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Abstract: This article presents a methodology to optimize the maintenance plan-
ning model and minimize the total maintenance costs of a typical school building.
It makes an effort to provide a maintenance schedule, focusing on maintenance
costs. In the allocation of operations to the school equipment, the parameter of
its age was also taken into account. A mathematical optimization model to mini-
mize the school maintenance cost in a three-year period was provided in the
GAMS software with CPLEX solver. Finally, the optimum architecture of the Per-
ceptron multi-layer neural network was used to predict the schedule of equipment
operations and maintenance costs. The Multi-layer Perceptron (MLP) optimum
neural network results, with minor Mean Squared Error (MSE) and Root Mean
Squared Error (RMSE), indicated that the proposed model was capable of predict-
ing the schools’ maintenance costs with high accuracy. According to the results,
the school's maintenance cost for the intended three-year period based on the Wei-
bull distribution was equal to 15361 currency units per hour, in which the “heat-
ing and cooling system” has the highest contribution. Hence, accurate and definite
planning can prevent damages to such equipment, while saving the school's main-
tenance costs.

Keywords: Mathematical modelling; maintenance planning; educational
buildings; cost optimization; neural network

1 Introduction

Maintenance of educational building assets is an important tool not only for the wellness of students and
other users, but also for school life cycle maximization and minimization of maintenance costs [1]. It takes a
continuous operation to keep the school buildings, furniture, and equipment in the best form for normal use
[2–8]. In fact, the management of building maintenance means how the maintenance process should be
financially and technologically organized to deal with the issue of building maintenance [9].

The integrated production and maintenance planning models have been seriously studied since the early
80 s. Over time, integrated models have been separated according to their maintenance methods (predictive/
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corrective and periodic/non-periodic). The non-periodic maintenance in integrated models has been less
studied since, in such conditions, the solution is tough, and usually, the branch and bound method is used
to solve it. For a better understanding of the required concepts of maintenance in the next sections, a
summary for each of them is provided in this section. In general, the maintenance and repair can be
defined as the following: A combination of activities conducted particularly and in a usual planned way
to prevent the sudden failure of machinery, equipment, and facilities is called maintenance [10–13]. The
repair includes a set of activities performed on a system or tool that has failed or been disabled to return
it to the ready-for-operation mode and prepare it to conduct its duties [13].

The maintenance has been created from several important classes of decision-making: 1) strategic
concept and long-term maintenance, 2) medium-term planning, 3) short-term planning, and 4) control and
performance indexes [14]. Important decision-making strategies evaluate maintenance in the design of
system processes. They consider which type of maintenance is suitable and when it should be done.
Many optimization models consider these issues and the relationship with production, which has been
revealed in some cases [14]. Many studies have been conducted on maintenance planning optimization so
far. The decision-making in this field is developed based on multi-criteria decision-making models, such
as the Analytic Hierarchy Process (AHP), Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS), or multi-objective optimization models, in the framework of operations research.
Condition-based planning is one of the newest and best maintenance planning methods. Therefore, this
research has employed condition-based planning. In the following, we review the literature in this field.
Badıa et al. [15] proposed an inspection procedure for failure detection in a single-unit system. In this
system, different types of failures are possible, and the probability of each failure depends on its type.
Lam et al. [16] suggested a condition-based maintenance planning model for a system exposed to failure.
In this model, the failure could be detected through a 100% inspection. Furthermore, a particular
relationship between the inspection and failure probability, as well as an incorrect alarm, was considered
in this research. Zequeira et al. [17] developed the previously developed models by dividing the
inspection into the three following classes:

(a) Complete inspection (faultless inspection for all systems)
(b) Partial inspection (only error type 1)
(c) Incomplete inspection (only detection of error type 2) that may also provide false positive results for

other types of failures.

He et al. [18] developed a special form of the model suggested by Zequeira and Bérenguer. In this
mode, the research was carried out without partial inspections. Generally, the partial inspection-based
models are very limited due to their complexity in mathematical modeling. In this regard, Noortwijk et al.
[19] conducted a research review of the maintenance models based on the gamma process in the
incomplete inspection. Similar models were also developed by Ye et al. [20] in the incomplete
inspection. Si et al. [21] performed condition-based mathematical modeling to find the optimum number
of inspection times, replacement threshold, and complete reconstruction of systems to minimize the total
implementation cost. According to this model, the following two measures should be taken to achieve the
optimum plan:

(a) Determining whether the system requires preventive or corrective maintenance.
(b) Determining the optimum inspection time until the next inspection

In another study, Fouladirad et al. [22] extended the previously developed model, by considering
dynamism in the system's failure rate. Their paper proposed one of the newest approaches to condition-
based maintenance modeling. There are also plenty of research papers on Machine learning [23],
optimization [24–30] and mathematical modeling of different systems [31–40].
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The current paper however, proposes a mathematical model for schools’ maintenance planning to
minimize the total maintenance cost. For this purpose, after providing the mathematical model, the
essential indexes and equipment of a sample school are used along with a neural network to provide cost
prediction for a three-year planning horizon. The main novelties of this work are presenting an optimum
maintenance plan for the school buildings with the minimum cost, future cost prediction ability and
consideration of the age of school's equipment. To the best of our knowledge, this is the first time that
these issues are addressed.

2 Methodology

The considered domain in this paper is a school with the equipment of cooling and heating systems,
educational and laboratory equipment, and lavatories. In order to conduct the maintenance and repair of
the equipment, a schedule for the maintenance and a schedule for the preventive repair of equipment are
required. The ages of equipment (total working hours of each equipment) are different, but all known.
The maintenance operations can be planned for various pieces of equipment with different ages and costs.
It is clear that their maintenance costs have a direct relationship with their ages. This research work
proposes a mathematical planning model to provide an equipment maintenance schedule while
minimizing the total maintenance costs. In fact, the maintenance operations schedule in the three-year
period which yields to the minimum cost is obtained via an optimization algorithm. Then, based on the
available data for the three-year period, the values of cost and maintenance operations schedule for the
fourth and fifth years in the intended school are estimated using the artificial neural network.

3 Modelling

In this section, the problem assumptions, model components, and the main model are expressed.

3.1 Model Geometry

� This paper employs the two policies of emergency (unplanned) maintenance and preventive
maintenance.

� The equipment failure rate is considered constant based on the Weibull distribution function.

� The costs of unplanned (emergency) maintenance are more than those of preventive maintenance.

� The planning is provided in the framework of a particular time horizon. (The problem is divided into n
periods.)

� The age ranges are considered constant (each equipment piece's age is classified with respect to the
ranges).

It is assumed that the age density of the equipment is in the form of Weibull function as follows:

f ðtÞ ¼ b
a

t

a

� �b�1

e�
t
að Þb a � 0 ; b � 0 ; t � 0 (1)

l ¼ a� 1þ 1

b

� �
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b

� �
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t
að Þb ; RðtÞ � 0 (3)

where
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Γ: Gamma function

μ: The mean of Weibull distribution

σ2: The variance of Weibull distribution

R(t): Distribution reliability

Indexes

i: Equipment No.

b: Age range No.

y: Period

c: Critical period No. (major repairs)

Parameters

Cost p (i,b,y): Cost of preventive maintenance of equipment i, age range b, period y

Cost f (i,b,y): Cost of corrective (emergency) maintenance of equipment i, age range b, period y

F(L(i)): Accumulative failure distribution function of equipment i

MTTR f: Mean time required for repair or exchange of failure

MTTR_b: Mean time required for preventive maintenance

tf: Period between two emergency failures

R(y): Required repair time in period y

α(i): Scale parameter of Weibull distribution for equipment i

β: Shape parameter of Weibull distribution

A(i,y): The available time for equipment i in period y

M(i,b): The maximum available time for equipment i in period b

EF(i): Cost of major repair for equipment i

Decision variable

X(i,b,y): The planned working time for equipment i in age range b in period (year) y

L(i): Period of performing preventive maintenance for equipment i

Y(i,b,y): If equipment i in the age range b uses the entire available time of period y, one; otherwise, zero

Yc(i,b,y): If equipment i in the age range b and period y is subjected to a major repair, one; otherwise, zero

H(i,y): The accumulated use hours of equipment i in period y, which is equal to equipment age for
y = 0 and accumulated used hours for y > 0.

3.2 Cost Function

The objective function is determined according to the criterion of equipment maintenance in unit time.
The cost is always an important and effective factor in selecting the maintenance policies in organizations.
While investigating maintenance policies, most maintenance researchers and engineers have sought a policy
to minimize it. Therefore, it has always been a determining factor in organizations. Eq. (4) demonstrates the
preventive maintenance cost. In this equation, if L(i) is the preventive maintenance period for equipment i,
UEC(L(i)) equals the preventive maintenance cost rate in the L(i)th preventive maintenance period of
equipment i. In fact, it is assumed that each L(i) time unit spent is allocated to perform preventive
maintenance on it, and L(i) is the decision variable.
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UECðLðtÞÞ ¼ Costpð1� FðLðiÞÞ þ Costf FðLðiÞÞ
ðLðiÞ þMTTRpÞð1� FðLðiÞÞ þ ðMTTRf þ tf ÞFðLðiÞÞ (4)

FðLðiÞÞ ¼ 1� e�
LðiÞ
að Þb (5)

The numerator of the fraction in Eq. (4) is equal to the total expected cost, and its denominator denotes
the expected cycle time. In this equation, the accumulative distribution function of equipment i is denoted
with F(L(i)). Therefore, by substituting for the Weibull distribution information in Eq. (4) and calculating
the total costs for all equipment pieces in the age ranges and the entire period, the objective function
is as follows:

min
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(6)

3.3 Model Constraints

The model constraints are as the following:X
b

X ði; b; yÞ � Aði; yÞ 8 i ¼ 1; . . . ; imax ; y ¼ 1; . . . ; ymax (7)

X
b

X ði; b; yÞ � Mði; yÞ 8 i ¼ 1; . . . ; imax ; b ¼ 1; . . . ; bmax (8)

X
b

X ði; b; yÞ ¼ Hði; yÞ � Hði; y� 1Þ 8 i ¼ 1; . . . ; imax ; y ¼ 1; . . . ; ymax (9)

X
k¼1
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Xymax
y
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y

Ycði; b; yÞ � 1Þ 8i ¼ 1; . . . ; imax ; 8b ¼ c (13)
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y
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y

Ycði; b; yÞÞ 8i ¼ 1; . . . ; imax ; 8b ¼ c (14)

X ði; b; yÞ � 0 8i; b; y (15)
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Y ði; b; yÞ; Ycði; b; yÞ binary 8i; b; y (16)

In the equations above i_max, b_max, y_max, and MM are the total number of equipment pieces, the total
number of age ranges, total number of periods, and a relatively large number.

The objective function minimizes all cycles’ maintenance cost for the favorable function of equipment
and optimum maintenance intervals. The nominator of the fraction in the objective function is the emergency
and preventive maintenance cost for their occurrence probability, and the denominator is equal to the
expected length of each cycle. Constraint (7) guarantees that the total time allocated to each equipment
piece in all age ranges does not exceed the access time. Constraint (8) limits the model so that the total
time allocated to each equipment piece in each age range in all periods does not exceed the maximum
available time in that age range. Constraint (9) shows that the total time allocated in all age ranges for
each equipment piece in each period equals the difference between cumulative time in two successive
periods. Constraints (10) and (11) guarantee that each equipment piece receives time in its age range, and
unless the previous age range is not filled, the next range does not receive time. Constraint (12) satisfies
the production time in each period in the studied industry. Constraints (13) and (14) show the major
repair time for a critical range. Constraints (15) and (16) indicate the positivity and type of variables.

4 Numerical Model

In this section, in order to evaluate the model and determine the value of the objective function, coding in
the GAMS software on a system with a Core i5 processor and 8 GB Ramwas conducted. The used solver was
the CPLEX algorithm. The properties of the studied school are listed in Tab. 1. Parameters values are
obtained from two sources: firstly, by collecting information from a questionnaire among 1,000 teachers
and school principals and selecting 278 people using Morgan sampling. Cronbach's alpha was used to
calculate the reliability of the questionnaire. Using Spss22 software, the necessary calculations were
performed and it was found that the prepared questionnaire has a reliability of 89.6%, which is an
acceptable value. Secondly, through the information contained in the instructions released by the
Organization for Development, Renovation and Equipping schools of Iran. By referring to this instruction
and inquiring about the current price of each item, the relevant costs can be obtained. We use unitless
currency in this research to makes it more general.

Table 1: Properties of the school sample

Number of equipment pieces i 3

Planning year y 3

Age range b 20 (1000 to 5000), (5000 to 10000),
…

Emergency or corrective maintenance cost Cost_f (i, b, y) 750

Preventive maintenance cost Cost_p (i, b, y) 40

Available time A(i, y) 600

The time required for repair R y 17500

Mean time required for preventive maintenance MTTR p 75

Mean time required for repair or exchange of
failure

MTTR f 240

The period between two emergency failures t f 80
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Tabs. 2 and 3 provide the parameters of Weibull distribution and preventive maintenance intervals,
respectively.

5 Results

Using the data given in the previous sections, results are provided in two subsections. Firstly, using the
GAMS software, the optimal value of the objective function, i.e., the minimum cost of the school
maintenance operations schedule in the three-year period (X(i,b,y)), is determined. Then, a data set is
prepared for the cost and schedule of the operations by changing the values of the initial data, and the
values of cost and X(i,b,y) for the fourth and fifth years in the intended school are estimated using the
artificial neural network in the MATLAB software.

5.1 Results of the Accurate Solution of the Model

Tab. 4 provides the equipment operations schedule values in various range numbers for each studied
three-years time span, based on which the lowest maintenance cost can be determined.

According to the schedule suggested for the equipment, the school's maintenance cost for the intended
three-year period is equal to 15361 currency units per hour.

5.2 Results of the Two-Year Prediction (The Fourth and Fifth Years)

Before using the neural network, its different learning functions were used to determine which function
had the best performance. The table below lists the correlation results of each of the learning functions. In
order to determine the performance of the best learning function, the number of hidden layers and the
number of neurons were both considered 10. It is worth mentioning that in this step, 70% of the data
were used in the learning stage, 15% were used in the testing stage, and another 15% were used in the
verification (assessment) stage. Accordingly, the best correlation values for each learning function were
determined, based on which the correlation of values could be determined separately for each test. The
results of the different functions are given in Tab. 5.

Table 2: Values of the Weibull distribution parameters

Equipment
No.

Equipment name Scale
parameter

Shape
parameter

1 Lavatory equipment 1500 2

2 Kitchen or pantry equipment 2000 2

3 Laboratory equipment 2500 2

4 Multi-purpose hall equipment 2000 1

5 Library equipment 1500 1

6 Cooling and heating equipment 1500 2

7 Educational and complementary equipment 2000 1

8 Equipment of doors, windows, staircases, and fences 1500 2

Table 3: Preventive maintenance intervals

L values

Equipment no. 1 2 3 4 5 6 7 8

396.124 289.16 285.146 256.41 354.23 190.184 215.11 250.251
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Table 4: X(i, b, y) values of the sample school (operations schedule)

Equipment Age range
No.

Year

The first
year

The second
year

The third
year

Lavatory 10 695.15 1000.24

WC 11 1628.13

Kitchen or pantry 10 2663.21 1800.45

Kitchen or pantry 11 1500

Laboratory 11 2680.7 1560.5 450.23

Laboratory 12 1800.21

Multipurpose hall 10 2800.24

Multipurpose hall 11 1750.5 750.325

Library 11 3250.5

Library 12 1800.57

Cooling and heating 10 3500 1860.15

Cooling and heating 11 4120.3

Educational and complementary
equipment

10 2100 560.24

Educational and complementary
equipment

11 2880

Doors, windows, staircases, and fences 11 480.63 185.12

Doors, windows, staircases, and fences 12 774.21

Table 5: Correlation results of different learning functions of the neural network

Number Function
type

Function definition Correlation
coefficient

1 trainlm Levenberg-Marquardt 0.9752

2 trainbr Bayesian regularization 0.8869

3 Trainbfg BFGS quasi-Newton 0.8136

4 traincgb Conjugate gradient backpropagation with Powell-Beale
restarts

0.9248

5 traincgp Conjugate gradient backpropagation with Polak-Ribiére
updates

0.8947

6 traingda Gradient descent with adaptive learning rate 0.9152

7 traingdm Gradient descent with momentum 0.8469

8 traingdx Gradient descent with momentum and adaptive learning
rate

0.9096

9 trainoss One-step secant 0.9156

10 trainscg Scaled conjugate gradient 0.8869
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As can be seen, among the functions above, the function trainlm had the highest correlation. Therefore, it
was used for data learning. In the next step, the network model was evaluated and developed based on the
number of layers and neurons. The two commonly used types of the neural network, i.e., the Multi-layer
Perceptron (MLP) and Radial Basis Function (RBF), were employed to assess the neural network. The
best architectures of the neural networks MLP and RBF are provided in Tabs. 6 and 7, respectively.

The number of layers and neurons is of crucial importance in the MLP neural network so that an increase
or decrease in them can influence the network performance.

Table 6: The optimum architecture of the MLP neural network

Architecture Performance Correlation
coefficient

Number of layers Number of neurons

10 10 0.0017 0.9635

10 20 0.0014 0.9817

20 10 0.0022 0.9633

15 15 0.0036 0.9379

5 5 0.0032 0.9689

8 8 0.0063 0.9126

10 5 0.0016 0.9633

5 10 0.0048 0.8947

12 8 0.0035 0.8649

10 15 0.0047 0.8983

9 25 0.0039 0.9639

Table 7: The optimum architecture of the RBF neural network

Architecture Correlation
coefficient

SPREAD Number of neurons Number of DFs

1 5 1 0.47141

1 10 25 0.72172

1.5 10 25 0.12047

1 10 20 0.72172

1 15 25 0.74847

1 20 25 0.89835

1 25 25 0.93657

1 30 25 0.77259

1 27 25 0.91482

1 26 25 0.9517
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In the RBF neural network, the most important parameters affecting the network performance are the
SPREAD, number of neurons, and the number of neurons located between the displays (DF). Thus,
before modeling each of the membranes using the RBF neural network, it is essential to determine the
favorable number of neurons and DFs for modelling, as shown in Tab. 7.

Fig. 1 illustrates the correlation coefficient variations for each of the two neural networks based on their
optimum architectures.

As can be seen, the MLP neural network's optimum architecture in predicting the operations schedule
and maintenance cost was the second one with 10 layers and 20 neurons. Furthermore, the RBF neural
network's optimum architecture was the tenth architecture with a SPREAD of 1, 26 neurons, and 25 DFs.
Therefore, the model was evaluated based on the input data and the learning function of trainlm with the
optimum architecture of both methods. For this purpose, the 70% learning, 15% testing, and 15%
assessment data were evaluated. Figs. 2 and 3 depict the results obtained from the correlation between all
data in both learning and testing stages for the MLP and RBF neural networks, respectively.

Figure 1: A comparison between the performances of different architectures of MLP and RBF neural
networks in terms of correlation

Figure 2: Data correlation curve in MLP neural network
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Tab. 8 compares the modelling error of both networks. As can be seen, the MLP neural network has a
better performance compared to the RBF neural network.

Finally, the operations schedule and maintenance cost of the school equipment were predicted with the
MLP neural network model (Tab. 9).

Figure 3: Data correlation curve in RBF neural network

Table 8: A comparison of the error of the MLP and RBF neural networks in estimating the maintenance cost

Model Maintenance cost estimation

MSE RMSE

MLP 1.0869 × 10(−12) 1.0325 × 10(−6)

RBF 2.58215 × 10(−8) 1.6069 × 10(−4)

Table 9: Prediction of the X(i, b, y) values of the sample school (operations schedule) for the fourth and fifth years

Equipment Age range No. Year

The fourth year The fifth year

Lavatory 10 452.21

Lavatory 11 256.14

Kitchen or pantry 10 250

Kitchen or pantry 11 478.263

Laboratory 11 169.15 50.23

Laboratory 12 750.682

Multipurpose hall 10 1500

Multipurpose hall 11 896.65

Library 11 1860
(Continued)
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As can be seen in the table above, the maintenance cost increases with the operations schedule.
Accordingly, considering the previous three-year cost, the maintenance cost for a five-year period for the
intended equipment in Tab. 9 is equal to 19583 currency units per hour. Based on this planning period, it
was found that after the fifth year, the maintenance and painting costs of the doors, windows, staircases,
fences, and spaces of the school would rise. Moreover, in the next years, the building's costs would also
grow due to the increased age and deterioration of the building.

6 Discussion and Conclusion

A mathematical optimization model for the maintenance planning of schools is presented. For this
purpose, a model based on the optimum preventive and corrective maintenance was designed for a
sample school to reduce the school equipment's maintenance and repair costs. The results of the sample
school maintenance plan were evaluated in two sections. In the first section, by modelling in the GAMS
software and using the CPLEX solver, the operations schedule and maintenance cost for three different
types of equipment in the school and a three-year period were investigated. In the next step, the two
famous neural networks, i.e., MLP and RBF, were employed with their optimum architectures. It was
found that the MLP neural network with a MSE error of 1.0869 × 10(−12) and RMSE error rate of
1.0325 × 10(−6) had better performance compared to the RBF neural network. Therefore, the fourth- and
fifth-years’ operations schedule and maintenance costs were predicted using this neural network. Using
this method and considering the previous three-year cost, the equipment maintenance cost for the desired
five-year period was obtained 19853 currency units per hour. Hence, it can be claimed that the suggested
model is capable of predicting the schools’ equipment maintenance costs with high accuracy. It was also
found that among entire equipment pieces, the heating and cooling system and the laboratory equipment
had higher maintenance costs, equal to almost 35% of the school's total maintenance costs. Hence,
accurate and definite planning can prevent such equipment damages while saving the school's
maintenance costs. This work has been conducted only for a specific period of the building's life time, so
similar surveys at different time points are recommended. The assessment of the optimization results is
possible through implementation of the obtained maintenance plan in practice and evaluate the costs at
the end of the program. The same methodology can be used for modelling, optimization and predicting
the maintenance cost of other buildings, such as residential and commercial ones to reduce their
maintenance costs and increase their reliability. The technology of real-time streaming through internet of
things (IOT) can be implemented for predictive maintenance in schools’ buildings and equipment. They
make the scope of our future researches.

Table 9 (continued).

Equipment Age range No. Year

The fourth year The fifth year

Library 12 468.5

Cooling and heating 10 450

Cooling and heating 11 2500.54

Educational and complementary equipment 10 536

Educational and complementary equipment 11 2000.45

Doors, windows, staircases, and fences 11 100.25

Doors, windows, staircases, and fences 12 600.59
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