clustering, and missing value imputation techniques aid to enhance the performance
measures of the HOMED classifier. Fig. 3 demonstrates the efficiency of HOMED for predicting diabetes
disease.

5 Conclusion

Diabetes is one of the heterogeneous groups of chronic endocrine sickness where people suffer from
high sugar (glucose) in the blood. In order to support the lives of the people, we are trying to predict and
avert the complications of diabetes at the early stage using predictive analysis by enhancing the
performance of the diabetes diagnosis system. Our proposed work also carries out the feature extraction
in the dataset and chooses the optimum features according to the correlation values. The major objective
of the proposed work is to predict and classify diabetes mellitus by implementing a hybrid online model

Table 3: Comparative performance analysis of classification methods on various measures

Algorithm PPV NPV SEN SPE PRE

KNN 46.84 71.52 46.25 72.00 74.80

Naïve Bayesian 62.03 79.47 61.25 80.00 77.00

Decision tree 88.75 71.37 26.49 98.20 79.70

Random forest 89.90 73.24 33.21 98.00 79.11

SVM 73.21 79.43 57.09 88.80 78.10

HOMED 89.56 79.55 93.20 98.71 81.20

Figure 3: Performance measures of different classifiers
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for the early detection of diabetes disease using machine learning algorithms. Our proposed online
(incremental) diabetes diagnosis system exploits an APCA technique for missing value imputation, data
clustering, feature selection, and an enhanced incremental support vector machine for classification. The
efficiency of HOMED is estimated on different performance metrics such as accuracy, precision,
specificity, sensitivity, positive predictive value, and negative predictive value. Experimental results on
Pima Indian diabetes dataset reveal that HOMED considerably increases the classification accuracy and
decreases computational complexity with respect to the offline models. The proposed system can assist
healthcare professionals as a decision support system.
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