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Abstract: In sugar production, model parameter estimation and controller tuning
of the nonlinear clarification process are major concerns. Because the sugar indus-
try’s clarification process is difficult and nonlinear, obtaining the exact model
using identification methods is critical. For regulating the clarification process
and identifying the model parameters, this work presents a state transition algo-
rithm (STA). First, the model parameters for the clarifier are estimated using
the normal system identification process. The STA is then utilized to improve
the accuracy of the system parameters that have been identified. Metaheuristic
algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization
(PSO), and State Transition Algorithm are used to evaluate the most accurate
model generated by the algorithms. By capturing the principal dynamic features
of the process, the clarifier model produced from State Transition Algorithm
(STA) acts more like the actual clarifier process. According to the findings, the
controllers provided in this paper may be used to achieve greater performance
than the standard controller design during the control of any nonlinear procedure,
and STA is extremely helpful in modeling a nonlinear process.

Keywords: Sugar industry; clarifier process; pH neutralization; system
identification; genetic algorithm; particle swarm optimization; state transition
algorithm

1 Introduction

The main and basic requirement of sugar processing is a quality product with an acceptable economic
benefit. The various stages are involved in modern technology to prepare sugar, whereas; clarification is the
key part to ensure the quality of the product. Additionally, the clarification process of sugar industry
influences the fundamental properties like pH, crystallization, drying, etc. It is necessary to control the pH
to attain the quality outcome which can be succeeded with proper modeling of the process. The cane
stalk processing in sugar industry makes affects the quality of raw sugar and clarification process
efficiency and performances [1–3]. Due to the lower quality of clarified juice, the evaporation process is
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affected, and the probability of sucrose loss to molasses is increased by pan. Many of the researchers have
published a considerable work on the impact of trash on sugar cane stalk processing [4–8], Coagulation and
flocculation behaviour of the juice particles are focused by few researchers [9–11]. The extracted juice is
often dark green in colour with the pH of 5–5.5 [12]. The addition of lime milk to the juice brings the pH
value to about 12, further heating the juice to obtain the clarified juice. The pH should be neutralized in
order to avoid the inversion of sucrose during settling. In the last stage, the pH value of the treated juice
is kept at 6.9–7.5, resulting in dark-coloured juice and increased viscosity. The low pH of the treated
sucrose juice is determined by the quantity of precipitated calcium phosphate and the calcium content of
the clarified sucrose juice.

The importance of effective juice clarification to improve the efficiency, performances and production of
quality raw sugar by developing the effective modeling and controller design is discussed [13]. Therefore, it
is necessary to study effective modeling and control using optimization methods in sugar cane juice to obtain
an understanding of the clarification processes of cane juice.

The primary aim of this paper is to understand the clarification process and to design the model with the
information obtained from the clarification process. An investigation to understand the mechanisms of
clarification with the effective black-box modeling and to design the optimum clarification control design
will provide quality output with the optimized control strategies. Optimized clarification with the effective
control design helps to filter all possible non-sugars, organic and inorganic, and the preservation of the
maximum sucrose and reducing sugars possible in clarified juice.

A complex process like the clarification process needs the controller to react immediately by finding the
optimal solution. The PSO and GA have the optimal solution faster, in PSO, it may get premature
convergence and has a poor local optimization ability [14–16]. The GA has high robustness and good
global search ability [17]. In the solution space, it can search quickly for all the solutions and will not get
stuck in local traps. The implementation of its coding, however, is relatively complex, and the selection
and setting of some parameters depend mostly on experience.

Recently, an emerging stochastic optimization method is proposed called STA [18]. State and its solution
transformation are considered for an optimization of the problem. The candidate solution can be produced in
an integrated framework and the parameters involved in the process is expressed as state transition matrices.
Four operators of STA are rotation, translation, expansion, and Axesion. These operators have a feature that
helps to increase the searching ability in both global and local searches.

The solutions are searched in a given radius of hypersphere by the rotation operator whereas the
expansion operator searches the solution in the whole space which may represent local and global search
of operators. The major merits of this STA based optimization are the operators can be manipulated based
on the demands since it has adaptability and high searching ability have been observed while reviewing
the other global stochastic optimization algorithms [19]. The State Transition Algorithm (STA) has been
proposed in this research paper. STA is a technique that can easily escape the optimal local challenges.

2 The Clarification Process at a Sugar Plant

The various stages are available in sugar production where clarification is one of the key parts which will
decide the quality of the final product. The clarification process removes many of the impurities mixed with
the draft juice, and it is extracted from the sugar cane. The major objective of this process is the removal of
maximum non-sugar content, such that sucrose recovery will increase. The process flow chart is shown in
Fig. 1.
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2.1 Clarification/Defecation

After this juice is ready for clarification, the juice extract is strained from the cane to remove dirt
particles, fibre, or pulp. The goal of clarification is to free the juice from all constituents, except sugar, as
far as possible without altering the sugar itself. The universal basis for this clarification is that lime is one
of the first chemicals to be used since it is both efficient and economical. The primary objective of lime is
to neutralize juice acidity and turn several organic acids into insoluble calcium salt [20]. Clarification
remains, therefore, a necessary and integral part of the production of sugar. The juice is blended in the
clarifier tank with the help of a mechanical stirrer. The juice flows at a very low superficial velocity
through the clarifier so that the muds settle out and transparent juice exits. There is the sugar content in
the mud from the clarifier so it is filtered on rotary vacuum filters where the residual juice is removed and
the mud can be washed before discharge. The juice and the water are returned to the process with sugar.
The juice from the mills is typically acidic and turbid, with a dark green colour. The clarification
(or defecation) process is designed to extract both soluble and insoluble impurities not extracted by
preliminary screening (such as sand, soil, and ground rock). Clarification of mixed juice is commonly
referred to as the ‘simple defecation process’ in which lime heat and milk are used to produce a clear
juice suitable for further processing.

Figure 1: Clarifying process flow diagram
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A very significant and popular technique used in the defecation process is the addition of calcium
hydroxide with clear juice to maintain the pH value. By incorporating the lime milk into the lime
saccharate, the pH value is changed to the desired value. The addition of lime raises the juice’s pH value
from 5–5.5 to 6.9–7.5, which is the optimal value. The chemical reaction between the lime and the lime
occurs and the inorganic phosphates. Then, with some impurities, the resulting calcium phosphate is
recovered and the final clarified juice with the desired pH value is separated. Depending on the form of
juice, this addition of lime reacts with the juice. Lime is introduced to the juice when the temperature is
around 35°C to 40°C if it is a cold juice, whereas the temperature is 72°C–76°C if the type of juice is
intermediate. If the juice is in hot type, then the lime might be added at the temperature of 100°C [20].

2.2 Effect of Lime

The addition of the correct amount of lime is the basis of good clarification in sugar production. If too
little lime will give poor settling and cloudy juice with possible losses by inversion and too much lime causes
darkening of the juices, increase in gummy substances in low-grade products, increased ash because of
dissolved lime salts, and high molasses output. Lime will dissolve in sucrose solution forming calcium
saccharate, a true solution, which can be handled with none of the problems of handling slurry [20]. High
liming is to be avoided; and if clear juice cannot be obtained by simple defecation except by liming to
high alkalinities, the addition of phosphate or some other modification of the process should be employed.

3 Results and Discussion

The clarification process is a complex process where the input of base flow rate and the output of pH
value is collected from the real plant, and it is further given to linear models such as AutoRegressive with
eXternal input (ARX) and AutoRegressive–Moving-Average model with eXogenous inputs model
(ARMAX), Box Jenkin (BJ) and Output Error (OE) like a nonlinear model and STA like optimization
methods. The performance of the proposed models is simulated using MATLAB. It is run on a Desktop
PC. The configuration of the PC is i5–7500T with 4GB RAM.

3.1 Standard System Identification Method to the Clarification Process

Basic linear models ARX and ARMAX are initially selected with the minimum parameters and tested
with the collected data. Regarding the maximum fitness obtained from the individual method, the
clarification process has been selected, and it is represented mathematically as in, Eq. (1).

G sð Þ ¼ 8:1259

24:673S2 þ 21:334Sþ 1
(1)

From the M/S Sakthi sugars, 6000 sets of input and output data have been collected. In the sugar
clarification house at M/s. Sakthi Sugars, the extracted juice from the mill is collected with a pH of
around 5 is weighed on a juice weighing scale. Further, the juice is passed through primary juice heaters
and heated up to 65o C. The heated juice is treated with the SO2 to a pH of 3–4.5 and again treated with
the milk of lime about 40 to 60 L/min to bring the pH of 6.9–7.5 for removal of non-sugar material. The
primary disturbances in the clarification process are the sugar juice flow, the juice’s pre-ash pH value, the
sulphur strength, and the lime milk capacity. In this thesis, in the case of regulatory performance review,
the ability of lime milk is considered to be a disruption to check the efficacy of the proposed controller.
The open-loop data on pH and base flow rate is considered for modeling the clarification process and it is
shown in Fig. 2. The same data set is further used for identification. For validation and estimation
purposes, the total amount of data has been divided into 50% each. The model identified
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The validation response is obtained from the standard methods as mentioned earlier, and it is shown
from Figs. 3–6.

Figure 3: Validation response of ARX model

Figure 2: Input and output collection of clarifier process
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The fitness of the measured and validated model has achieved 90.86 in the ARX model. 90.96 of the
ARMAX model is better than the other methods in the linear model. The least fitness of 57.65 is obtained
from the OE model. The overall comparison of the linear methods has given a clear picture of the
efficiency of ARMAX in the case of model identification of the clarification process.

The values obtained from the linear model and the nonlinear models of validation response are tabulated
in Tab. 1. The overall observation has been made to select the ARMAX model for further procedures.

Figure 4: Validation response of ARMAX model

Figure 5: Validation response of box Jenkin model
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3.2 State Transition Algorithm

Like GA and PSO, STA is a heuristic random search algorithm with the concept of state transition. The
necessary steps explain the STA optimizations.

m

Figure 6: Validation response of OE model

Step 1: select a value of ‘x’ and make it as a present solution

Step 2: Add the present solution ‘x’ with its derivative ‘dx’, Calculate the f(x + dx) value.

Step 3: If the calculated value is less than the present value, then keep the present value as the current
solution which is referred to as (x = x + dx)

Step 4: Stop the iteration, when it satisfies the stopping criterion, else proceed to Step 2.

Table 1: Parameters of the various algorithms

Parameter Symbol STA

Population size (or) SE N 30

Number of generations Ngen 100

Rotation factor a 1

amax 1

amin 1e-8

fc 2

Translation factor b 1

Expansion factor c 1

Axesion factor d 1
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The basic random search for the STA method is formulated as follows. Consider the basic linear time-
invariant system,

_x tð Þ ¼ Ax tð Þ þ Bu tð Þ
y tð Þ ¼ Cx tð Þ þ Du tð Þ (2)

where A, B, C, and D are linear maps. The state variable of the controller is x.

Various procedures are available in metaheuristic methods. Among the varieties of methods, iterative
search method is always employed and it is suitable for local searching, but often, the iterative methods
are computationally complicated, since it has implicit gradient information. For global optimization,
searching, the gradient is a method that provides an optimum search. It is suggested by most experts
because it is possible to achieve an optimal global solution. The direction of the gradient is just a way of
standing for direction in this case, and it has no major influence on the quest for a global optimum. The
iterative method is used in Eq. (2) for efficient local search, where the search progress of the iterative
method is inferred as state transit. If state and state transition are retrieved from the searching method,
then the new state can be created at the end. The searching process of the evolutionary algorithm also
imitates the same state and state transition, when the case is stochastic. Like PSO and GA, in STA, the
state is referred to as population and updating solution at each iteration is referred to as state transition.
Now in the case of the proposed STA design, the performance operators involved in solution update are
state transition and the process of optimization is a state.

3.3 STA in Parameter Estimation

Fig. 7 describes the identification of a linear model using STA. The parameters of the model are
identified by STA using its state and state transition operators. The error in Eq. (3) can be found from the
difference between the actual and the identified model and it can be used as a constraint in STA to obtain
the optimum parameter.

MSE ¼ 1

N

XK

1

ðy kð Þ � ŷ kð ÞÞ2 (3)

4 STA Design Algorithm

The state transition method of searching is similar to the evolutionary algorithm, and the only difference
is the number of operators for searching the solution. The design is given as,

Figure 7: STA in parameter identification
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In the case of STA, there are four operators used to search the solution, and it will become a new state of
the problem. The new state is obtained and then, the operator further proceeds to find another new optimum
state. A set of state transformations is known as Search Enforcement (SE).

The design of the STA is given as,

5 STA Parameters and Its Analysis

STA is an optimization algorithm that consists of four operational parameters and one Search
Enforcement (SE) parameter. In some researches, the SE is fixed to the dimensional search, since the
larger value of SE brings the complexity in the design. The fixed SE has reduced the complexity of
parametric analysis. A rotation operator should be a minimum and hence, an accurate solution can be
derived. The minimum rotation operator can be achieved in two ways by adjusting the inner factor loop
or outer loop. Minimizing the value of the rotation operator is known as the Lessing coefficient. In the
case of the remaining operator, the value should be large to search in the straight line for a longer time.
Over the large and less amount of the factors of translation, expansion and Axesion will affect the search

repeat

if s < smin then

s ← smax

end if

Soln ← expansion (funfcn, Soln, SE, α, r)

Soln ← rotation (funfcn, Soln, SE, s, α)

Soln ← Axesion (funfcn, Soln, SE, α, b)

s s

f c
until the specified termination criterion is met

Initialize x0, and set k← 0

repeat

k kþ 1

random number vector O

xin  xk�1 þ O

if f xinð Þ < f xk�1ð Þ; then
xk  xin

else

xk  xk�1
end if

until termination condition met
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space. In metaheuristic optimization methods, convergence is an important factor. In this proposed STA
design, the probability random search method has been adopted in the case of convergence.

6 Model Validations

The procedure to identify the best-validated model is the cross-validation procedure (Ljung 1999).
Eq. (1). is the ARMAX model with 90.86% is identified as a suitable model. Residual analysis and
correlation analysis is observed from the experiment to confirm the effectiveness of the model which is
captured by validation procedure. Autocorrelation (output residuals) and cross-correlation (input to
the process) and the output residuals from the residual analysis are collected. The analysis shows that the
process dynamics that can be understood when both of the correlation functions lie between the
confidence intervals have been captured by the efficiency model. Fig. 8 displays the ARMAX model’s
residual analysis. The upper part of the figure suggests the residual autocorrelation of the output and the
lower part displays the residual autocorrelation of the output between the input of the process and the
residual output. In between the 99 per cent confidence intervals, all the signals lie. It is, therefore,
possible to consider the model as accurate.

In Fig. 9, the convergence of the best fitness and average fitness is shown. Within the fifth generation
itself, both principles have come similar to one another. Since then, the average fitness has stayed very
similar to the finest fitness. With the more generations after 13th generations, the best fitness does not
change; thus, suggesting the optimal or almost optimal solution for the parameter values. STA-ARMAX
is called the model arising from this. The simulated performance of the STA-ARMAX model is obtained
and compared to the simulated results. Its fit percentage is measured by estimation data and validation
data. Tab. 1. demonstrates the contrast between the simulated ARMAX and STA-ARMAX outputs.

Fig. 9 shows the effectiveness of the proposed design. The convergence of model error is achieved
quickly in the STA-ARMAX model than in the remaining methods. It also insists as the % of model

Figure 8: The residual analysis of the identified ARMAX model
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fitness and it is considerably increased in STA-ARMAX than the ARMAX. The comparison of the optimum
models, which have gained the least MSE value showed in Fig. 10 and it is tabulated in Tab. 2. Fig. 11 shows
the validation performance of the STA-ARMAX model has the best performance over the ARMAX
validation model. The comparison explains the optimum performances of the proposed design. Tab. 3.
evaluates the parameters and fit the percentages of the models ARMAX and STA-ARMAX. There is an
increase of 1.72% in the fit percentage of the model with the validation data in the case of STA-ARMAX.

The optimum fitness obtained has been considered, and the corresponding model parameters for the
STA-ARMAX model have been observed and shown in Fig. 11.

Further, the fine-tuned model of the ARMAX identified model is compared with an ARMAX model for
the clarification process using STA is represented in Fig. 12 and mathematically represented by Eq. (4).

G sð Þ ¼ 8:125904

3:0465S2 þ 5:165 Sþ 1
(4)

The STA tuned ARMAX model has been considered in the following for the controller design since the
proposed design has given the very optimum model performances for the clarification process in terms of
MSE and Fitness. The STA tuned ARMAX model has been considered in the following for the controller
design since the proposed design has given the very optimum model performances for the clarification
process in terms of MSE and Fitness. The identified ARMAX model is an overdamped system and it has
a steady-state gain of 8.1259 and the damping factor 2.148 by the time constant 4.967 s in Eq. (1).

The STA-ARMAX is also an overdamped system and it has a steady-state gain is 8.125904 and the
damping factor of is 1.47 with a time constant of 1.745 s.

Figure 9: Convergence of fitness
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Figure 11: Identified model using the STA-ARMAX method

Figure 10: Model error of various identification methods
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7 Metaheuristic Algorithms for Controller Design of Clarification Process

The basic model of the clarification process has been obtained with various identification methods, and
the optimum model is identified using the STA-ARMAX model. The controller has been designed in this
section using different algorithms where the STA-ARMAX model has been considered as a clarifier
model. The basic closed-loop feedback control is designed initially to the obtained model as given in
Fig. 13 and the parameters of the PID controller are further enhanced by metaheuristic algorithms to
obtain the effective controller design in the clarification process. And the methods for obtaining the
optimum gain values of the PID controller.

Table 2: Error performance comparison

Model MSE value

ARMAX 0.08241

STA-ARMAX 0.000113

Figure 12: Comparative model analysis of various methods

Table 3: Comparison of the models before and after STA tuning

Model Parameters Fit (%)

a B c Estimation data Validation data

ARMAX 8.1259 24.673 21.334 92.56 90.96

STA-ARMAX 8.125904 3.0465 5.165 96.86 92.62
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The basic controller gains of the closed-loop system can be obtained from the standard tuning methods.
For obtaining the optimum performance, the gain values of the controller are further enhanced by a

metaheuristic algorithm where it converts the normal problem into an optimization problem using the
objective function of the error values. The control simulation of the clarification process is simulated
using MATLAB-Simulink. The error to the controller has been obtained from the difference of reference
value and output value and it is processed by a control system to enable the controller to react to make
the process follow the desired output. The metaheuristic algorithm is employed to instruct the controller
by considering the model error as an objective function. In such a way, the controller parameters are
adjusted related to the objective function of the algorithms. The range of the gain parameters is fixed and
it's presented in Tab. 4.

The simulation responses of the metaheuristic algorithms are analysed. For making a better comparative
analysis, the population size or iteration of the algorithm is initialized to 100. The comparative performances
of GA-PID, BFO-PID, PSO-PID, and PID are analysed, and it is represented in Fig. 14. As well as their
performances are tabulated in Tab. 5.

The observation shows that GA-PID is the more optimum solution than the other controllers listed in the
comparison. The step input of unity is given to the controllers and plotted in Fig. 16, where the GA-PID has
reached the settling time faster than the other metaheuristic Algorithm and PID controllers. The basic
performances such as settling time, rise time, and MSE are compared. The least value is obtained from
GA-PID, whereas, BFO and PID controller provides poor performances. For the comparisons, BFO-PID,
and PID controller are not considered because of their poor performances.

8 Performance of STA in PID Tuning

STA is another metaheuristic algorithm used in optimization problems. The performance of STA is
efficient in many types of researches in the field of identification as well as in controller tuning by
selecting the proper STA parameters. The necessary performances are selected and listed in the previous
chapter. The optimality performances of STA are simulated by the STA-ARMAX model, and the

Figure 13: Design of closed-loop control

Table 4: Boundaries of PID gain values

System Proportional gain Integral gain Derivative gain

Identified model
(Second-order system)

0-100
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simulated responses are given in Fig. 15. The performances of the STA are much better than the PID
controller, and the performance measures are compared with other metaheuristic methods. The results
show that the optimality of the solution can achieve better in STA than the other algorithms such as GA,
PSO, and BFO.

The comparative response of different proposed metaheuristic algorithms is presented in this section.
For effective comparison, the step size is given as 7.2 to all the controllers as shown in Fig. 17. The
simulated response shows that the STA is a more efficient algorithm than others in the case of quick
settling time, less overshoot, and also provides optimum error convergence. The PID controller gains are
obtained from STA and they have effective controller characteristics.

Figure 14: Conventional controller performances

Table 5: Comparative measures of metaheuristic methods

Criteria PID BFO tuned PID PSO tuned PID GA tuned PID

Rise time in sec 1.83e2 1.328e1 1.546e1 1.47e1

Settling time in sec 4.26e2 0.856e1 0.681e1 0.4028e1

MSE 7.543 2.3121e-3 2.635e-4 2.814e-5
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Figure 15: Comparative analysis of STA-PID and PID

Figure 16: Controller performances to a unit step function
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The basic criteria of the controller like settling time, rise time, and MSE are compared to the
performances of different controllers, and they are tabulated in Tab. 6. The transient and servo
performances of different proposed metaheuristic algorithms are analysed. The simulated response is
shown in Fig. 17. The input changes are suddenly from 6.7 to 7.2 and the corresponding simulated
responses of the optimization controllers are shown. Among the other algorithms, STA has given its
optimum performances in the case of fast reaction towards the changes. Further changes are given to the
controllers where the STA again proves the effective tracking and transient responses than another
algorithm which are proposed. The BFO has provided a poorer response than all other responses when it
experiences the changes in the reference input. The transient performances are tested by adding the
nonlinearity in the controllers, and the responses are noted as shown in Fig. 18. The desired pH is fixed
with unity, and the controller is simulated with nonlinearity. The three designs have given their best
performances and among them, STA has pointed out its excellent performances.

Table 6: Comparisons of metaheuristic algorithm in controller design for clarifier process

Index term PSO-PID BFO-PID GA-PID STA-PID

Rise time (s) 28.4 27.5 24.1 19.365

Settling time (s) 2.6541e1 5.321e1 2.0113e1 1.08345e1

MSE 2.0108e-5 3.312e-4 1.9882e-5 1.8334e-6

Figure 17: Servo performance measures of various controllers
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The best and fast convergence of the error rate has been achieved by STA than SA whereas GA has
given good convergence, but less than STA and better than the PSO algorithm. The overall comparison in
terms of the performance measure, tracking, and transient performances, and error convergence, STA has
provided the optimum performances. Figs. 19 and 20 show the effectiveness of the controllers in the case
of servo analysis and transient analysis. Fig. 19 shows the different set-point of the pH values to the
controllers and the corresponding responses are observed. The STA has an effective response over
other methods.

The disturbance is given to the flow rate around 50 to 100 s and the corresponding performances are
plotted in Fig. 20.

GA-PID and PSO-PID reject the disturbance slowly than the STA-PID controller design. STA-PID
controller suddenly reacts to the disturbances and maintains the pH value at the desired value. Milk of
lime is added at the rate of 48 L/min initially to the juice and after 50 s the lime addition reduces to 44 L/
min to observe the effectiveness of disturbance rejection. The controller effectively handles the load
variations and maintains the pH value as desired pH value. The comparative analysis instructs the
researchers about the outperformance of the STA-PID controller.

Figure 18: Response of STA-PID controller to the system
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Figure 19: Servo performances of various proposed controllers

Figure 20: Disturbance rejection response of various controllers
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9 Conclusion

The performance of the PID controller on the STA-ARMAX model is initially tested, and the
performances are further improved by applying the metaheuristic algorithm. Different methods of
metaheuristic algorithm are applied to the PID controller gain value adjustment, and it is simulated with
different criteria. The results are tabulated for the comparative analysis of the algorithms on controller
parameter tuning. The performances of the controller which has been tuned by the algorithms are
analysed, and it is observed that the algorithm tuned PID is more effective and more robust than the
standard PID controller. Further, the comparative results are explained that among all the algorithms
discussed in this research for controller parameter tuning of PID, STA is more optimized and provides the
response which is closer to the desired response. The controller values are tuned effectively when the
STA is used to obtain the gain values since the error convergence of the STA is more optimal than other
algorithms. Finally, it is concluded that the performance of STA is more optimal than other algorithms
and it could be modified with some internal parameters consequently the performance of PID controller
tuning is becoming more optimum.
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