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Abstract: According to the World Health Organization, the death rate of cardio-
vascular diseases ranks first in the composition of disease deaths. Research shows
that the heart rate can be employed as an important physiological parameter to
measure the health status of people’s cardiac health. A pressure pulse is formed
by the periodic beating and contraction of the heart, so its rate and the pressure
pulse signal have a distinct synchronous periodicity. Certain wavelengths of light
are known to be absorbed by the capillaries in the human skin, where this absorp-
tion fluctuates in accordance with the heartbeat as the capillary blood volume
changes. Therefore, the intensity of the reflected light on the skin surface changes
periodically, as manifested by a change of skin color. A dynamic target tracking
algorithm was used for tracking the region of interest (ROI) in real time, where
with this approach multiple targets can be monitored simultaneously. Our
approach uses Photoplethysmography (IPPG) imaging technology, in conjunction
with an ordinary camera to capture subtle periodic changes of intensity of
reflected light from the surface skin. We then use a Support Vector Machine
(SVM) algorithm for the video image data. The results of our research show that
heart rate information of subjects can be detected quickly and accurately even
when monitoring multiple targets.
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1 Introduction

Traditional Chinese medicine methods of heart rate detection include directly sensing the pulse by touch.
Using this method can roughly get the heart rate of the subject without any equipment and relies on a skilled
practitioner. Manual methods are prone to variations due to the differences in pulse characteristics and the
subjective nature of the practitioner’s interpretation of the pulse [1]. On the other hand, there are
applications of electronic devices for heart rate measurement and monitoring. For example, with the
Electrocardiogram (ECG), sensors detect physiological changes related to a heart rate and convert them
into electrical signals to obtain the rate. While the accuracy of ECGs is better than manual methods, ECG
measurements are limited in many ways. The devices are expensive and cumbersome, and the
measurement requires multiple external sensors, which is clearly not appropriate for newborns or patients
with extensive burns.
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In recent years, there is a growing interest in non-contact medical and health devices, especially in the
wake of the COVID-19 outbreak in 2019, so research into non-contact heart rate detection is of practical
importance. There are many non-contact methods. For example, Liang et al. [2] proposed a non-contact
human physiological signal detection method based on 2.4 GHz WiFi environment in their study. Lee
et al. [3] used pulsed radio ultra-wideband (IR-UWB) radar to obtain heartbeat information without contact.

In 1937, Hertzman [4] proposed Photoplethysmography (PPG), which is a non-invasive application that
can be used to obtain information about the change of blood volume in human blood vessels, and PPG has
been widely used in modern medical industry [5]. Heart rate detection based on video images, namely image-
Photoplethysmography (IPPG), is developed on the basis of traditional Photoplethysmography [6]. In this
study, we utilized IPPG technology to detect subtle changes of human skin color by using ordinary
cameras to determine the heart rate and other signals [7]. The optical properties of skin are mainly caused
by the absorption of light by subcutaneous fluid, hemoglobin, and melanin, etc. In comparison, the
absorption of light by blood is higher than that by other absorption factors. When the light enters the
subcutaneous tissue, the periodic fluctuation of blood will affect the intensity of light reflection, in which
the fluctuation of blood causes periodic changes in reflected light, while the light reflected by surrounding
tissues and bones hardly shifts [8]. By capturing the light from the imaging equipment, changes in the
reflected light signal can be observed [9] and the periodic components of the signal can be analyzed to
obtain physiological parameters related to the human body, such as heart rate, blood pressure, etc. [10].

Li et al. [11], Kai [12] and Sanyal et al. [13] used human facial images to study heart rate detection.
However, the innovation part lies in we propose a heart rate detection method based on video images of
the neck rather than facial images, and this approach has certain advantages. Firstly, facial capillaries are
numerous and thin, and it is relatively difficult to detect changes in the light signal reflected by the
capillary network. Moreover, facial nerves are prevalent across the face, and even slight changes in
human expression causes changes in blood vessel volume. Such changes will have a huge impact on the
experimental results. Secondly, during the COVID-19 outbreak, wearing a mask was purported to
minimize the risk of contracting or transmitting the novel Coronavirus [14]. With this in mind we must
consider the risk of taking off the mask to collect the facial video image data [15]. In addition, facial
image data is important personal privacy information, and collecting facial images increases the risk of
personal information leaks [16]. Capturing video images of the neck however, avoids these problems.
Moreover, the main arteries of the human body are located in the neck, therefore capturing video of the
neck region improves the accuracy of the experiment and constitutes the basis of the theoretical research
we put forward in this research.

One limitation of using facial images for non-contact heart rate research is that it requires the patient to
remain still while capturing the video image in order to avoid motion interference. When using the neck
region for similar research, relatively simple and mature edge detection algorithms are able to identify
and track the region of interest (ROI), thus avoiding motion interference issue.

The advantages of this study are mainly the combination of IPPG technology and SVM algorithms. By
using the dynamic target tracking algorithm, a specific region of the neck was selected as the ROI for the
experiment, and corresponding optimization was made to correct for motion interference during data
acquisition. Cao et al. [17] analyzed the effect of the Red Green Blue (RGB) video image channel for
non-contact heart rate measurement and the study showed that optimizing the RGB channel resulted in
higher measurement accuracy. Therefore, in this study, we also employed RGB channel optimization. In
order to eliminate the noise in pulse wave signals and improve the accuracy of the experiment, an SVM
algorithm was adopted to process the selected RGB channel data. The effects of environment and
hardware parameters, such as illumination, camera frame rate and resolution, on the measurement
accuracy are also studied. The measurement accuracy of the system was verified by experiments.
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2 Data and Methods

2.1 IPPG Principles

Lambert–Bill’s Law

When a monochromatic light with a wavelength of λ, light intensity of IO is irradiated vertically into a
medium, the transmitted light intensity through the medium is:

I ¼ Ioe
�eð�ÞCL (1)

where e �ð Þ is the absorptivity of the medium under the incident light of wavelength λ. Higher values of e �ð Þ
indicate higher absorption of a particular wavelength of light. C is the percentage of medium, which is a
constant and L is the length of light travels through the medium.

Oxygenated hemoglobin in the blood in human blood vessels absorbs light in some wavelength ranges.
As the heart beats periodically, the percentage of oxygenated hemoglobin in the vascular blood changes,
which affects the absorption and reflection of light by the blood. Thus, by detecting and characterizing
the periodic color changes in the skin the heart rate can be determined.

2.2 Data Acquisition and Processing

In IPPG measurement, certain regions of the human body are typically selected as signal acquisition
ROI, considering the strength of movement noise generated by muscles in the static or moving state of
the human body, vascular distribution, etc.

In 2008, Verkruysse et al. [18] selected the face as the ROI for image-based photoelectric volume
tracing. In their study they selected various segments of the facial area to extract the pulse wave signal.
The results show that in general the frontal facial area produced a more distinct pulse wave signal with
less noise, and that the entire facial area in aggregate was useful to extract additional information such as
the breath rate. Their work also concluded that if the ROI area is very small, such as a localized point on
the forehead the signal noise tends to be larger.

The experiment uses the camera that comes with the mobile phone, the video size is 640 * 480, and the
format is set to 30 frames per second (fps), and video image data was subsequently stored in AVI format.
During video image acquisition, the experimental subjects sat approximately 0.5 m from the camera so as
to occupy the full video frame, and were advised to avoid large movements as much as possible during
the image capture. The actual heart rate was measured synchronously with a fingertip pulse oximeter. In
order to test whether the research plan we designed meets the requirements, 10 subjects of different
genders and ages were selected. Each participant underwent multiple video capture trials and synchronous
heart rate comparison tests.

According to physiological data, skin melanin absorbs light in the 460–560 nm region of the spectrum,
and fluid absorbs a lot of ultraviolet and infrared rays. Most of the green light and yellow light pass through
the skin and will not be reflected back after entering the blood, the green light changes more obviously after
passing through the blood. Therefore, when extracting the signal from the video, it is best to select the pixel
green channel value. The experimental results are shown in Figs.1 and 2.

Fast Fourier Transform (FFT) is then performed using the time domain of green channel signal, and the
power spectrum is obtained. The position with the highest value in the signal spectrum represents the
frequency of the heart rate and respiratory rate we measured.
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2.3 SVM

In 1995, Zhang et al. [19] presented a supervised learning model, namely a Support Vector Machine
(SVM). The SVM is a basic algorithm, and has excellent learning ability and generalization performance.
As a result, SVM have always attracted much attention in the field of machine learning, and its related
basic concepts are discussed as follows.

Figure 1: Green channel pixel value by video frame

Figure 2: Frequency power spectrum
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Given a set of labeled training samples x1; y1ð Þ; x2; y2ð Þ;…; xn; ynð Þf g, among them xi 2 Rn,
y 2 �1; 1f g. Once the vector W and the offset B meet the formula (2), then we consider previously
obtained data x1; y1ð Þ; x2; y2ð Þ;…; xn; ynð Þf g as linearly separable. The meaning of the Eq. (2) is as
follows,

w � xi þ b � 1 if yi ¼ 1

w � xi þ b � �1 if yi ¼ �1 (2)

where “�” means the dot product of the vector. Since all the data in the sample completed before training
conforms to the Eq. (2), we combine the conclusions to get a new formula,

yi w � xi þ bð Þ � 1; i ¼ 1; 2;…; n (3)

Suppose an optimal hyperplane can divide x1; y1ð Þ; x2; y2ð Þ;…; xn; ynð Þf g linearly, then we find a plane
with the largest distance denoted as w0 � xþ b0 ¼ 0, that is

min� wð Þ ¼ 1

2
k w k2

s:t:yi w � xi þ bð Þ � 1 (4)

In order to get the best data, we make changes to the Eq. (4), the Lagrange function can be introduced
and the optimal classification function can be solved according to the Kuhn-Tucker condition, namely

L ¼ 1

2
k w k2 �

Xn

i¼1
aiyi w � xi þ bð Þ þ

Xn

i¼1
ai

f xð Þ ¼ sgn
Xn

i¼1
yia

�
i xi � xð Þ þ b�

n o
(5)

where, ai > 0 is Lagrangian coefficient.

Generally speaking, the general idea of SVM is to obtain an interval maximized hyperplane in the
feature space. Therefore, we want to get the corresponding classification function, we must choose the
function that meets the Mercer conditions, namely

f xð Þ ¼ sgn
Xn
i¼1

yia
�
i K xi � xð Þ þ b�

( )
(6)

Among them, the Function K xi; xj
� �

is called Kernel Function.

With the continuous deepening of research, various models and methods extended by support vector
machines have been obtained [20–23], and these have been used in many places. We can also use it in
our daily work. Of course, this algorithm is used in the core idea of this research.

3 Experimental Verification and Result Analysis

3.1 The Research Methods

A method based on SVM is proposed to track the peak of heart rate spectrum. This method regards the
tracking of peak of heart rate spectrum as a pattern classification task, and the statistical characteristics of
multi-channel IPPG signals are fully considered in this process. This article uses the method of heart rate
signal peak tracking and the method of SVM, namely, peak discovery followed by peak selection.

The detection of spectral peaks is mainly used to locate all spectral peaks in the IPPG signal spectrum.
First set the threshold to K according to the conditions, namely
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k ¼ n �max zj jf g (7)

where, z refers to the IPPG signal spectrum of each channel after noise reduction; n is a parameter that
controls the size of the threshold; max �f g is the maximum value in the obtained formula, here is what we
want to get is the crest factor of the three-channel signal spectrum.

The threshold is then used to form a candidate spectrum peak set, such that, when the detected peak
value of the spectrum is higher than the initially set threshold, this value will be saved for the next step
of comparison. If it is lower than the threshold, this value will be excluded.

The ultimate goal of using this method is to select the most accurate heart rate signal spectral peak from a
set of spectral peaks that meet the threshold. The heartbeat is periodic, and there is only one spectral peak
corresponding to the true heart rate in a time period. In order to distinguish the correct heart rate peak
from the wrong heart rate peak, we need to find the particularity of the correct heart rate peak, and then
perform statistical analysis.

1. After comparing the detected correct heart rate peaks, we found that most of the heart rate peaks have
the largest peak coefficient among the peaks detected in the corresponding time period.

2. Among the detected correct heart rate peaks, the distance between most of the heart rate peaks and the
correct heart rate peak in the previous time period is the smallest.

According to some of the characteristics of the correct heart rate spectral peak mentioned above, the
detected spectral peak can be distinguished according to the crest factor and the peak-to-peak value of the
adjacent time period. Assuming that there are L spectrum peaks in the detected spectrum peaks that meet
the initial threshold size, then the coefficient of the spectrum peaks that meet the threshold can be
expressed as follows:

Ci ¼ coei
coemax

����
���� (8)

where coei is the coefficient i of the candidate spectral peak, and coemax represents the maximum coefficient
in the set of candidate spectral peaks.

The distance of spectral peaks that meet the initial threshold in adjacent time periods can be
expressed as:

Di ¼ fi � fprev
�� ��; i ¼ 1;…; L (9)

where fi is the frequency i of the first candidate spectral peak and fprev represents the estimated heart rate
frequency in the previous window.

SVM has good robustness and accuracy in signal processing, and can be used in this research to deal
with the problem of spectral peak classification. In addition, because of the specific properties of the
SVM decision surface, we can extend it to more applications. In this paper, the coefficient ratio and
distance between candidate peaks are extracted from the set of candidate peaks. Secondly, perform the
labeling operation, and mark the correct peak of the heart rate spectrum as “1” and the wrong peak as
“0”. Then start learning according to the characteristics of the correct spectral peaks to find the support
vector. Finally, the optimal hyperplane is determined according to the above support vectors.

In the testing stage, the coefficient ratio and the distance between the candidate spectral peaks should be
selected first, and the feature vectors should be constructed. Then we can use the trained classifier to detect
the correct peak of the heart rate spectrum, which corresponds to the true heart rate value. The position of the
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spectral peak corresponding to the true heart rate value in its time period can be divided into three categories,
namely

Case 1: If only one heart rate peak is filtered out by the SVM detector, then this peak is the heart rate peak
corresponding to the current time period, and the corresponding frequency is recorded as fHR.

Case 2: If multiple heart rate spectrum peaks are detected by the SVM detector, the spectrum peak
closest to the last heart rate spectrum peak of the adjacent time period is selected from the spectrum
peaks of the corresponding period, and the corresponding frequency is recorded as fHR.

Case 3: If the correct heart rate peak is not obtained through the SVM detector, then we believe that the
signal extracted in the corresponding time period contains interference noise such as motion. Cannot get the
correct frequency corresponding to the peak of the spectrum.

Based on the above-mentioned various situations, we have proposed a prediction mechanism that can
accurately locate the peak of the heart rate spectrum. The corresponding frequency is recorded as fHR.

This mechanism can be expressed as,

fHR ¼
fprev þ 0:02 if fpredict � f prevpredict . 0
fprev � 0:02 if fpredict � f prevpredict , 0
fprev if fpredict � f prevpredict ¼ 0

8<
: (10)

where fpredict represents the frequency corresponding to the predicted heart rate spectrum peak of the current
time window and f prevpredict represents the frequency corresponding to the predicted heart rate spectrum peak
of the previous window. The values for fpredict and f prevpredict are obtained by using a smoothing algorithm,
which uses the frequencies corresponding to the estimated heart rate spectrum peaks from the previous
10-time windows.

If the correct heart rate peak is obtained, the frequency fHR corresponding to the peak of the spectrum can
be obtained. According to the calculation rules of the heart rate, the heart rate BPMest in the current time
period can be expressed as.

BPMest ¼ fHR � 60 (11)

where BPMest is the number of heart beats per minute.

3.2 Result Analysis

For evaluating the performance of the SVM based algorithm, we chose our own data set to test the
effectiveness of the algorithm. In this dataset there are 15 sets of data. During the experiment the subjects
sat 1 meter from the camera, and remained still so as to avoid large movements. The signals were
collected from healthy men age 18–35 years old with light skin, and IPPG signal was collected from the
tester’s wrist by a pulse oximeters with green light LED (515 nm) distributed at different locations. The
subjects also wore a finger clip oximeter which recorded the heart rate during the video image
acquisition. The synchronous motion acceleration signal was collected from the wrist using a triaxial
accelerometer, and ECG signals were collected from the tester’s chest using ECG electrodes and the ECG
readings were considered as the actual heart rate. All the collected signals were sent wirelessly to nearby
mobile devices which included computers and mobile phones.

In the simulation experiment, the input data is divided into a continuous series of overlapping time
windows each with a descrete 8-s time interval and a 2-s time incement step-size between adjacent
windows. In the same time period, estimate the current heart rate value through the obtained IPPG signal
and motion acceleration signal, and the continuous heart rate is obtained by aggregating the heart rates
from the sliding time windows.
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The Least Mean Square Adaptive Filter (LMS-ANC) is used to eliminate some motion noise in multi-
channel IPPG signal, whose filtering order is 25 and optimized value l ¼ 0:005. In the objective function of
sparse signal reconstruction model, its weight coefficient s ¼ 1. An M-FOCUSS algorithm using a
� ¼ 10�10 regularization parameter was used to determine the optimal solution. The parameters of the
spectral peak selection method based on SVM are as follows:

1. the parameters of the formula f ¼ 0:7

2. the order of the smoothing algorithm is 2

3. the smoothing parameter is 20

In addition, this study selected 5 training data sets (training datasets) and 5 test data sets (test datasets) for
training the classifier. All training data sets are then used to evaluate the overall performance of the algorithm.

This paper uses three evaluation criteria to evaluate the function of each heart rate measurement
algorithm, namely, average absolute error (Error 1), and Bland-Altman method and Pearson correlation
coefficient. At the same time, the generalization performance of SVM classifier is evaluated by 10%
discount cross validation.

Tab. 1 list the average absolute error (Error 1) of the algorithms respectively. In these tables we compare
an SVM based heart rate measurement algorithm with several other mainstream algorithms, such as GREEN,
ICA and CHROM [24–27]. The results show that on average, the SVM-based algorithm performs better than
all other algorithms, although the ICA and CHROM perform marginally better for some specific datasets.

Table 1: The average absolute Error of different heart rate measurement algorithms (Error 1)

Algorithm

Dataset GREEN ICA CHROM SVM

Set 1 2.40 2.40 1.80 0.40

Set 2 3.00 1.90 1.00 1.90

Set 3 1.50 0.80 2.20 0.60

Set 4 2.50 1.60 0.40 1.70

Set 5 2.80 2.70 2.00 2.10

Set 6 2.00 2.00 0.50 2.00

Set 7 0.70 0.80 1.40 0.80

Set 8 3.00 2.70 0.90 0.80

Set 9 1.70 1.70 0.30 0.50

Set 10 1.40 2.40 1.90 0.90

Set 11 3.30 1.90 1.00 0.40

Set 12 1.30 2.30 1.30 0.90

Set 13 2.90 0.90 0.90 1.40

Set 14 1.80 2.90 2.30 1.50

Set 15 3.40 2.80 1.10 2.10

Average 2.42 2.25 1.26 1.20
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It can be seen from the observation in the Tab. 1 that the estimated heart rate curve of this algorithm
basically coincides with the real heart rate curve, while the estimated heart rate curves of GREEN
algorithm and ICA algorithm have incorrect heart rate estimates at some time points. For example, in the
period of 0–50 s, the estimated heart rate value of CHROM algorithm is greatly deviated from the real
heart rate value. In addition, in the time periods of 110–116 s, 140–149 s, 210–225 s and 263–270 s the
estimated heart rate value of SVM algorithm also has obvious deviation from the actual heart rate value.
As the performance of this algorithm is completely superior than GREEN, ICA and CHROM.
Furthermore, the estimated heart rate 110–116 s, 140–149 s, 210–225 s and 263–270 s, the estimated
heart rate value of SVM algorithm also has obvious deviation from the real heart rate value. Since the
performance of this algorithm is completely better than that of GREEN, ICA and CHROM. Pearson
correlation coefficient is the linear correlation between real heart rate and estimated heart rate through a
scatter plot. Its evaluation criteria: the greater the absolute value of the correlation coefficient, the stronger
the correlation. The Fig. 3 shows the results of correlation analysis on the test data. Most of the data
points fall on the linear line, and the correlation coefficient is 0.9637, indicating a strong correlation.

4 Conclusion

Heart rate value can be used as an important physiological parameter to measure human health, and it
plays an important role in disease detection and prevention. The traditional tactile method of heart rate
detection relies on skilled medical personnel to perform, and may be inconvenient for the patient. This
article introduces a non-contact real-time heart rate measurement method based on the principle of IPPG.
This method can obtain a more accurate heart rate value. The important thing is that it does not need to
touch the human body and will not interfere with people’s daily life. It provides a lot of convenience for
modern medical treatment. In this paper, we describe an SVM-based algorithm to optimize the spectral
peak tracking method and improve the generalization ability and robustness of non-contact heart rate

Figure 3: Pearson correlation coefficient
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measurements. The algorithm divides motion noise reduction in multi-channel IPPG signals into two parts.
First, a principal component analysis method (PCA) is used to process the motion acceleration signal to
obtain the motion noise-related reference signal, and then band-pass filter (BPF) is used to filter the
motion noise. The compression and the row thinning characteristic of the spectrum matrix are combined
to form a sparse signal reconstruction model, and the objective function of the model is optimized by a
FAST-ICA method. Then the down-step work to remove the motion noise is completed by spectral
subtraction. Finally, using SVM-based heart rate spectrum peak tracking method, it can detect the
spectrum peak corresponding to the heart rate in the optimized IPPG signal.

This paper tests the performance of the heart rate measurement algorithm based on SVM. The average
absolute error (Error1) of the algorithm on 15 sets of data is 1.20 beats/min, the correlation coefficient is
0.9637. In addition, the heart rate measurement of the SVM algorithm based on SVM describe in this
paper is compared with several well-known algorithms. From the results, we can observe that the SVM
algorithm is consistent and provides an accurate real heart rate estimate on most datasets. Hence, the
proposed algorithm effectively removes motion noise in multi-channel IPPG signals and achieves
accurate measurements of the heart rate. Meanwhile, because less manual adjustment parameters are
involved in the heart rate spectral peak tracking stage, and the SVM classifier is used, compared with the
traditional IPPG, the SVM-based algorithm proposed in this paper is more robust and adaptable to the
environment, and has higher accuracy.
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