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Abstract: Cell-Free massive MIMO (mMIMO) offers promising features such as
higher spectral efficiency, higher energy efficiency and superior spatial diversity,
which makes it suitable to be adopted in beyond 5G (B5G) networks. However,
the original form of Cell-Free massive MIMO requires each AP to be connected
to CPU via front haul (front-haul constraints) resulting in huge economic costs
and network synchronization issues. Radio Stripe architecture of cell-free mMI-
MO is one such architecture of cell-free mMIMO which is suitable for practical
deployment. In this paper, we propose DNN Based Parallel Decoding in Radio
Stripe (DNNBPDRS) to decode the symbols of User Equipments (UEs) in the
uplink in a parallel fashion to reduce computational complexity by reducing delay
in processing. Moreover, to solve the issue of Access Point (AP) selection in radio
stripe networks, we propose a Channel link-based AP selection (CLBAPS) algo-
rithm to choose the best APs in terms of channel link quality. The proposed
DNNBPDRS framework not only improves Symbol Error Rate (SER) perfor-
mance when compared to counterparts but is also proved to be comparatively
far lesser computational complex. Moreover, the numerical result indicates the
proposed AP selection algorithm CLBAPS performs better than random selection
of AP in radio stripe networks.

Keywords: Cell-free massive MIMO; deep learning decoding; beyond 5G; radio
stripe; AP selection

1 Introduction

Massive MIMO (mMIMO) is a key wireless physical layer technology in 5G and beyond 5 G (B5G)
networks [1], given the features it offers, very high spectral efficiency (SE) by at least ten times [2],
improve the radiated energy efficiency [3–6]. However, the adoption of mMIMO (in the current cellular
network) faces two major issues. Firstly, as more numbers of antenna is being installed at the base station
(mMIMO), inter-cell interference is becoming major bottle neck, this is because inter-cell interference is
inherent to cellular paradigm [7]. Secondly, mMIMO suffers from large variations in signal-to-noise ratio
between cell-center and cell-edge users [8].

The above-mentioned issues restrict the adoption of mMIMO in beyond 5G (B5G) networks, which is
resolved by Cell-Free mMIMO network wherein Central processing unit (CPU) is connected to access point
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(APs), which jointly serves the given set of User Equipments (UEs) (or all UEs) in the network [9–11].
Authors in [11] discuss the different architecture of cell-free massive MIMO, where they claim
centralized implementation of cell-free massive MIMO ‘Level 4’, which performs best in terms of
spectral efficiency compared to other architectures. Here, all APs sent their respective received signals in
the uplink to CPU over parallel front-haul, which process all the received signals., this requires dedicated
front-haul and power supply to each AP, which imposes huge economic costs. Moreover, attaining
network synchronization in Cell-Free mMIMO network would be extremely challenging since each AP is
connected to CPU over parallel front-haul.

One promising architecture for practical implementation of Cell-free network is using radio stripe [12].
Radio stripes can be easily deployed at public place, stadium, transport (train, bus, etc.) to provide truly
ubiquitous connectivity everywhere. Moreover, radio stripe is extremely flexible to deploy, does not
require highly trained personnel, needs one connection either to fronthaul or directly to CPU [12].

1.1 Related Works

Given the architecture of radio stripe, where APs are connected sequentially and CPU being connected
to last AP (daisy chain architecture) the sequential processing becomes obvious choice. Therefore, authors
[13] propose sequential uplink processing for cell-free massive MIMO based on radio stripe. Here, each AP
computes the local channel estimate in the uplink, make soft estimate of the transmitted signal and thereby
forwards local CSI estimate, soft estimate and error statistic to next AP. Upon receiving the information from
the previous AP, the AP improves its own soft estimate. This sequential processing goes on till the last AP,
the final estimate is forwarded to CPU for final decoding. Authors [13] claim the proposed processing
mechanism achieves comparable performance to ‘Level 4’, while using 90% less signaling in the front-
haul. In [8], authors propose Optimal Sequential Linear Processing (OSLP), an uplink sequential
processing algorithm which they prove optimal both in the maximum spectral efficiency sense and
minimum Mean Square Error (MSE) sense.

However, sequential processing leads to higher processing latency [14]. Therefore, authors in [14]
propose two parallel processing schemes in the Radio Stripe network, namely interference-aware MR
processing and distributed regularized zero-forcing (D-RZF). Authors [15], propose Q-LMMSE, which
implements MRC processing leading to low front-haul loading, simple AP hardware and fast parallel
computations.

1.2 Motivation

All works discussed so far in cell-free massive MIMO based on radio stripe [8,13–15] has huge
computational needs (for example channel estimation), since next generation network will involve large
numbers of APs and UEs. These high computational costs can only be reduced by the application of
Deep Learning (DL). DL replaces the complex computations with the trained model, which reduces the
complexity considerably.

Authors in [16] propose DeepSIC, which is a data-driven technique for detecting symbols in the Multi-
User MIMO (MU-MIMO) scenario. It is based on an iterative SIC algorithm, a MIMO-based detection
scheme. Results show it outperforms Iterative SIC in the presence of CSI uncertainty. Since it is an
iterative approach, detection is carried out in iteration in a single base station (BS). Our other works on
interference cancellation are for Software Defined Radio (SDR) platform [17]. Motivated by the above
[16], in our previous work [18], we propose DNN-based distributed sequential uplink processing
(DBDSUP) for detecting symbols in the uplink of Cell-Free massive MIMO System Based on Radio
Stripe. Here, each AP consists of K (numbers of UEs) parallel Soft Estimate Network (SEN), which
computes the conditional distribution of each user at each AP (each AP carries out a single iteration).
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The conditional distribution of each user consists of the estimation of each symbol in the constellation. The
Symbol Error Rate (SER) of the proposed mechanism ‘DBDSUP’ is evaluated. However, the processing here
is sequential.

In order to take advantage of DL (to reduce computational complexity) and parallel processing (to
reduce latency) there is need to develop a mechanism which is based on DL and does parallel processing.

Moreover, next-generation radio stripe network would involve large numbers of APs (typically in the
range of 1000 s in particular give area like train, the bus as shown in Fig. 2), if all APs sequentially
decodes transmitted symbol of given user, it would impose huge complexity on the system. Therefore, it
becomes extremely important to develop a mechanism for users to select APs in Cell-free massive MIMO
based on radio stripe.

Authors in [19] propose an effective channel gain-based algorithm in massive cell-free MIMO to assign
users to each AP sequentially. Here author considers two metrics, first measure the channel quality of each
user to all APs, and another one is to calculate the effective channel gain between every user and AP in the
system, which reduces interferences and leads to a higher sum rate. Other works on AP selection focus on
Machine learning (ML) [20].

This paper aims to propose a deep learning-based parallel decoding mechanism and AP selection
algorithm for cell-free massive MIMO based on radio stripe.

1.3 Contributions

The contribution is stated in the points below.

� We propose DNN based Parallel Decoding in Radio Stripe (DNNBPDRS). This has two benefits,
firstly, DNN processing (reduces the computational complexity) and secondly, parallel processing
reduces the latency, making it very attractive for beyond 5G (B5G) technology (radio stripe is
slated to be 6th generation wireless technology).

� To solve the issue of AP selection in the radio stripe network. We propose a Channel link-based AP
selection (CLBAPS) algorithm to choose the best APs (in terms of channel link quality).

The rest of the paper is organized as follows. In Section 2, we discuss the network model of radio stripe .
Section 3, elaborate about different aspect of proposed DNN based Parallel Decoding in Radio Stripe
(DNNBPDRS). In Section 4, a detailed description of the proposed AP selection algorithm, Channel link-
based AP selection (CLBAPS), is detailed. Simulation setup, training of neural network and numerical
results are discussed in Section 5. Finally, the article is concluded in Section 6.

2 Radio Stripe Network Model of Cell-Free Massive MIMO

Fig. 1 shows ‘radio stripe’ network model, which consists of L APs (all APs are connected sequentially
as shown in Fig. 1), with CPU being connected to the last AP (Lth AP). The fronthaul connections are
given by AP1->AP>………….->APL->CPU. K single antenna User Equipments (UEs) are randomly
distributed. Each AP consists of N numbers of antenna. As shown in Fig. 1, radio stripe is easy to deploy
since it is light in weight and extremely flexible to deploy, which makes it possible to be deployed in any
place like office, public place, stadium, etc., as also depicted in Fig. 2.

The channel gain between kth UE and nth antenna of lth AP is given by [21],

glnk ¼ L�b
lnkF

1
2
lnk hlnk (1)
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Llnk ¼ dlnkj jj j is the Euclidean distance between kth UE and nth antenna of lth AP, b is the path-loss

exponent. Flnk ¼ 10
rlnk zlnk

10 is log-normal shadowing correlation factor, with a standard deviation of rlnk
and zlnk ¼

ffiffiffi
d

p
alnk þ

ffiffiffiffiffiffiffiffiffiffiffi
1� d

p
blnk , where alnk and blnk ~ N(0, 1) are i.i.d random variables (rvs) which

represents shadow fading effect at UE k and nth antenna in lth AP and d is the transmitter-receiver
shadow fading correlation coefficient. hlnk is the small-scale channel fading between kth UE and nth

antenna of lth AP and follows independent but not identically distributed (i.n.d) Nakagami-Mlnk

distributions with shape and spreading parameters Mlnk and �lnk . Since hlnk has Nakagami distribution

hence hlnkj j2 has gamma distribution, i.e. hlnkj j2 ~G (alnk ; blnk), where alnk ¼ Mlnk is shape parameter
and blnk =

�lnk
Mlnk

is scale parameters respectively.

Figure 2: Different scenarios of radio stripe deployment

Figure 1: Radio stripe network model
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It is assumed that Llnk and Flnk are known. Therefore, we have glnkj j2 ~ G(alnk ; b0lnk) where

b0lnk ¼ blnk
Llnk�2bFlnk

¼ blnk Llnk
2b

Flnk
¼ �lnk Llnk2b

Mlnk Flnk
.

The signal received at lth AP is given by,

yl ¼ glnk S þ Nl (2)

where S is transmitted symbol vector and consists of transmitted symbol from K UEs which is
S = [s1, s2, …,sK]. N2 RN � 1 is the noise vector at the lth AP whose entries have distribution with zero
mean and variance of r2, with r2 being noise power.

If number of antennas in each AP is 1 (N =1), Eq. (1) can be modified as

glk ¼ L�b
lk F

1
2
lk hlk (3)

As suggested in literatures [8,13–15], sequential processing is done in radio stripe network.
The effective channel estimate of kth UE channel at the Lth AP [8] is given below

ĝk ¼ ĝ1k ; ĝ2k ; ĝ3k ; . . . . . . ::ĝLk½ � (4)

3 Deep Neural Network-Based Parallel Decoding in Radio Stripe

In this section, we discuss about, Iterative SIC which is the background for our works, the motivation
behind applying deep learning in radio stripe, proposed parallel processing radio stripe network model, then
we discuss about Soft Estimate Network (SEN), which forms the core of the proposed parallel decoding
framework. Lastly, we discuss about the proposed algorithm.

3.1 Iterative SIC

In this subsection, we briefly discuss about iterative Soft Iterative Cancellation (SIC) [22]. Iterative Soft
Interference Cancellation (SIC) is a multi-user detection technique that combines parallel (multi-stage)
interference cancellations with soft decoding. In a general sense, iterative SIC is an iteration-based
detection scheme wherein each iteration, two operations are carried out in parallel for each user, namely
Interference cancellation and soft decoding. Considering Kth user and cth iteration, during the interference
cancellation stage, the expected values and variances of {su}u ≠ k (interfering symbols) are computed
based on {P̂ c�1ð Þ

u }u ≠ k. Pk
(c) is the estimated conditional distribution of kth user symbol sk. Entries of Pk

(c)

are the estimate of the distribution of sk for each possible symbol in the constellation. {P̂ c�1ð Þ
u }u ≠ k is the

estimated conditional distribution of interfering symbols obtained in the previous iteration. The expected
value of interfering user in cth iteration is computed as

e c�1ð Þ
u ¼

X
rw2 S

rw ðP̂ c�1ð Þ
u Þw (5)

where {rw}
W
w = 1 are the indexed elements of the constellation set CS. The variance of interfering symbols

is given by,

V c�1ð Þ
u ¼

X
rw2 CS

rw � e c�1ð Þ
u

� �2
P̂ c�1ð Þ
u

� �
w

(6)

The contribution of the interfering symbols from the received signal y is canceled by replacing it with
mean {eu

(c-1)} and subtracting the resultant term. Considering hu the u
th column of H the elements of H with

respect to user u. where H is channel matrix of all K user where each column represents one user channel
vector. Interference canceled output of the channel is given by,
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G cð Þ
k ¼ y�

X
u 6¼k

hu e
c�1ð Þ
u (7)

¼ hk sk þ
X
u 6¼k

hu ðsu � e c�1ð Þ
u Þ þ N (8)

The second step carried out in parallel for each user is soft decoding. The bijective transformation of

y is G cð Þ
k , such that each possible value of y there is one unique value in G cð Þ

k : Therefore, Psk jy ðrwjyÞ ¼
P
sk jG cð Þ

k
ðrwjG cð Þ

k Þ for each rw ∈ CS. Therefore, the conditional distribution of sk given y is approximated

from the conditional distribution of G cð Þ
k given sk using Bayes theorem. Each symbol is equiprobable.

Conditional distribution is computed as,

P̂ cð Þ
k

� �
w

¼
P
G cð Þ

k j sk ðG cð Þ
k jrwÞ

P
r0w2 S P

G cð Þ
k j sk ðG cð Þ

k jr0wÞ
(9)

Symbols are decoded after the final iteration such that symbol which maximizes estimated conditional
distribution is decoded as the transmitted symbol for each user.

ŝk ¼ argmax P̂ Cð Þ
k

� �
w

(10)

where w 2 {1, 2, …….., W}

The algorithm in steps is given in our previous works [18].

3.2 Motivation Behind Applying Deep Learning in Radio Stripe

Iterative SIC is leveraged to perform data-driven detection “DeepSIC” in Multi-User MIMO
(MU-MIMO) [16], motivated by this work, in our last work, we proposed DNN-based distributed
sequential uplink processing (DBDSUP) in cell-Free massive MIMO based on radio stripe by exploiting
data-driven iterative SIC. However, it considers sequential processing leading to higher latency, which
can be reduced given the processing is carried out in a parallel fashion. Thus, we propose DNN based
Parallel Decoding in Radio Stripe (DNNBPDRS), which carries out parallel processing in radio stripe
networks.

3.3 Proposed Parallel Processing Network Model

Fig. 3 shows a simplified proposed parallel processing network model.

As shown in Fig. 3, each AP consists of K-parallel Soft Estimate Network (SEN) (which is discussed in
detail in Section 3.4). As opposed to sequential processing, here each AP process the received signal
simultaneously. The signal received at AP1, AP2, ……….., APL is given by y1, y2, …….., yL.

3.4 Soft Estimate Network

As shown in Fig. 4, Soft Estimate Network (SEN) is a classification-based Neural Network. As
explained above, iterative SIC carries out two operations in parallel for each user, namely, interference
cancellation and soft decoding. In particular, for cth iteration and kth user soft decoding estimate P̂ cð Þ

K is a
classification task since entries of P̂ cð Þ

K is an estimation of the distribution of kth user symbols for each
symbol in the constellation with the dimension of P̂ cð Þ

K being RB.
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SEN replaces these complex computations for each iteration. Moreover, interference cancellation and
soft decoding are dependent on the underlying channel model. However, SEN does not require any
knowledge of the channel model since it is based on dedicated neural network which is trained for
different channel scenarios.

Moreover, the inputs to SEN are yl and I
c�1ð Þ

k . Here yl and I
c�1ð Þ

k are the received signal at the lth AP and
interference coefficient of the kth user during cth iteration, respectively.

The last layer of SEN is the Softmax layer; it consists of neurons equal to the numbers of symbols in the
constellation. For example, if Binary Phase shift Keying (BPSK) is employed, then the Softmax layer
consists of 2 (B) neurons.

Figure 3: Simplified proposed parallel decoding mechanism

Figure 4: Soft estimate network (SEN)
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3.5 Deep Neural Network-Based Parallel Decoding in Radio Stripe (DNNBPDRS)

In this subsection, we discuss about the proposed parallel decoding scheme, DNN based Parallel
Decoding in Radio Stripe (DNNBPDRS). Fig. 5 shows the K parallel SENs in each AP. As shown in
Fig. 5, AP1 receives y1, which forms one of two inputs to SEN1,1, SEN2,1, ……….., SENK,1 (first
subscript denotes the kth user and the second subscript denotes the lth AP) while the second input to
SENs are interference coefficients I 0ð Þ

1 , I 0ð Þ
2 , …………, I 0ð Þ

K and takes the value of 1
B [16], which are

given by

I 0ð Þ
1 ¼ P̂ 0ð Þ

2 ; P̂ 0ð Þ
3 ; ………; P̂ 0ð Þ

K

h i
(11)

I 0ð Þ
2 ¼ P̂ 0ð Þ

1 ; P̂ 0ð Þ
3 ; ………; P̂ 0ð Þ

K

h i
(12)

Considering SEN1,1, the SEN belonging to UE 1 at AP1, it receives y1 and I 0ð Þ
1 to produce P̂ 1ð Þ

1 ,
the conditional distribution of UE 1. Similarly, SEN2,1 and SEN3,1, produces P̂ 0ð Þ

2 and P̂ 0ð Þ
3 respectively

as shown in Fig. 5. Likewise, SEN1,2 in AP2 accepts inputs y2 and I 1ð Þ
1 to produce P̂ 2ð Þ

1 , where I 1ð Þ
1 is

given by

I 1ð Þ
1 ¼ P̂ 1ð Þ

2 ; P̂ 1ð Þ
3 ; ………:P̂ 1ð Þ

K

h i
(13)

In a similar way, all SENs in all L APs compute respective conditional distribution. To sum the
conditional distribution of L APs, L−1 numbers of User-Wise Conditional Distribution Combiner
(UWCDC) is required.

Finally, the UWCDC performs the following operations,

Ŝ1t ¼ P̂ 1ð Þ
1 þ P̂ 2ð Þ

1 þ . . . . . . . . . :þ P̂ Lð Þ
1 (14)

Figure 5: Processing in proposed radio stripe architecture
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Ŝ2t ¼ P̂ 1ð Þ
2 þ P̂ 2ð Þ

2 þ . . . . . . . . . :þ P̂ Lð Þ
2 (15)

and,

Ŝkt ¼ P̂ 1ð Þ
k þ P̂ 2ð Þ

k þ . . . . . . . . . :þ P̂ Lð Þ
k (16)

where, Ŝ1t, Ŝ2t and Ŝkt are the total added conditional distribution of 1st, 2nd and kth user and has the
dimension of 1 � B (B is the size of constellation). For instance, if BPSK is considered then B = 2.

For each user the CPU performs the operation given below

Ŝ1 ¼ max
cs 2 þ1; �1f g

Ŝ1t
� �

(17)

Ŝ2 ¼ max
cs 2 þ1; �1f g

Ŝ2t
� �

(18)

and,

Ŝk ¼ max
cs 2 þ1; �1f g

Ŝkt
� �

(19)

Above max operations, choose the symbol from the constellation which has the maximum value. For
example, if BPSK constellation is considered and Ŝ1t ¼ 0:15; 0:85½ �, then Ŝ1 ¼ 0:85 and the decoded
symbol is +1.

The total numbers of SENs present in radio stripe is given by NSEN.

NSEN ¼ KL (20)

The proposed DNN based Parallel Decoding in Radio Stripe (DNNBPDRS) is given in steps below.

Algorithm 1: DNN based Parallel Decoding in Radio Stripe (DNNBPDRS)

1. Iteration-1 (Carried out in AP1): Received signal at AP1 is y1. y1 is concatenated with an initial guess of

conditional distribution P̂ 0ð Þ
k and fed to SEN1,1, SEN2,1, …………, SENK,1, which produces

P̂ 1ð Þ
1 ; P̂ 1ð Þ

2 ; . . . . . . . . . . . . :; P̂ 1ð Þ
K respectively and passed to UWCDC 1.

2. Iteration-2 (Carried out in AP2): Received signal at AP2 is y2. y2 is concatenated with an initial guess of

conditional distribution P̂ 0ð Þ
k and fed to SEN1,2, SEN2,2, …………, SENK,2, which produces

P̂ 2ð Þ
1 ; P̂ 2ð Þ

2 ; . . . . . . . . . . . . :; P̂ 2ð Þ
K respectively and is passed to UWCDC 1.

3. Iteration-L-1 (Carried out in APL-1): Received signal at APL-1 is yL-1. YL-1 is concatenated with an

initial guess of conditional distribution P̂ 0ð Þ
k and fed to SEN1,L-1, SEN2,L-1, …………, SENK,L-1,

which produces P̂ L�1ð Þ
1 ; P̂ L�1ð Þ

2 ; . . . . . . . . . . . . :; P̂ L�1ð Þ
K respectively and is passed to UWCDC L-2.

4. Iteration-L (Carried out in APL): Received signal at APL is yL. YL is concatenated with an initial guess

of conditional distribution P̂ 0ð Þ
k and fed to SEN1,L, SEN2,L, …………, SENK,L, which produces

P̂ Lð Þ
1 ; P̂ Lð Þ

2 ; . . . . . . . . . . . . :; P̂ Lð Þ
K respectively and is passed to UWCDC L-1.

5. Operations are performed at all the L-1 UWCDC’s as given in Eqs. (14)–(16).

6. After all L iterations at all L APs. CPU performs the operations as shown in Eqs. (17)–(19).
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3.6 Complexity Analysis

This subsection discusses and compares the complexity of proposed DNNBPDRS, DNNBDSD [18]
and iterative SIC.

3.6.1 Complexity Analysis of DNNBPDRS
Considering the input layer, SEN has four layers therefore, it needs three matrices to represent

weight between these layers. Let the numbers of nodes in 1st, 2nd, 3rd, 4th layers be p, q, r, and s,
respectively. The weight matrices are denoted as Wqp, Wrq, Wsr. For example, Wqp contains weights
going from layer p to layer q. Considering there are t examples of data that has to be fed to SEN.
Forward propagation from the 1st layer to 2nd layer, we have

Xqt ¼ Wqp� Ipt (21)

where Xqt is the computed calculation at the second layer, Ipt is the input fed to the first layer of SEN having
p nodes. The time complexity is given by

O q � p � tð Þ (22)

where O denotes the numbers of the operation carried out at each fully connected layer. After the forward
pass, the activation function is applied at the 2nd layer, and since it is an element-wise operation hence
time complexity is

O q � tð Þ (23)

So, the total time complexity involved in going from the 1st layer of SEN to 2nd layer is

O q � p � t þ q � tð Þ (24)

Oðq � p� t þ 1ð Þ
O q � p � tð Þ (25)

Similarly, time complexity in going from layer 2 to layer

O r � q � tð Þ (26)

Time complexity involved in going from layer 3 to layer 4

O s � r � tð Þ (27)

Therefore, the total time complexity for feed-forward propagation is

O q � p � t þ r � q � t þ s � r � tð Þ (28)

O t� pqþ qr þ rsð Þð Þ (29)

During the backpropagation, the time complexity is the same as shown in Eq. (29). Hence total time
complexity involved in training is as shown in Eq. (29). The proposed DNNBPDRS algorithm consists of
NSEN SENs, however, the processing is carried out in parallel fashion. Moreover, SEN is trained for
several iterations (epoch) n. So total time complexity for training SENs is

O n � t� pqþ qr þ rsð Þð Þ (30)

However, during the testing and deployment of DNNBPDRS, each input to SEN is passed only once
with final detected symbols at the CPU. Therefore, the computation complexity of deployed DNNBPDRS
is given by
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O pqþ qr þ rsð Þ (31)

3.6.2 Complexity Analysis of DNNBDSD
Our previous work DNN-based distributed sequential uplink processing (DBDSUP) [18], also employs

SENs, with the only difference being sequential processing.

Therefore, the computational complexity of DNNBDSD can be compared with the computational
complexity of DNNBPDRS and remains the same till Eq. (31). However, DNNBDSD carries out
sequential processing and the radio stripe consists of NSEN SENs. Therefore, the computation complexity
of deployed DNNBDSD is given by

O NSEN� pqþ qr þ rsð Þð Þ (32)

3.6.3 Complexity Analysis of Iterative SIC
In this subsection, we discuss the O complexity of Iterative SIC in order to compare the same with

DNNBPDRS and DNNBDSD. Iterative SIC mainly consists of 4 stages, expected value computation,
variance computation, interference cancellation and soft decoding. The complexity involved in each step
is given below.

For expected value, from Eq.(5), the complexity involved to compute the expected value of interfering
users for one particular user is given as

O 2 K � 1ð Þ þ B K � 1ð Þð Þ (33)

For K UEs,

O K 2 K � 1ð Þ þ B K � 1ð Þð Þð Þ (34)

O 2K2 � 2K þ BK2 � BK
� �

(35)

Computation of variance involves similar steps hence the complexity involved in computing variance is
also,

O 2K2 � 2K þ BK2 � BK
� �

(36)

Thirdly, for interference cancellation from Eq. (8), the complexity involved in computing interference
cancelled output for one particular user is given by

O K � 2ð Þ þ K � 1ð Þð Þ (37)

For K UEs,

O 2K2 � 3K
� �

(38)

Lastly, Computational complexity involved in computing soft decoding for one user is

O(B)

For K UEs

O KBð Þ (39)
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Time complexity involved in four stages at one AP is hence given by

O 6K2 � 7K þ 2BK2 � BK
� �

(40)

Since these computations are carried out for C iterations (as given in iterative SIC algorithm) at each AP
and carried out at L AP, hence complexity is given as

O LCð6K2 � 7K þ 2BK2 � BKÞ� �
(41)

Moreover, iterative SIC requires full CSI, let the time complexity involved in acquiring full CSI for one
user be given as CA, therefore time complexity for acquiring CSI for K users at L AP is given by,

O LK CAð Þð Þ (42)

Hence, total time complexity involved in iterative SIC is

O LCð6K2 � 7K þ 2BK2 � BKÞ þ LK CAð Þ� �
(43)

Comparing Eqs. (31), (32) and (43), since Eq. (43) is polynomial, therefore it is very evident that
complexity of iterative SIC detector is higher than proposed DNNBPDRS and DNNBDSD. Moreover, as
seen from Eqs. (31) and (32), DNNBDSD has NSEN times more time complexity then DNNBPDRS.

4 Channel Link-Based AP Selection Algorithm

The SINR in the uplink of user k at lth AP given by,

cku ¼
PN

n¼1 Pk ĝkj j2PN
n¼1½

PK
u¼1;u 6¼k Pu ĝuj j2� þ rnu2

(44)

where, Pk is transmitted power of user k in uplink and rnu2 is effective noise power. Hence, Up Link (UL)
spectral efficiency is given by,

SEu ¼ su
sc

XK
k¼1

log2 1þ ckuð Þ (45)

where su is UL transmission phase and sc is coherence interval. Channel link metric-Channel link is basically
the numerator component of SINR, which determines the channel gain between UE and AP.

Channel Link between kth user and lth AP is given below,

Ckl ¼ g0lnk
�� ��2 (46)

For each UE k an array of channel link consisting of L elements is, in particular

Ck ¼ CLk1; CLk2; . . . . . . . . . . . . . . . . . . ;CLkL
� 	

(47)

Let the numbers of APs to which UE k is connected in the uplink be given by La. UE k accesses these La
AP sequentially.

We propose channel link-based algorithm to choose the most suitable APs. In the step 1 and 2 channel
links for each user is calculated and sorted in descending order. Based on the chosen La in step 3, the APs
corresponding to first La are chosen for user k in step 4. To ensure fair usage for all users, all four steps are
carried in parallel fashion for each user.
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The proposed AP selection algorithm is summarized in algorithm 3 below.

5 Numerical Results

In this section, we discuss on simulation parameters, the performance of the proposed decoding scheme
DNNBPDRS, complexity analysis of DNNBPDRS and finally, we discuss the performance of the proposed
channel selection algorithm CLBAPS.

5.1 Simulation Setup

For large-scale fading, we assume that all users are randomly distributed over a stadium of circular
shape with a radius 10 m which corresponds to the total coverage area of 314 m2. Radio stripe is
installed across the circumference of the stadium at a height of 5 m from the ground.

5.2 Training of SEN

The symbols are randomly derived from BPSK Constellation Set (CS) 2 {0, 1}, which undergoes
operation as given by Eq. (2). For each particular value of yl at all the APs, SENs across all APs are
trained in a parallel manner. The SENs across all APs are trained on 20 K samples. At lth AP, the

received signal is y1, based on the initial estimate P̂ 0ð Þ
k

n oK

k ¼ 1
all K SENs in each AP are trained in a

parallel fashion for all 20 K samples.

For a given transmitted symbol vector S, all SENs across all APs are trained in a parallel fashion. Since
the proposed DNNBPDRS is trained via supervised learning, the label (actual conditional distribution)
corresponding to the transmitted symbol vector is available to compute loss.

Since, SEN1,1 has a softmax layer as the output layer, the output at each neuron of the softmax layer is
given as

exp xið ÞPB
j¼1 xj

� � (48)

where xið Þ and xj
� �

are elements of P̂ 1ð Þ
1 .

Let [ represents weight and biases of SEN1,1. Since, P 1ð Þ
1 consists of B elements, P 1ð Þ

1 ¼
O1; O2; . . . . . . . . . :; OB½ � . The loss function at the output of SEN1,1 is defined as

L [ð Þ ¼ �
XB
i¼1

P 1ð Þ
1

� �
i
log P̂ 1ð Þ

1

� �
i

(49)

where P 1ð Þ
1 and P̂ 1ð Þ

1 are the actual conditional distribution and estimated conditional distribution respectively.
The parameter [ are updated using Adam optimizer and is defined as

Algorithm 2: Channel Link-Based AP Selection (CLBAPS) algorithm

1. Calculate Ckl and hence Ck as in (1) and (2) 8 k = 1, 2,…., K.

2. Sort the array Ck in descending order 8 k = 1, 2, ……., K.

3. Choose La.

4. Given La, the APs corresponding to first La elements of Ck are selected for user k.
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[fþ1 ¼ [f � h mfffiffiffiffiffiffiffiffiffiffiffiffiffi
vfþ 2p (50)

h is Learning rate. 2 is a smoothing term which prevents divisions by 0. mf and vf are the estimate of
the mean (first moment) and uncentered variance (second moment) of the gradients and is given as,

mf ¼ b1mf�1 þ 1� b1ð ÞrL [f

� �
(51)

v ¼ b2vf�1 þ 1� b2ð Þr L [f

� �� 	2
(52)

b1 and b2 are the decay rates of the moving average. Similarly, all SENs across all APs are trained in a
sequential manner.

5.3 Analysis of DNNBPDRS

In this subsection, we analyze the performance of the proposed DNNBPDRS algorithm and compare
its performance with Cell-Free massive MIMO ‘Level 4’ implementing iterative SIC [11] under CSI
uncertainty and our proposed sequential processing in radio stripe [18]. It is quite evident from Fig. 6, the
best performance is achieved by the proposed DNNBPDRS algorithm.

Considering the numerical difference in Symbol Error Rate (SER) performance of the three frameworks
are compared, the percentage difference of DNNBPDRS-iterative SIC and DNNBPDRS-DBDSUP are
99.05% and 32.72%, respectively for 2dB Signal-to-Noise Ratio (SNR).

For 8dB SNR, the percentage difference of DNNBPDRS-iterative SIC and DNNBPDRS-DBDSUP are
191.35% and 132.53%, respectively. For all SNRs the difference between DNNBPDRS-iterative SIC is
much higher than DNNBPDRS-DBDSUP.

The better performance of DNNBPDRS then DBDSUP is attributed to the fact that in DNNBPDRS,
each AP is trained for five iterations, while in DBDSUP each AP is trained for a single iteration.
Moreover, in DBDSUP there are chances that errors in conditional distribution estimation may propagate
from one AP to next AP, which is eliminated completely in DNNBPDRS.

Since, we consider radio stripe to be deployed across the walls of room/stadium as indicated in Fig. 2,
it becomes important to determine the decoding performance of the proposed DNNBPDRS framework for

Figure 6: Symbol Error Rate (SER) performance of proposed framework
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different numbers of AP L, given the numbers of UEs present in the radio stripe network. Therefore, we analyze
the performance of DNNBPDRS with different numbers of APs L for a given number of UEs K in the network.

Simulation is carried out for three different numbers of APs L using the simulation parameters given in
Tab. 1. In particular, simulation is carried out for L = 5, L =10 and L = 20. Tab. 2 shows the percentage of
difference in obtained SER.

As the number of AP L increases, the performance of DNNBPDRS improves. Tab. 2 shows the
percentage difference in SER achieved for different combinations. It can be clearly noted for the second
combination L = 5, L = 20 (the difference being 4 times), the percentage difference is highest.

Moreover, it can be clearly observed from Fig. 7, that the performance of the proposed DNNBPDRS
improves as L > K inequality increases.

Table 1: System parameters

Parameters Value

Path-loss exponent (b) 2

Nakagami fading parameter, (M, Ω) (1, 1)

Number of UE (K) 6

Number of antennas in each AP (N) 1

Height of AP from ground h 5 m

Table 2: Comparison table comparing percent difference in SER from Fig. 7

Variations of numbers of APs L in radio stripe Percent difference

SNR 2dB(%) SNR 8dB(%)

L = 5, L = 10 18.30 16.48

L = 5, L = 20 54.84 32.39

L = 10, L = 20 37.48 16.13

Figure 7: SER performance of DNNBPDRS for different numbers of APs L
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5.4 Analysis of Channel Link-Based AP Selection

The above four figures (Figs. 8–11) compare the CDF of proposed Channel-link based AP selection
(CLBAPS) with CDF of Random AP selection (RAPS) (here AP are selected randomly). Analysis is
carried out for different numbers of AP L in the radio stripe network, keeping La constant. It can be
clearly observed the gap between the proposed scheme and random selection increases as the numbers of
AP in the network increases. In particular, from Fig. 8, the proposed CLBAPS algorithm gains
0.960 bit/s/Hz as compared to the RAPS with 50% probability. While with the proposed algorithm the SE
of the UEs with 50% probability have 5.261 bit/s/Hz gain over random selection, when L = 200. The
reason for these results is quite obvious, as the numbers of APs in the network increases there are more
chances of UE being close to AP with excellent channel link. However, there is insignificant impact of
increase in numbers of AP L for random AP selection as it gains 0.0383 bit/sec/Hz when increasing the
APs in the network from 10 to 200.

Figure 8: CDF of spectral efficiency with L = 10, La = 4

Figure 9: CDF of spectral efficiency with L = 20, La = 4
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6 Conclusion

Cell-Free massive MIMO is slated to be beyond 5G (B5G) technology; however, its practical adoption
issues mar its implementation. Radio stripe, an architecture of cell-free massive MIMO is suitable for
practical implementation and is envisioned to be 6G technology by industry experts. In this paper, we
propose, deep learning-based parallel decoding scheme in cell-free massive MIMO based on radio stripe
namely DNN based Parallel Decoding in Radio Stripe (DNNBPDRS), which gives two benefits. Firstly,
DNN processing reduces the computational complexity and secondly, parallel processing reduces the
latency, making it very attractive for 6th generation wireless technology. Moreover, to solve the issue of
AP selection in radio stripe network. We propose Channel link-based AP selection (CLBAPS). In the
future, more research can be carried out to optimize the parallel processing in radio stripe, which would
further reduce the computational complexity and allow UEs to choose the best APs for uplink processing
by considering different simulation setups and different parameters such as distance and mobility.
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Figure 11: CDF of spectral efficiency with L = 200, La = 4

Figure 10: CDF of spectral efficiency with L = 50, La = 4
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