
Optimal Path Planning for Intelligent UAVs Using Graph Convolution
Networks

Akshya Jothi and P. L. K. Priyadarsini*

School of Computing, SASTRA Deemed to be University, Thanjavur, 613401, India
*Corresponding Author: P. L. K. Priyadarsini. Email: priya.ayyagari@it.sastra.edu

Received: 16 June 2021; Accepted: 17 July 2021

Abstract: Unmanned Aerial Vehicles (UAVs) are in use for surveillance services
in the geographic areas, that are very hard and sometimes not reachable by
humans. Nowadays, UAVs are being used as substitutions to manned operations
in various applications. The intensive utilization of autonomous UAVs has given
rise to many new challenges. One of the vital problems that arise while deploying
UAVs in surveillance applications is the Coverage Path Planning(CPP) problem.
Given a geographic area, the problem is to find an optimal path/tour for the UAV
such that it covers the entire area of interest with minimal tour length. A graph can
be constructed from the map of the area under surveillance, using computational
geometric techniques. In this work, the Coverage Path Planning problem is posed
as a Travelling Salesperson Problem(TSP) on these graphs. The graphs obtained
are large in number of vertices and edges and the real-time applications require
good computation speed. Hence a model is built using Graph Convolution
Network (GCN). The model is effectively trained with different problem instances
such as TSP20, TSP50, and TSP100. Results obtained from the Concorde Bench-
mark Dataset were used to analyze the optimality of the predicted tour length by
the GCN. The model is also evaluated against the performance of evolutionary
algorithms on several self-constructed graphs. Particle Swarm Optimization,
Ant Colony Optimization, and Firefly Algorithm are used to find optimal tours
and are compared with GCN. It is found that the proposed GCN framework
outperforms these evolutionary algorithms in optimal tour length and also the
computation time.

Keywords: Unmanned aerial vehicles; graph convolution networks; travelling
salesman problem; graph theory; evolutionary algorithms

1 Introduction

As the world is moving towards an era of minimizing the use of human intervention and increasing the
usage of autonomous machines, UAVs are not an exception. Autonomous UAVs are being deployed in
various applications as their design allows them to visit all the locations where the reach of humans
remains impossible or would require more manpower [1–3]. The Coverage Path Planning (CPP) problem
is one of the most important challenges that need to be focused upon while deploying a UAV in any

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI:10.32604/iasc.2022.020974

Article

echT PressScience

mailto:priya.ayyagari@it.sastra.edu
http://dx.doi.org/10.32604/iasc.2022.020974
http://dx.doi.org/10.32604/iasc.2022.020974

real-time surveillance application. Let us consider a scenario where a UAV is deployed to cover all nine
locations as shown in Fig. 1. The order in which the UAV opts to maneuver the given set of locations
varies and so as the total distance traveled. Two of the alternatives are shown in Figs. 1a and 1b. When
UAVs are deployed in disaster management it is very important to find the shortest path very fast, to
rescue the human lives at risk. So we need algorithms that find the best solutions in a computationally
efficient way.

1.1 Preliminaries

To find the optimal path for the UAVover a geographic area, we first transform the problem into a graph
problem by creating a complete weighted graph from the geographic map given. Let G(V, E) be such a graph
with V indicating a set of vertices in the graph and E denoting the set of edges connecting these vertices. Now,
the problem can be posed as a TSP, which is one of the most important combinatorial optimization problems.
Given a complete weighted graph, the problem is to find a minimum weighted Hamiltonian cycle. Numerous
researchers have proposed various ways of solving TSP. As TSP is an NP-complete problem, there are
computationally efficient algorithms that produce sub-optimal solutions, proposed in the literature.

1.2 Problem Specification

This paper assumes that a geographic map is given and an optimal flying path for a UAV, covering the
entire area is to be found out. The path of the UAV is to be designed in such a way that it starts at a point and
visits each of the given points of coverage once and ends at the same point where it started. In a simple case,
the UAV does not face any obstacles such as trees, hilly terrains, and the like. So, the UAV path may be
considered to be in a plane. So we can use the boundary of the map to construct a complete graph
containing coverage points as vertices. Now the problem will be transformed into finding optimal tour in
this graph and it is originally the Travelling Sales Person (TSP) problem.

The use of traditional techniques based on non-learning approaches to find the optimal solution to the
TSP problem serves well when the graph size is small. But they are not computationally efficient on large
graphs. To overcome this challenge, pre-trained deep learning models can be used to find the solution in
real-time, with minimal time.

(a) (b)

Figure 1: Illustration of possible paths while traversing through UAVs (a) Path 1 (b) Path 2

1578 IASC, 2022, vol.31, no.3

1.3 Methodology Outline

In this paper, a deep learning framework based on Graph Convolution Network is proposed for finding
optimal tours for a given TSP instance. GCNs works the same way as the traditional CNN, but it has the
capability of working with the graphs directly by making use of its structural information [4]. They both
consider the weighted average of the neighborhood nodes while making a choice. In Fig. 2a, a
comparison of calculating the values of nodes by a traditional 2D convolution and Graph convolution is
shown. It shows how 2D convolution assumes connections between nodes representing pixels in an
image. The value of the green node is determined by taking the weighted average of all its neighboring
nodes. Fig. 2b, demonstrates how GCN calculates values of nodes for any given graph. In this, the value
of the green node is determined by taking the weighted average of all its adjacent nodes along with their
features. GCNs can handle any type of graph structure effectively.

The idea behind the usage of GCN is to reduce computation time compared to other techniques
including evolutionary algorithms. The framework attempts to obtain an efficient solution with minimal
training data. The network is built by training several graphs with solution labels for TSP. TSP Concorde
benchmark dataset is used for training purposes. The performance of GCN is compared with that of the
other evolutionary techniques. The performances of Particle Swarm Optimization, Ant Colony
Optimization, and Firefly Algorithms on graphs of sizes up to 100 nodes, are used for this comparison.
The overall architectural diagram of the proposed methodology is shown in Fig. 3.

Initially, the GCN is trained with numerous 2D graphs, G1…GN. After training the model, the network
collects the information from the input graph structure with random nodes to output an edge prediction map.
This map shows the possible edges between the given input nodes by making use of node features. The final

(a) (b)

Figure 2: Connection of nodes using distinct methods (a) 2D convolution (b) Graph convolution

Figure 3: Architectural diagram of the proposed methodology

IASC, 2022, vol.31, no.3 1579

output will be the predicted optimal path by making use of the shortest-heuristic beam search algorithm, over
the computed edge prediction graph.

The rest of the paper is organized as follows: Section 2 discusses various works related to the proposed
methodology, Section 3 explains the overall proposed methodology of finding an optimal solution for any
given graph using GCN. Section 4 provides the results obtained while making use of GCN for 2D
Euclidean graphs and is compared with the ground truth to find the optimal gap in the length of the tour
obtained. The paper is finally concluded in Section 5 which describes the efficiency of the proposed
model when compared with other traditional models and also lists out some future research works.

2 Related Works

The use of UAVs in various applications is seeing immense growth and numerous problems related to
UAVs are being now researched upon. Deployment of UAVs is nowadays mostly preferred to be in an
autonomous way such that it does not need any human intervention. This reduces the manpower and at
the same time, it makes it possible to monitor the areas that are out of human reach [5]. Numerous
applications are now making use of these autonomous UAVs which in turn need a lot of constraints to be
satisfied. Some of the vital problems include area coverage problems, optimal path planning of UAVs,
collision avoidance considering both static and dynamic environments.

The major focus of the area coverage problems includes a need where the entire area under coverage
needs to be visited. A lot of research works are undergone to traverse the entire area under coverage. The
author has presented a rectilinear area partitioning algorithm where the area is divided into multiple
rectangular partitions and the centroids of each partition are computed such that visiting that particular
centroid will cover the entire rectangle and hence the entire area would be covered by the UAV [6]. CPP
problem was stated to be solved using multiple robots [7], by giving effective coverage trajectory for the
robots but the details of collision with static and dynamic obstacles have not been mentioned. Identifying
the points of interest was stated to be focused in [8], where the Branch and Bound algorithm
solved the area coverage problem. Though various algorithms are being proposed for area coverage
applications, there remains a necessity of finding an optimal path that needs to be planned for traversing
the coverage points in minimal time. The problem can be posed as TSP and various techniques are
carried out to solve this problem to find an optimal solution such as ACO, PSO, and Firefly Algorithm.
Abdurrahim Sonmez et al. [9] has proposed a genetic algorithm-based optimal path planning for UAVs.
The research work claimed to use a 3D environment and the problem was formulated as TSP to find the
optimal path.

The TSP was coined in the year 1930 and it is stated to be one of the most studied combinatorial
optimization problems. Even though the environment is 2D Euclidean where all the nodes are in two
dimensions and the weights between the edges are Euclidean distances, solving TSP is considered to be
NP-Hard. TSP solutions can be found by making use of both Non-learning approaches and Learning
approaches. Some of the commonly used non-learning approaches include the Nearest approach [10], the
Boruvka approach [11], the Lin-Kernighan approach [12], and many more. The major drawback of
making use of these approaches is that they fail to handle a large number of data and that the resources
used for handling such huge data are always very expensive. The use of machine learning and deep
learning techniques can make the work ease by training the policies such that they can solve TSP while
making use of large graphs which comprise numerous nodes. The use of Pointer Network(PtrNet) has
been suggested by [13] to exclude all the visited nodes in the graph and to find an optimal solution for TSP.

GCN plays a vital role while dealing with graphs. They act similar to CNN but serves better when the
network needs to be trained in the graph domain. In the graph domain, the graphs are defined by their
vertices, edges, and adjacency matrix whereas the graph features are defined using their node and edge

1580 IASC, 2022, vol.31, no.3

features. The importance of GCN lies in the way on how it learns the information from the graph features.
Advances in GCNs can be seen in applications making use of graph structures. Hibiki Taguchi et al. [14]
proposed a GCN that could find the missing features in a graph that performed far better than the
remaining imputation-based models. Cluster -GCN proposed in Chiang et al. [15], works by exploiting
the overall graph clustering structure and has prominently noticed an improvement in the memory and
computational efficiency while comparing with the other traditional algorithms. Graph networks seem to
work well for solving TSP as the entire problem needs to be solved using graph structures. A Graph-
Learning method states that the model had the capability of directly learning the pattern of the TSP
datasets during the training time by giving out a very minimal optimality gap [16] but how the output of
the GCN might vary in presence of any obstacles is not researched upon. Graph-based convolution
networks could be used in applications involving a large number of graphs that need to be processed with
near-optimal solutions.

3 Methodology - GCN for Solving TSP

The problem under consideration is to find a path with minimal length traversing through the identified
points of coverage. The path needs to cover the entire given geographic area where the UAV is been
deployed. The overall problem is formulated to be a TSP for which the solution is to be found by making
effective use of GCN. The steps involved in the process include:

� Training the GCN using Benchmark dataset containing optimal solution

� Giving a 2D input graph to the GCN using the Test dataset

� Predicting the edges for the given 2D input graph using feature maps

� Finding the optimal solution using a Heuristic Search Algorithm

� Comparing the optimal tour length obtained from the proposed model with other evolutionary
algorithms to find the best technique suitable for the given problem.

3.1 Dataset

In our research work, we have mainly focused on 2D Euclidean TSP, were given an input graph with
numerous vertices that will yield an optimal solution. The vertices in the graph represent the sequence of
n cities. Generally, all the graphs are two-dimensional in space which gives the coordinates of any two
given cities. Graphs from the Concorde dataset include the distance between any two given cities along
with their coordinates. Initially, the GCN is trained with a benchmark dataset namely, Concorde TSP
whose solutions are obtained using TSP solvers. Fig. 4, shows a sample graph from the Concorde dataset
where it gives the optimal tour for the given set of vertices. The blue node depicts the starting and the
ending node of the entire tour. The solutions in the dataset are obtained by making use of Concorde
Solver. For a given set of random nodes, the Concorde TSP solver can make use of any traditional non-
learning approaches present in the state-of-art to obtain a valid tour.

The solutions with optimal tour length are aggregated together to form the Concorde Benchmark dataset.
The dataset consists of graphs along with their corresponding TSP tours which help in training the deep
learning models. To directly compare with the state of art techniques, the entire dataset is divided into
training, validation, and test datasets. The training dataset comprises of 1million pairs of problem
instances along with its optimal solutions with graph sizes of 20, 50 and 100. The validation and test
dataset comprises 10,000 pairs of problem instances each. The dataset obtained by making use of
Concorde solver is used in our proposed work rather than any other TSP solver like Gurobi and LKH3,
as Concorde is highly specialized in providing optimal results for 2D Euclidean TSP.

IASC, 2022, vol.31, no.3 1581

3.2 Graph Convolution Network

Deep learning allows one to learn very complex and complicated concepts by transforming them into
simple forms in a multi-layer fashion. Numerous networks such as convolution networks, recurrent neural
networks are used in various applications according to their need. CNN is highly parallelizable and it also
scales very well when making use of very large datasets. CNN’s are powerful architectures that are
designed to solve problems with high-dimensionality by overcoming the problem of the “curse of
dimensionality”. The main assumptions while making use of any convolution networks are that the
neurons present in any particular layer are only connected to its adjacent layers and are not connected to
all its layers. Some patterns in the data that need to be processed are similar and are shared across the
entire domain. The feature at the lower level is combined to form medium-level features which are
further combined to form high-level features. They can extract the compositional features from the data
which is further used for the classification or prediction process. While considering the data domain, such
as sentences and words, they lie on the 1D Euclidean domain. Whereas, when we look into some other
types of data such as images and videos they lie on the 2D Euclidean domain. Considering real-time
applications such as the ones making use of social networks, the connection between various users forms
a graphical representation.

Nowadays, many applications are being incorporated that make use of these graphical representations
for processing data. In any graphical representation, Graphs G is defined by its vertices(V), edges(E), and
their distance matrix(D) such that G = (V, E, D). These graphs can be processed by making use of GCNs
rather than making use of CNNs. The major idea of our proposed work is to approximately solve 2D
Euclidean TSP by making use of GCN. In Fig. 5, the entire workflow of our proposed methodology
making use of GCN is depicted comprising of the feature maps and the fully connected layer. The GCN
effectively outputs an edge prediction map which is further used for finding the optimal tour length for
any given graph. In our work, we have made use of GCN that is trained effectively using the TSP dataset
such that it predicts the edges for any given graph. It outputs an edge adjacency matrix which denotes the
probabilities of edges occurring on the TSP tour. It works similar to that of CNN with a very minimal
difference. In CNN, all the images are represented by taking the pixel values as arrays. Whereas in GCN,
the graph features such as node and edge level features along with other application-specific features such
as the Euclidean distances are used for training purposes.

Figure 4: Graph in the concorde dataset

1582 IASC, 2022, vol.31, no.3

Feature extraction in graphs can be done at both node level and graph level. One of the easiest methods
of capturing information from graphs is to create individual features for each node. These features have the
capability of capturing information both from its close neighborhood and also from distant nodes. Feature
extraction at the node level includes:

� Node Degree: This is the primary feature extracted which gives the total number of nodes incident on
any particular node.

� Eigen Vector Centrality: This feature extraction deals with the importance of any node and also how
important the neighbors of that particular node are. Nodes with higher Eigenvector centrality should
have many neighbors which are in turn connected to other nodes.

� Clustering Coefficient: This feature answers the question of how tightly groups of nodes are
connected. This gives the ratio of the number of edges between the neighbors to the number of
node’s neighbors.

Graph level features are used to extract the global information from graphs. One such feature extraction
done in our proposed work is the computation of the adjacency matrix which indicates whether pairs of
vertices are adjacent or not. Apart from this Neighborhood overlap features are also extracted as node and
graph level features fail to gather the information about the relationship between the neighboring nodes.
This is one of the most important features that need to be extracted when working with problems about
edge prediction tasks. This feature plays a major role in predicting whether there is a connection between
two nodes or not by measuring both local and global overlaps in graphs. The input layer extracts various
compositional feature vectors from all the available graph nodes by stacking several graph convolution
layers. The 2D coordinates xi ɛ [0,1]2 are given as the node feature in the input layer for n nodes where

Figure 5: Computation of optimal solution for TSP using GCN

IASC, 2022, vol.31, no.3 1583

these coordinates are transformed into node inputs using a linear transformation. The node inputs can be
obtained by Eq. (1)

di ¼ h1 þ xi (1)

where h denotes a learnable parameter and xi gives the sequence of cities where i range from 1 to n. Next, we
need to calculate various edge inputs ndisij between any given nodes i and j. To obtain this we need to first
obtain the distance matrix Md, where mdis

ij denotes the Euclidean distance between the nodes i and j. As a
next step, we compute an adjacency matrix Ma, where madj

ij gives the existence or non-existence of edges
between the nodes i and j in a given graph. The edge input ndisij is finally computed using Eq. (2)

ndisij ¼ ½h2mdis
ij ; h3m

adj
ij � (2)

Assuming the input layer to be xli and the edge distance between the nodes be e
l
ij, where xl¼0

i and el¼0
ij , at

the initial layer and the subsequent layer xlþ1
i and elþ1

ij is found by adding the previous layer information
along with a Rectifier Linear Unit(ReLU). As the network that we are using is very deep, batch
normalization is done to the node and edge feature vectors well before the ReLU function is applied. The
ReLU operates along with the batch normalization process by making use of the Sigmoid function(σ) for
the subsequent graph convolution layer. While considering GCN, the graph structure represents the notion
of the neighborhood instead of making use of the Euclidean distance. A simple way of expressing the
feature vector fvi at vertex i for any given layer in GCN can be denoted by Eq. (3).

fvlþ1
i ¼ Nt

GCN fvli ; fvlj : j ! i
n o� �

(3)

where fvli - represents the feature vector of the present layer in GCN

fvlþ1
i - represents the feature vector of the next layer in GCN

fvlj : j ! i - denotes the entire set of feature vectors of the neighboring vertices.

Nt
GCN - denotes the neighborhood transfer function where the information about one vertex in a graph is

uniformly transferred into all its neighboring vertices. To define an edge vector eij between any two vertices i
and j, it could be represented by Eq. (4).

elþ1
ij ¼ Nt

GCN elij ; fv
l
i; fv

l
j

� �
(4)

where elij - represents the edge feature of the present layer

elþ1
ij - represents the edge feature of the subsequent layer such that the edge feature of a layer depends on

the edge feature of the previous layer along with the previous layer’s feature vectors at vertex i and j. Residual
connections need to be added between the subsequent convolution layers to provide a path for
backpropagation in the computational graph. This in turn allows us to stack up the convolution layers
which is done by adding an identity operator to the node and edge feature vectors as shown in Eqs. (4)
and (5).

fvlþ1
i ¼ Ntl fvli ; fvlj : j ! i

n o� �
þ fvli (5)

elþ1
ij ¼ Ntl elij ; fv

l
i; fv

l
j

� �
þ elij (6)

The probability of an edge e
0
ij being present in the final tour of the TSP is computed by making use of the

Multi-Layer Perceptron Classifier (MLP). The output from this classifier can be seen as a probabilistic heat-
map HTSP over the adjacency matrix obtained in the previous step. For any mTSP

ij , the output is given by an

1584 IASC, 2022, vol.31, no.3

MLP classifier by computing a softmax output. In our model, we have limited ourselves to up to a 3-layer
perceptron.

3.3 Beam Search Algorithm

The final output of our proposed work comprises a probabilistic heat-map HTSP which is present by
overlapping the adjacency matrix of other tour connections in the graph. Converting the heat-map HTSP

directly to predicted TSP tour p̂ð Þ; will result in the addition of extra edges and probability of occurrence
of invalid tours in p̂ð Þ: To overcome this, we compute the edges in p̂ð Þ by making use of a heuristic
search algorithm. Traditional search algorithms such as Greedy Search tends to provide good results
when the problem instances are quite smaller. As the problem instances we have been working on are
very large, we have opted of making use of Shortest-Heuristic Beam Search Algorithm, as it has
improved performance for larger instances. This search algorithm is also well known as a limited-width
breadth-first search algorithm. Models which highly make use of sequence to sequence process, this
algorithm can be used to give a set of high-probability sequences from the model it is working on. In our
approach, we start the tour with the first node, explore the entire heat map HTSP by expanding the edge
connections with high probability from the node’s neighbors. The expansion terminates when complete
connections are explored until the given beam size. This process is iteratively done until all the nodes in
the graphs are visited. The final predicted tour p̂ð Þ, will be the tour with the highest probability among all
the other tours at the end of the heuristic search.

4 Experimental Results

The use of deep learning approaches comprises training the model and then evaluating it for observing
the model performance. The proposed approach of using GCN for solving TSP was done by training a set of
1 Million problem instances categorized into three fixed-size datasets of 20, 50, and 100. These models were
evaluated with test sets of 10,000 instances comprising of the same size. A standard training procedure was
followed for training the GCNmodel for all three problem instances. When a graph is given as an input to the
model, the GCN is trained in such a way that it directly gives an output of the adjacency matrix which
corresponds to a TSP tour. The training also involved various training epochs.

For every training epoch, out of 1 Million problem instances in the training set, we selected a subset of
10,000 problem instances. The selected subset was again divided into 500 mini-batches which comprised of
20 instances each. Adam optimizer was used with an initial learning rate of 1e-3 to reduce the overall cross-
entropy loss occurring in each mini-batch. After the training, the model was evaluated by using a validation
set consisting of about 20,000 instances present at regular intervals of about 5 training epochs. The learning
rate decay for the model is proposed by dividing the optimizer’s learning rate by a decay factor of about 1.01.
For problems with larger problem instances, they involve more training epochs and lower learning rates to
reach convergence. In the results obtained, the predicted tour length while making use of the proposed
approach is seen. It can be observed that the model outputs the ground truth values with its
corresponding predicted tour length over the adjacency matrix of the graph. Figs. 6–8. corresponds to
various predicted tours obtained while training and evaluating the model using 20, 50, and 100 nodes
respectively while considering different probabilities of the number of nighbor nodes in the graph. The
model was evaluated while considering various parameters. The overall learning rate of the model was
given to be 0.001.

The model had a total of 30 layers with 3 multi-layer perceptrons. The total number of parameters used
within the model was approximately about 11054402. Talking about the batch sizes used for the training
purposes, the problem instances were divided into 20 batches while having 500 batches per epoch. The
total time consumed for generating one single batch took approximately 0.144 sec. Tab. 1 shows the

IASC, 2022, vol.31, no.3 1585

various model parameters used for building the network. It also discusses various results obtained while
considering TSP20, TSP50, and TSP100 models, where 20, 50, and 100 are the number of nodes
considered for the training purposes.

(a) (b) (c) (d)

Figure 6: Sample Output - TSP20model with its predicted tour length (a) and (b) Edges - 5, (c) and (d) Edges - 10

(a) (b) (c)

(d) (e) (f)

Figure 7: Sample output - TSP50model with its predicted tour length a) and (b) Edges - 5, (c) and (d) Edges - 10,
(e) and (f) Edges - 25

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Sample output - TSP100 model with its predicted tour length (a) and (b) Edges - 5, (c) and (d)
Edges - 10, (e) and (f) Edges - 25, (g) and (h) Edges -50

1586 IASC, 2022, vol.31, no.3

In each model, we have tested the predicted tour length of 5 graphs with various probabilities of the
neighboring nodes. The optimal gap denotes the gap obtained between the values of the ground truth tour
lengths to the values of the predicted tour lengths while considering the total time consumed for
obtaining the optimal solution. It can be seen that the proposed approach can give approximately the
near-optimal solution while considering graphs with lesser nodes when compared to the graphs with
larger node sizes. The mean optimal gap is found for the tour obtained while considering the same
number of neighbor nodes to get the optimality gap in the predicted tour lengths by GCN. The change in
the optimality gap as tabulated in Tab. 1, while increasing the number of neighbor nodes in various
models can be observed in Fig. 9. In Fig. 10, sample graphs G1, G2, G3, and G4 from the TSP20, 50,
and 100 models are taken to illustrate the difference in the tour lengths.

After the evaluation is done by taking the graphs from the test data, the model is tested with self-
constructed graphs. These graphs are the ones obtained by partitioning few study areas using the
rectilinear partitioning algorithms as mentioned in [17]. Self-constructed graphs are obtained as shown in
Fig. 11, whose points of coverage are the centroids of the partitions which are further considered to be
the vertices for solving TSP. Firstly all the possible paths connecting the vertices are obtained to form the

Table 1: Comparison of Predicted tour length while using various problem instances

MODEL Number
of
Neighbor
nodes

TSP100 TSP50 TSP20

Tour Optimal
Gap

Optimal
Gap
(Mean)

Tour Optimal
Gap

Optimal
Gap
(Mean)

Tour Optimal
Gap

Optimal
Gap
(Mean)

Optimizer
Adam
Learning
Rate 0.001
Beam Size
1280
Batch Size
20

50 Tour 1
Tour 2
Tour 3
Tour 4
Tour 5

1.636
1.672
1.642
1.694
1.687

1.666

Batch
generation
time 0.144
(in secs)

25 Tour 1
Tour 2
Tour 3
Tour 4
Tour 5

1.571
1.46
1.611
1.497
1.563

Tour 1
Tour 2
Tour 3
Tour 4
Tour 5

1.319
1.183
1.221
1.256
1.294

1.234

1.654

Batch per
epoch 500
Decay Rate
1.01

10 Tour 1
Tour 2
Tour 3
Tour 4
Tour 5

1.391
1.429
1.356
1.401
1.432

1.401 Tour 1
Tour 2
Tour 3
Tour 4
Tour 5

1.134
1.043
0.962
1.261
1.079

1.095 Tour 1
Tour 2
Tour 3
Tour 4
Tour 5

0.085
0.079
0.092
0.083
0.075

0.296

Number of
Layers 30
Number of
MLP 3
Number of
parameters
11054402

5 Tour 1
Tour 2
Tour 3
Tour 4
Tour 5

1.387
1.117
1.256
1.182
1.322

1.252 Tour 1
Tour 2
Tour 3
Tour 4
Tour 5

0.391
0.370
0.384
0.397
0.363

0.381 Tour 1
Tour 2
Tour 3
Tour 4
Tour 5

0.021
0.09
0.043
0.082
0.061

0.059

IASC, 2022, vol.31, no.3 1587

adjacency matrix using GCN. Then this is used by the heuristic search algorithm to find the optimal path. The
optimal path is then compared with evolutionary algorithms such as ACO, PSO, and FA to evaluate the
performance of the proposed methodology. A sample self-constructed graph is depicted in Fig. 12. where
the optimal path is obtained using various techniques.

Figure 9: Optimality Gap obtained for various TSP models

Graph 1

Graph 2

Graph 3

Graph 4

Figure 10: Sample output from TSP20, 50 and 100 models - Ground truth vs. Predicted path

Figure 11: Optimal path obtained using Rectilinear Partitioning Algorithm

1588 IASC, 2022, vol.31, no.3

Tabs. 2 and 3, show the comparison of the predicted tour length and overall execution time obtained for a
set of 10 graphs using various techniques. It can be observed that the PSO gives a very high tour length when
compared to other techniques in most cases while the Firefly algorithm giving the most optimal path. Tour
prediction using our proposed work predicts an approximate optimal path in a lesser time when compared to
other techniques. From Figs. 13a and 13b, it could be stated that the optimal tour for any given graph is
obtained while making use of evolutionary algorithms but they consume a lot of time for the prediction
as to the number of places to be visited increases. Whereas, to obtain the optimal tour in very minimal
time it is better to make use of the proposed model using GCN as they seem to work well even while
using larger graphs.

(a) (b) (c) (d)

Figure 12: Visualization of graphs using various techniques (a) PSO (b) ACO (c) FA (d) GCN

Table 2: Comparing the tour length predicted by various models

Graphs Number
of nodes

Particle swarm
optimization
(Tour length in km)

Ant colony optimization
(Tour length in km)

Firefly algorithm
(Tour length in km)

Graph convolution
networks
(Tour length in km)

G1

G2

G3

G4

G5

G6

G7

G8

G9

G10

90
40
75
25
20
100
85
55
30
60

420
235
301
156
126
454
389
269
182
273

416
231
305
152
121
446
386
271
178
265

415
234
290
151
124
445
385
266
174
264

418
236
287
150
119
451
383
270
175
272

Table 3: Comparing the execution time obtained by various models

Graphs Number
of nodes

Particle swarm
optimization (Execution
time in secs)

Ant colony
optimization (Execution
time in secs)

Firefly algorithm
(Execution time
in secs)

Graph convolution
networks (Execution
time in secs)

G1

G2

G3

G4

G5

G6

G7

G8

G9

G10

90
40
75
25
20
100
85
55
30
60

1.56
1.34
1.46
1.15
1.12
1.89
1.52
1.38
1.21
1.43

1.36
1.13
1.24
1.05
1.02
1.39
1.28
1.17
1.08
1.21

0.94
0.68
0.82
0.57
0.51
0.96
0.84
0.73
0.65
0.76

0.53
0.35
0.48
0.30
0.27
0.68
0.51
0.38
0.33
0.42

IASC, 2022, vol.31, no.3 1589

5 Conclusion

Efficient path planning of UAVs has become one of the most researched areas nowadays as most of the
applications now rely on the deployment of UAVs without human intervention. The Coverage Path Planning
(CPP) problem is one of the most important problems that need to be focused upon while deploying a UAV in
any real-time surveillance application. This paper assumes that a geographic map is given and an optimal
flying path for a UAV, covering the entire area is to be found out. The path of the UAV is to be designed
in such a way that it starts at a point and visits each of the given points of coverage once and ends at the
same point where it started. In this paper, a deep learning framework based on Graph Convolution
Network is proposed for finding optimal tours for a given TSP instance. The network is initially trained
using the Concorde Benchmark Dataset. The idea behind the usage of GCN is to reduce computation
time compared to other techniques including evolutionary algorithms. The framework attempts to obtain
an efficient solution with minimal training data. The performance of GCN is compared with that of the
other evolutionary techniques. The performances of Particle Swarm Optimization, Ant Colony
Optimization, and Firefly Algorithms on graphs of sizes up to 100 nodes, are used for this comparison. It
could be concluded that the optimal tour for any given graph is obtained while making use of
evolutionary algorithms but they consume a lot of time for the prediction as the number of points to be
visited increases. Whereas, to obtain the optimal tour in very minimal time it is better to make use of the
proposed model using GCN as they seem to work well even while using larger graphs. Future work
could include the use of the Steiner tree for partitioning the area. Partitioning of the area could also
involve dynamic obstacles into consideration as UAVs need to be deployed in real-time scenarios.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] I. U. Khan, I. M. Qureshi, M. A. Aziz, T. A. Cheema and S. B. H. Shah, “Smart IoT control-based nature inspired

energy efficient routing protocol for flying ad hoc network (FANET),” IEEE Access, vol. 8, no. 1, pp. 56371–
56378, 2020.

[2] J. Akshya and P. L. K. Priyadarsini, “A hybrid machine learning approach for classifying aerial images of flood-hit
areas,” in Proc. ICCIDS, Chennai, Tamil Nadu, India, pp. 1–5, 2019.

(a) (b)

Figure 13: Evolutionary algorithm vs. graph convolution network (a) tour length (in kms) (b) execution time
(in secs)

1590 IASC, 2022, vol.31, no.3

[3] I. U. Khan, R. Alturki, H. J. Alyamani, M. A. Ikram, M. A. Aziz et al., “RSSI-controlled long-range
communication in secured IoT-enabled unmanned aerial vehicles,” Mobile Information Systems, vol. 2021, no.
1, pp. 1–11, 2021.

[4] S. Zhang, H. Tong, J. Xu and R. Maciejewski, “Graph convolutional networks: A comprehensive review,”
Computational Social Networks, vol. 6, no. 1, pp. 626, 2019.

[5] I. U. Khan, S. Z. Nain Zukhraf, A. Abdollahi, S. A. Imran, I. M. Qureshi et al., “Reinforce based optimization in
wireless communication technologies and routing techniques using internet of flying vehicles,” in Int. Conf. on
Future Networks and Distributed Systems, St.petersburg, Russia, pp. 1–6, 2020.

[6] J. Akshya and P. L. K. Priyadarsini, “Graph-based path planning for intelligent UAVs in area coverage
applications,” Journal of Intelligent & Fuzzy Systems, vol. 39, no. 6, pp. 8191–8203, 2020.

[7] H. Azpúrua, G. M. Freitas, D. G. Macharet and M. F. Campos, “Multi-robot coverage path planning using
hexagonal segmentation for geophysical surveys,” Robotica, vol. 36, no. 8, pp. 1144–1166, 2018.

[8] W. P. Coutinho, R. Q. D. Nascimento, A. A. Pessoa and A. Subramanian, “A branch-and-bound algorithm for the
close-enough traveling salesman problem,” INFORMS Journal on Computing, vol. 28, no. 4, pp. 752–765, 2016.

[9] A. Sonmez, E. Kocyigit and E. Kugu, “Optimal path planning for UAVs using genetic algorithm,” in Proc.
ICUAS, Denver, Colorado, USA, pp. 50–55, 2015.

[10] T. S. Alemayehu and J. H. Kim, “Efficient nearest neighbor heuristic TSP algorithms for reducing data
acquisition latency of UAV relay WSN,” Wireless Personal Communications, vol. 95, no. 3, pp. 3271–3285,
2017.

[11] P. Merz and J. Huhse, “An iterated local search approach for finding provably good solutions for very large TSP
instances,” in Proc, PPSN X. Dortmund, Germany, pp. 929–939, 2008.

[12] D. Karapetyan and G. Gutin, “Lin-Kernighan heuristic adaptations for the generalized traveling salesman
problem,” European Journal of Operational Research, vol. 208, no. 3, pp. 221–232, 2011.

[13] L. Xin, W. Song, Z. Cao and J. Zhang, “Step-wise deep learning models for solving routing problems,” IEEE
Transactions on Industrial Informatics, vol. 17, no. 7, pp. 4861– 4871, 2021.

[14] H. Taguchi, X. Liu and T. Murata, “Graph convolutional networks for graphs containing missing features,”
Future Generation Computer Systems, vol. 117, no. 5, pp. 155–168, 2021.

[15] W. L. Chiang, X. Liu, S. Si, Y. Li, S. Bengi et al., “Cluster-gcn: An efficient algorithm for training deep and large
graph convolutional networks,” in Proc. KDD’19, Anchorage AK, USA, pp. 257–266, 2019.

[16] A. Nammouchi, H. Ghazzai and Y. Massoud, “A generative graph method to solve the Travelling Salesman
Problem,” in Proc. MWSCAS, Springfield, MA, USA, pp. 89–92, 2020.

[17] J. Akshya and P. L. K. Priyadarsini, “Area Partitioning by Intelligent UAVs for effective path planning using
Evolutionary algorithms,” in Proc. ICCCI, Coimbatore, Tamil Nadu, India, pp. 1–6, 2021.

IASC, 2022, vol.31, no.3 1591

	Optimal Path Planning for Intelligent UAVs Using Graph Convolution Networks
	Introduction
	Related Works
	Methodology - GCN for Solving TSP
	Experimental Results
	Conclusion
	References

