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Abstract: Owing to the development of next-generation network and data
processing technologies, massive Internet of Things (IoT) devices are becoming
hyperconnected. As a result, Linux malware is being created to attack such hyper-
connected networks by exploiting security threats in IoT devices. To determine
the potential threats of such Linux malware and respond effectively, malware
classification through an analysis of the executed code is required; however, a lim-
itation exists in that each heterogeneous architecture must be analyzed separately.
However, the binary codes of a heterogeneous architecture can be translated to a
high-level intermediate representation (IR) of the same format using binary lifting
and malicious behavior information can be identified because the functions and
parameters of the assembly code are stored in the IR. Consequently, this study
suggests a Linux malware classification method applicable to various architec-
tures by converting Linux assembly codes into an IR using binary lifting and then
learning the IR Sequence which reflects malicious behavior pattern using deep
learning model for sequence learning.
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1 Introduction

The development of next-generation network technology has enabled greater communication speeds and
significantly reduced delays. As a result, a hyperconnected network environment called massive Internet of
Things (IoT) has been developed, in which IoT devices used in a wide range of fields are interconnected and
share information among each other [1].

However, a large number of IoT devices connected to a network have various vulnerabilities and can
be subjected to security threats such as firmware forgery, unauthorized access by malicious applications,
and information leakage through man-in-the-middle attacks. In addition, attackers can attack massive
networks as well as massive numbers of IoT devices, causing enormous damage.

Linux malware, which can carry out highly potent malicious actions against such massive numbers of
IoT devices, is very common nowadays and is spread through various types such as viruses, worms, trojan
horses, and spyware. To minimize the damage from and effectively respond to Linux malware, it is important
to determine various attack types through automatic malware classification. However, because IoT devices
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are composed of more than ten architectures, as shown in Tab. 1, it is difficult to apply a classification method
using executed code analysis in a conventional Windows or mobile environment [2,3]. Hence, a separate
analysis process is applied according to the instruction set architecture (ISA).

At this time, if binary lifting is conducted, low-level assembly codes can be translated to a high-level
intermediate representation (IR), which is a code of the same format regardless of the architecture, and
information related to malicious behaviors can be identified because the functions and parameters used in
the assembly codes are stored within the IR.

Therefore, in Section 2, we analyze the Linux file structure, automated Linux malware classification
method, binary lifting technique, and B2R2 which is a concise and efficient binary lifting tool. Next, in
Section 3, a Linux malware classification method using the IR is proposed. In Section 4, the results of the
experiment conducted using the proposed classification method are analyzed. Finally, Section 5 provides
concluding remarks on this research.

2 Related Works

2.1 Linux File

The executable file created by the compiler used in the Linux operating system (OS) is an executable and
linkable format (ELF) file, which is a standard binary file commonly generated in various architectures and is
composed of a sequence of bytes. When the ELF file is disassembled, as shown in Fig. 1, an assembly code
that defines a low-level operation applied by the CPU is generated [4].

The details regarding the ELF file and assembly code are described in the following sections.

2.1.1 ELF File
The ELF file is composed of an ELF header, program header table, section, and section header table, as

shown in Fig. 1. The ELF header stores information about the ELF file, such as the file type and architecture.
The program header table stores information regarding the sections of the executable file. The section stores
information regarding the object file, and the section header table stores the positions of all sections of the
object file.

Table 1: Ratio of massive IoT malware attacks based on architecture [2]

Architecture Number of samples Ratio (%)

X86-64 3018 28.61

MIPS I 2120 20.10

PowerPC 1569 14.87

Motorola 68000 1216 11.53

Sparc 1170 11.09

Intel 80386 720 6.83

ARM 32 bit 555 5.26

Hitachi SH 130 1.23

ARM 64 bit 47 0.45

Others 3 0.03
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Thus, the structures of the ELF and object files can be identified through the information stored in the
ELF file. Various studies are currently being conducted currently to analyze the structural information of
Linux malware using such files.

2.1.2 Assembly Code
An assembly code of the ELF file is composed of the opcode, which is the command of a specific

architecture, and operand, which is a parameter used in operation. Thus, the assembly code reflects the
program’s execution flow.

Malware is a series of malicious behaviors, and many studies have been conducted to statistically
analyze malware by extracting the opcode sequence in assembly codes to identify attack behaviors [5,6].

However, different analyses are required for each architecture when analyzing Linux files because they
use the ISA, which defines the specifications of a unique opcode set for each architecture.

2.2 Linux Malware Types

Linux malware can attack mobile, IoT, and embedded devices, harming people and industries or stealing
data from such devices. Linux malware can be classified into various types according to its basic functions
and executed code [7,8].

In this study, malware is classified into seven types: backdoors, trojans, exploits, viruses, rootkits,
worms, and hacktools. The detailed functions of each type are as follows:

� Backdoor: Backdoor-type Linux malware damages a system by bypassing authentication. After doing
so, a backdoor program is installed to prevent users from recognizing the approach of an attack that
may occur later. In 2019, Mirai backdoors were detected to be capable of infecting wide variety of
devices including x64, x86, ARM and many other architectures [9].

� Trojan: Trojan-type Linux malware is designed to be similar to a normal program. However, once
installed, it can lead to unauthorized access to a device, user behavior monitoring, data stealing,
file transformation, and conversion of a user device into a botnet. Recently, trojans which perform
distributed denial of services (DDoS) attacks are targeting devices which are running on systems
supporting the ELF format [10].

� Exploit: Exploit-type Linux malware is a program that contains data or executable code that abuses
any vulnerabilities by operating within a malicious program. It is used to hack a user device without a
separate user operation in a net-worm. For example, Haiduc exploit toolkit was used for brute forcing
the secure shell (SSH) for credentials using the given wordlist and scanning compromised devices by
attackers [11].

Figure 1: Structure of the ELF file and assembly code
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� Virus: Virus-type Linux malware operates by activating infected software and infecting various
devices connected to the same network through duplication. For example, Linux/Rst-B is a virus
that attempts to download a page from a specific IP address if it is executed as root [12].

� Rootkit: Rootkit-type Linux malware is designed to bypass the recognition by device users and
detection by security software and control a device through remote control. Linux malware,
reported in 2014, had a loadable kernel module (LKM) rootkit component [13].

� Worm: Worm-type Linux malware duplicates itself, attacking devices through OS vulnerabilities, and
spreads quickly. However, unlike a virus, it attacks and infects other devices, even if not executed by
the user. For example, Worm.Linux.MALXMR.PUWELX is a worm which aims to permanently
disable the system it infects arrives on a system as a file dropped by other malware or as a file
downloaded and executes then deletes itself afterward [14].

� Hacktool: Hacktool-type Linux malware generates an authenticated user in a system and deletes the
system logs related to malicious behaviors. Furthermore, they are used to collect and analyze network
packets, and attackers can use a hacktool program to attack a device. For example, HackTool:Linux/
BF.E reported in 2018 is a hacktool which arrives on a system as a file dropped by other malware or as
a file downloaded but it does not have any propagation or backdoor routine [15].

2.3 Automated Linux Malware Analysis Method

Owing to the heterogeneous architecture of Linux executable files, building a dynamic analysis
environment for them suffers from limitations related to resources. Hence, techniques to automatically
analyze Linux malware by statically extracting information for analysis and learning such information
through machine learning or a deep learning model are being studied. For static analysis, information
other than the executable code, such as binary data and structure information of ELF files and text
strings, is used. In addition, the opcode sequence related to the executed code and the control-flow graph
(CFG) generated from it is also used. The existing studies on these analysis techniques are briefly
introduced below.

Analysis methods based on information other than an executable code include deep learning after
imaging the binary data of an ELF file or extracting and learning features from the ELF file. Kim et al.
(2020) [16] converted an ELF file into images by generating a pixel of an 8-bit grayscale image using the
binary data of the ELF file. The obtained images were then learned using a convolutional neural network
(CNN)–based deep learning model to classify Linux malware. Hwang et al. (2019) [17] generated
200 feature vectors from the structural features of the ELF file, including the ELF header size, the
number of program headers, and size of the section header, which were then learned using CNN-based
deep learning models to classify the Linux malware. Wan et al. (2020) [6] generated feature vectors using
the byte of the e_entry field entry point in the ELF header, which stores the packing information used
during obfuscation and learned using a machine learning model for Linux malware classification.
However, when the binary data and structural information of the ELF file are analyzed, the accuracy of
the information analysis of malicious behaviors can be low because information on malicious behaviors
directly conducted by malware is not analyzed.

The analysis method based on information related to executable code classified Linux malware by
learning the opcode sequence extracted from the disassembled ELF file or the features in the CFG
generated from the sequence. HaddadPajouh et al. (2018) [18] extracted features from an opcode
sequence and learned using a long short-term memory (LSTM) deep learning model to detect IoT
malware. However, this analysis method has a limitation in that it only analyzes the IoT malware of the
ARM architecture and cannot detect heterogeneous Linux malware. Alasmary et al. (2019) [5] detected
IoT malware by extracting 23 features, including the number of nodes and edges of the CFG, as well as
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the density and shortest path, and learned them using machine learning models. However, the accuracy of this
approach can be low if it analyzes the Linux malware of various heterogeneous architectures because it
analyzes such malware without considering the unique ISA of the architectures. With binary lifting,
however, assembly codes of heterogeneous architectures can be translated into same format IR which has
an efficient structure for evaluation. Therefore, in this paper, we propose heterogeneous Linux malware
classification method by learning malicious behavior reflected in IR sequence using binary lifting which
has not beenused for linux malware classification before.

2.4 Deep Learning Model for Sequence Learning

2.4.1 RNN
The recurrent neural network (RNN) model is an artificial neural network that solves problems by

determining the size of the combination weights of neurons through the learning of a network formed by
the weighted combination of artificial neurons (nodes). An RNN enables the learning of time-dependent
relationships between the input data by enabling a combination of past information stored in the hidden
layer with the current input values. However, this can give rise to a vanishing gradient problem for long
input sequences. To solve this problem, the LSTM model has been proposed, the details of which are
presented in the following section [19–21].

2.4.2 LSTM
The LSTM model is designed to solve the vanishing gradient problem of a Recurrent Neural Network

(RNN), which is a deep learning model specialized for learning continuous sequence data with a temporal
meaning. It can effectively learn long input sequences by learning the dependence between the input data
[19–21]. The LSTM model is composed of three gates, namely, forget, input, and output, and learns the
input sequences through a memory unit called a cell, which memorizes the information at each time
point. The information to be memorized and the information to be forgotten is determined when the input
information passes through each gate. The LSTM structure is in Fig. 2 and the terms used in the LSTM
model are listed in Tab. 2. The detailed calculation process is presented below.

Eq. (1) determines the degree to which the past information is memorized. Here, ft produces a value
between 0 and 1 as a resulting value by conducting a sigmoid operation for input variable xt and the
previous hidden variable ht�1. The resulting value of 0 indicates that all previous information is forgotten,
whereas 1 indicates that all previous information is memorized.

Figure 2: LSTM structure
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ft ¼ r Wf � ht�1; xt½ � þ bf
� �

(1)

Eqs. (2) and (3) are used to select new information by determining the information to be memorized. In
Eq. (2), it has a value between 0 and 1 that determines which information needs to be memorized. In
addition, ~ct in Eq. (3) is a candidate value that can be reflected in cell ct and the result of the hyperbolic
tangent calculation and thus has a value between −1 and 1. When the values of Eqs. (2) and (3) are
determined, cell ct is calculated using Eq. (4).

it ¼ r Wi � ht�1; xt½ � þ bið Þ (2)

~ct ¼ tanh Wc � ht�1; xt½ � þ bcð Þ (3)

ct ¼ ft � ct�1 þ it � ~ct (4)

Eq. (5) determines the output ot of the cell. Here, ht is finally caculated by multiplying tanh Ctð Þ, which
has a value between −1 and 1, with ot through Eq. (6).

ot ¼ r Wo � ht�1; xt½ � þ boð Þ (5)

ht ¼ ot � tanh ctð Þ (6)

2.4.3 LSTM Model for Malware Classification
Malware classification is influenced not only by the frequency of the machine language codes executed

during the process but also by their patterns and trends. Hence, the LSTM model is appropriate for malware
classification because the long-term pattern of using machine language codes must be learned to determine
whether such a machine language code execution pattern corresponds to a specific type of malware.

2.5 Binary Lifting

Binary lifting is a technique for translating low-level assembly codes to high-level IR. Binary lifting can
be conducted to standardize assembly codes composed of different opcode sets as IRs of the same format.

Table 2: Notations for LSTM structure

Notation Description

t Time in sequence

r Sigmoid function

xt Input state of time t

ft Forget state of time t

ht Hidden state of time t

ct Cell state of time t

ot Output state of time t

W Weight sum

b Bias sum

tanh Hyperbolic tangent

� Element-wise multiplication

� Element-wise concatenation
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Consequently, in this study, the concise and efficient binary lifting tool B2R2 was analyzed and used to
propose a heterogeneous Linux malware classification method [22].

2.5.1 Analysis on B2R2
B2R2 supports seven architectures, which occupy a high share among Linux malware. Furthermore,

B2R2 efficiently conducts binary lifting through multi-core parallelism, using multiple CPUs by using the
function-type programming language F#, which does not depend on the external environment [22].

2.5.2 Analysis on LowUIR
LowUIR, the IR of B2R2, stores information such as the variables used for efficient data analysis

and the applied functions. The components of the LowUIR structure include METADATA, ENDIAN, and
EXPRESSION, which specify the format, and UNOP, BINOP, RELOP, and CASTOP, which indicate the
operational functions. STATEMENT is the highest unit that defines the functions of LowUIR using these
components. The LowUIR generated by binary lifting has one or more STATEMENTs [22].

The usage formats of the components and elements listed in Tab. 3 are shown in Fig. 3. As LowUIR is
designed to embed information about metadata and operations, assembly code can be quickly evaluated by
analyzing the LowUIR.

For example, LowUIR, generated as a result of binary lifting for the ‘xor %rsp, %rbp’ assembly code of
the X86-64 architecture, is shown in Fig. 4. This starts with ‘IsMark’ and ends with the ‘IEMark’
STATEMENT, and the EXPRESSIONs used in the ‘Put’ STATEMENT are ‘Var’ and ‘BinOp’ in order.
Here, BINOP ‘XOR’ used in the ‘BinOp’ EXPRESSION means that the corresponding instruction
performs an XOR operation.

Table 3: Components and elements of LowUIR

Component Elements

METADATA ExprInfo, ConsInfo

ENDIAN BEndian, LEndian

UNOP NEG, NOT

BINOP ADD, SUB, MUL, DIV, SDIV, MOD, SMOD, SHL, SHR, SAR, AND, OR, XOR,
CONCAT

RELOP EQ, NEQ, GT, GE, SGT, SGE, LT, LE, SLT, SLE

CASTOP ZeroExt, SignExt

EXPRESSION Num, Var, PCVar, TempVar, Name, UnOp, BinOp, RelOp, Load, ITE, Cast, Extract,
Undefined

STATEMENT ISMark, IEMark, LMark, Put, Store, Jmp, CJmp, InterJmp, InterCJmp, SideEffect

3 Proposed Classification Method

The heterogeneous massive IoT malware classification method proposed in this study labels the
collected malware samples as multiple classes of a normal program which is called benignware or
malware types, as shown in Fig. 5. For this, the dataset to be used during the training and testing phases
is randomly selected, and the LSTM model learns to classify Linux malware types. This is composed of a
training phase during which the LowUIR sequence for the Linux ELF file is learned and classified using
the LSTM model, and a testing phase during which the classification result is predicted for an unlabeled
Linux ELF file generated as a result of learning using the LSTM model. The details of the data labeling
and training and testing phases are presented below.

IASC, 2022, vol.32, no.1 473



Figure 3: Usage format of LowUIR

Figure 4: LowUIR of ‘mov %rsp, %rbp’ assembly code

Figure 5: Proposed classification method
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3.1 Dataset Labeling

The types of a dataset are labeled to train the LSTM model. Malware can be classified into multiple
types. Because the malware detection results can differ by the anti-virus engine, we label the malware
dataset as the type with the highest frequencies. To this end, the type that appears with the most high
frequency on the Virustotal site, which shows malware detection results for each of the various anti-virus
engines, is selected and labeled by using it.

For the labeled dataset, a value of 0 is assigned to benignwares, and a value within the range of 1 to N
(where N is the number of malware types) is assigned to each type of malware for the indexing of each class.

3.2 Training Phase

During the training phase, features are generated from the LowUIR sequence created through binary
lifting for a labeled ELF file. Next, features with high importance in terms of class identification are
selected. The input values composed of the features are then learned using the LSTM model and
classified into benignware or malware types. A detailed description of each step of the training phase is
provided below [23].

3.2.1 Extraction of Assembly Code
The ELF file is disassembled to extract the assembly codes, which are the input data for binary lifting.

The assembly codes are extracted using the disassembler tools.

3.2.2 Generation of LowUIR Sequence
The LowUIR sequence is extracted by applying binary lifting using B2R2 for the extracted assembly

code sequence. In consideration of the time required to perform binary lifting, the LowUIR of the
assembly code for each architecture is stored such that the LowUIR sequence can be extracted by
matching it with the LowUIR of the stored assembly code.

3.2.3 Feature Vector Extraction
The feature vectors are extracted from the elements listed in Tab. 4 for STATEMENT, which is used as

the highest unit for the extracted LowUIR sequence, and UNOP, BINOP, RELOP, and CASTOP, which
indicate different operations. As a result, documents composed of multiple words are generated, and
encoding is conducted by assigning a unique index to each element, as shown in Tab. 4. To this end,
feature vectors are extracted by applying one-hot encoding by assigning a value of 1 to the index if there
is an element corresponding to each index and a value of zero if there is no such element.

Table 4: Components and elements of feature vector

Component Elements (Index)

STATEMENT Put (0), Store (1), Jmp (2), CJmp (3), InterJmp (4), InterCJmp (5)

UNOP NEG (6), NOT (7)

BINOP ADD (8), SUB (9), MUL (10), DIV (11), SDIV (12), MOD (13), SMOD (14),
SHL (15), SHR (16), SAR (17), AND (18), OR (19), XOR (20), CONCAT (21)

RELOP EQ (22), NEQ (23), GT (24), GE (25), SGT (26), SGE (27), LT (28), LE (29),
SLT (30), SLE (31)

CASTOP ZeroExt (32), SignExt (33)
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An example of extracting the feature vectors according to Tab. 4 is shown in Fig. 6.

3.2.4 Feature Selection using IG
To remove features that generate noise in the type classification and to reduce the size of the total feature

set, the IG value for each feature, based on the notations defined in Tab. 5, is obtained using the information
gain (IG) in Eq. (7). Those features with an IG value above the threshold are selected [24–28].

IG fm; Cð Þ ¼
Xj

i¼0
�Cj lnCi �

X
q¼ 0;1f g

Cq

�� ��
Cj j

Xj

i¼0
�Ci lnCi (7)

3.2.5 LSTM Model Training
The LSTM model proposed in this study is composed of an input layer, an embedding layer, a

bidirectional LSTM (Bi-LSTM) layer, a dropout layer, and a dense layer, as shown in Fig. 7 below.

In the input layer, the feature vector generated as a result of one-hot encoding for benignware and
malware is input and delivered to the embedding layer. Because the input feature vector is a sparse vector
where the value of every index except for one is 0, the embedding layer generates a dense vector of the
matrix type. In the Bi-LSTM layer, time-series data are processed and learned with high efficiency in
both the forward and backward directions [29–31]. Here, LSTM repetitive learning is maintained by

Figure 6: Example of feature vectors extracted from LowUIR

Table 5: Notations for IG

Notation Description

m Index of feature vector

fm mth feature vector

C Number of documents

j Number of classes

Ci Number of documents belonging to class i

Cq Number of documents containing the feature vector fm
Cj Number of documents of class i containing the feature vector fm
q Presence or absence of a feature (0 if absent or 1 if present)

476 IASC, 2022, vol.32, no.1



inserting the dropout layer before and after the generation of the Bi-LSTM layer, and the overfitting of the
neural network is reduced [32]. Because multi-class classification is the final goal, the softmax activation
function is used in the last dense layer [33].

3.3 Testing Phase

During the testing phase, unlabeled ELF files are classified into benignware or malware types using the
trained LSTM model. Each step of the proposed method is described in detail in the following section.

4 Experimental Analysis

4.1 Experiment Design

4.1.1 Dataset Collection
A dataset is created using the heterogeneous Linux malware sample provided for malware analysis from

a public organization, and the class is labeled with the malware type that appears most frequently in the
detection result of the Virustotal.

In the case of a benignware, the data are collected and labeled using open samples such as IoT device
firmware.

The number of samples based on the malware type and the number of benignware samples for the Intel
80386, X86-64, MIPS, and ARM architectures are shown in Tab. 6.

Figure 7: LSTM model structure

Table 6: Number and ratio of samples

Malware type Number of samples Ratio (%)

Backdoor 3336 49.2

Trojan 1271 18.8

Exploit 587 8.7

Virus 578 8.5

Rootkit 258 3.8

Worm 129 1.9

Hack 95 1.4

Benignware 523 7.71

Total 6777 100
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4.1.2 Experimental Setup
The Linux malware classification experiment conducted in this study is implemented using the

programming language Python 3.8 in the Ubuntu 20.04 environment. The assembly codes are converted
into a hexadecimal and input into the B2R2 0.3.0 tool. Malware is classified by learning the resulting IRs.

The details about the experimental setup are shown in Tab. 7.

4.1.3 Model Configuration
In this study, the LSTM model is implemented using the ‘Keras’ module, a neural network API that

works with TensorFlow, an open-source machine learning framework. To this end, parameters that
produce a high performance are selected by creating the LSTM model using the parameters within the
search range listed in Tab. 8. The parameters selected in Tab. 8 were used to experiment the model proposed.

4.1.4 Evaluation Metrics
The classification performance of the proposed method is defined through accuracy in terms of true

positive (TP), false positive (FP), true negative (TN), and false negative (FN); detailed definitions and
explanations of these indices are as follows [28].

� TP: Number of malware classified as benignware

� FP: Number of benignware classified as malware types

Table 7: Experimental Setup for our proposed method

Category Item

Hardware Intel(R) Xeon(R) W-2123 CPU

48GB Memory

NVIDIA GeForce RTX 2080 GPU

Software B2R2 0.3.0

.NET SDK 5.0.101

Ubuntu 20.04 LTS

Python 3.8

Table 8: Selected model parameters

Parameter Search space Selected parameter

Batch size 5–300 50

Number of epochs 10–20 10

Length of LowUIR sequence 2000, 4000, 6000, 8000 2000

Percentage of data to be used in testing 10–20 15

LSTM units 16, 32, 64, 128, 256 16

Embedding vector length 16, 32, 64, 128, 256 16

Dropout amount 0.1, 0.2, 0.3, 0.4 0.2
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� TN: Number of benignware classified as benignware

� FN: Number of malware classified as benignware or other malware types

Accuracy indicates the ratio of the input dataset that has been accurately classified, and is defined as
Eq. (8):

Accuracy ¼ TP þ TN

TP þ FP þ TN þ FN
(8)

4.2 Analysis on Experimental Results

In this section, to analyze and verify the performance of the proposed method, the performances of the
conventional heterogeneous Linux malware classification methods are measured together using information
other than the executable code and compared with the performance of the proposed method. To this end, the
accuracies of the classification method through the imaging of the ELF binary data [16] and the classification
method using the structural information in the ELF [17] are measured and their performances analyzed.

The experimental results of Tab. 9 showed that the accuracies of all conventional classification
methods were lower than 86%, whereas the accuracy of the proposed method was 94.2%.

The above results proved that heterogeneous Linux malware classification methods using the
information other than the executable code have a lower accuracy compared with a classification method
that analyzes information related to an executable code, which is similar to the proposed method, and that
the proposed method can accurately classify various types of heterogeneous Linux malware.

5 Conclusion

The emergence of a massive IoT environment has increased the number of network vulnerabilities and
attacks. Consequently, the frequency and types of heterogeneous Linux malware targeted at massive IoT
devices are continuously increasing. Hence, a method for automatically classifying heterogeneous Linux
malware is required. However, because each architecture has a unique ISA, methods used to
automatically analyze the information related to the executable code of heterogeneous malware are
lacking. Therefore, in this study, a Linux malware classification method is proposed that uses binary
lifting to convert the Linux malware of heterogeneous architectures into the IRs of a common malware
type that reflects the applied functions and learns them using an LSTM model.

The proposed method showed higher accuracy than the classification methods using the information
other than the executed code. Furthermore, we demonstrated the improved efficiency and accuracy of the
heterogeneous Linux malware classification method.

Therefore, the safety of a massive IoT environment can be improved by detecting massive IoT malware
quickly and accurately using the heterogeneous Linux malware classification method proposed in this study.

Table 9: The experimental results

Classification method Accuracy (%)

Our proposed method 94.2

The classification method based on ELF binary image [16] 85.4

The classification method based on ELF structural features [17] 82.8
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In addition, the proposed method can be applied to malware family classification by subdividing the malware
types. Furthermore, new and variant Linux malware can also be predicted using this method.
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