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Abstract: Scheduling heat treatment jobs in a hot press forging factory involves
forming batches of multiple workpieces for the given furnaces, determining the
start time of heating each batch, and sorting out the order of cooling the heated
workpieces. Among these, forming batches is particularly difficult because of
the various constraints that must be satisfied. This paper proposes an optimization
method based on an evolutionary algorithm to search for a heat treatment sche-
dule of maximum productivity with minimum energy cost, satisfying various con-
straints imposed on the batches. Our method encodes a candidate solution as a
permutation of heat treatment jobs and decodes it such that the jobs are grouped
into batches satisfying all constraints. Each candidate schedule is evaluated by
simulating the heating and cooling processes using cost models for processing time
and energy consumption, which are learned from historical process data. Simulation
experiments reveal that the schedules built using the proposed method achieve
higher productivity with lower energy costs than those built by human experts.
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1 Introduction

Hot press forging is an energy-intensive metal shaping process in which large ingots are heated to a high
temperature and then cut or pressured or both to workpieces of desired shapes and sizes. The workpieces are
then subjected to a heat treatment process to have their physical properties, such as strength and hardness,
turned into a desired state. The heat treatment process usually begins by forming a batch of workpieces
to be put together into a heating furnace. After being heated to the target temperature, each workpiece
remains in the furnace for the respective holding period before being removed one after another for
cooling. Depending on the product type, some workpieces require multiple heating and cooling steps.
Scheduling the heat treatment jobs for a set of given furnaces involves forming batches for the furnaces,
determining the start time of heating each batch, and sorting out the order of cooling the heated
workpieces. Among these, forming batches is particularly difficult because of the constraints that must be
satisfied. First, the workpieces constituting a batch must have the same target temperature for heat
treatment. Second, the total weight should not exceed the capacity of the furnace. Additionally, they must
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be loaded into the furnace following spatial constraints. To search for an optimal heat treatment schedule, the
time and energy costs of heating each batch should be estimated with reasonable accuracy. However, such an
estimation is not easy because the costs depend not only on the weights, thicknesses, and materials of the
constituent workpieces of the batch but also on the specifications and performance of the furnace in
which the batch is to be heated.

While many previous studies have proposed methods for forming a batch under the constraint of the
weight capacity of a given furnace, they ignore the spatial constraints imposed by the size of the furnace
in relation to the shapes and dimensions of the workpieces in the batch [1–5]. Previous studies [1,2] have
dealt with the constraint on the temperature of heat treatment; [1] assumed that the target temperature is
explicitly given for each workpiece, whereas [2] formed a batch with the workpieces whose heat
treatment processes to go through are the same with no reference to their target temperatures. The time
and energy costs were either given or estimated in most previous studies. [3] adopted fuzzy logic to deal
with uncertainty in estimating the time and energy costs. [1] estimated the energy cost using the thermal
mass and heat transmission coefficient determined for each heat-treatment furnace.

In this paper, we propose a constrained optimization method based on an evolutionary algorithm to
search for a heat treatment schedule of maximum productivity with minimum energy cost, satisfying
various constraints imposed on the batches. Our method converts a given constrained optimization
problem into an easier ordinary optimization problem by encoding each candidate solution as a
permutation of heat treatment jobs and decoding it such that the jobs are grouped into batches satisfying
all the hard constraints. For constraint checking during the decoding procedure, we need to know the
respective heat treatment temperature of each workpiece, as well as its shape and dimensions. To obtain
an allowable heat treatment temperature range for each workpiece, we learn a decision tree model from
historical data of previously processed batches. To configure a batch satisfying the spatial constraints of a
given furnace, we adopt the Maximal Rectangles algorithm [6] and apply the shape-by-shape loading
rules used in our testbed factory. During the optimization, each candidate schedule is evaluated by
simulating the heating and cooling processes for the decoded batches and then measuring the resulting
performance indices such as the throughput, makespan, and energy cost. The time and energy costs for
processing each batch are predicted using cost models learned from historical process data collected
through the IoT sensor network installed at the testbed factory.

We conducted experiments to determine whether the schedules obtained using our method for our
testbed factory are better than those generated by human experts. We collected records of heat treatment
operations over a specified period and applied our method to the jobs in the records to generate our own
schedules. Since our schedules cannot be re-executed in a real factory, their executions are only simulated
using our virtual factory emulator. For a fair comparison, the factory’s historical operation records were
simulated again using the same emulator. The results show that the schedules obtained by the proposed
method achieve higher productivity with lower energy costs than those generated by the experts. The
remainder of this paper is organized as follows. The next section presents a detailed description of the
heat treatment procedures performed in our testbed factory. Section 3 reviews the related works. Section
4 explains the proposed method, and Section 5 reports the experimental results. Finally, Section
6 provides a summary and concluding remarks.

2 Heat Treatment Process

Different heat treatment techniques are used depending on the desired physical properties of the product
and the characteristics of the raw material. The techniques used in our testbed factory are quenching,
tempering, normalizing, and annealing. Fig. 1 shows a schematic diagram of the heat treatment
procedures applying these techniques. Quenching increases the hardness by rapidly cooling the heated
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metal in a water tank. Since the hardened metal after quenching is too brittle to be useful for most
applications, it requires an additional treatment called tempering in which the metal is heated and then
slowly cooled in the air. Depending on the material, some quenched workpieces must be preheated to a
low temperature within a furnace and held there if tempering cannot begin immediately after water
cooling. Normalizing is a treatment in which a heated metal is slowly cooled in air to remove internal
stresses. It is different from tempering in that normalizing heats metal to a much higher temperature. For
the workpieces made of sensitive materials, tempering should be done after normalizing. Annealing is a
technique used to soften a metal by cooling it very slowly after heating. For slow cooling, the workpieces
are cooled within the furnace where they were heated. In all these treatments, after a workpiece is heated
to its target temperature, it must be held in the furnace for a predetermined time. This holding period
varies depending on the workpiece.

As previously mentioned, every workpiece has its own allowable heat treatment temperature range.
Therefore, the workpieces constituting a batch cannot be heated together unless they have a common
temperature subrange. As long as this temperature constraint is satisfied, workpieces that require different
heat treatment techniques can be mixed together to form a batch. Once a batch is formed, its target
temperature of heating is determined to be the lowest value of the common temperature subrange to save
as much energy as possible. In addition to the temperature constraint, each batch must satisfy both weight
and spatial constraints. The weight constraint is easy to check; the total weight of a batch must not
exceed the capacity of its targeted furnace. However, checking the spatial constraints is much more
complicated. All workpieces in a batch must be put together in a furnace following the respective loading
rules for different types of shapes. These rules state that the ring- or disk-type workpieces can be stacked
on top of each other, whereas the shaft type cannot be. Additionally, the shaft-type workpieces must be
placed vertically to the furnace door because the support dies on the furnace floor are installed parallel to
the door. When workpieces are placed in the water tank for cooling, there are similar rules for the shapes
that must be followed. Our test bed factory is equipped with one water tank and seven heat treatment
furnaces of various sizes.

3 Related Works

Heat treatments are performed in various ways in different environments. Accordingly, numerous efforts
have been made to develop methods for optimizing heat treatment scheduling. A previous study [7] dealt
with scheduling the batch annealing process in steel coil production, where heating and cooling
equipment are moved to the workpieces by cranes, while in most cases workpieces are moved to fixed

Figure 1: Heat treatment procedures
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equipment. Other previous studies [4,8,9] solved the problem of heat treatment scheduling in which
workpieces were not grouped to form a batch but were sequentially loaded into a furnace. The common
goal of these studies was to find an optimal order of loading. He et al. [10] presented a method for
determining the weight of furnace charging to optimize energy efficiency, but made no mention of
forming a specific batch that satisfies such weight constraints. It is also assumed that each furnace is
specialized for a particular heat treatment technique, while any furnace can be used for any technique in
our testbed factory. Lenort et al. [5] proposed a heuristic algorithm to form a batch to best exploit the
weight capacity of the targeted furnace. However, the heat treatment process in Lenort et al. [5] is
different from ours in that there is a pressing process between the heating and cooling stages. This
research aims to form a batch heuristically depending on the predetermined order of pressing.

Despite being aimed at the steel casting industry, [2] proposed a heuristic algorithm for scheduling
heat treatment furnaces. While the heat treatment process is similar to ours, this method does not
attempt to optimize the schedule, but simply forms a batch heuristically by following the order of
completion of the preceding process, respecting the priority given in advance and preferring larger
workpieces. Wang et al. [3] proposed a multi-objective integer programming model to search for a
batch schedule of the heat treatment process with minimum tardiness and energy consumption. The
model adopts fuzzy logic to deal with uncertainties in processing times and energy costs. The energy
cost of a batch is estimated to be the maximum of the energy costs of the individual workpieces
constituting the batch, where a fuzzy triangular distribution represents the cost for each piece. In our
study, both time and energy costs of a batch are estimated using cost models learned from process data
collected using the IoT sensor network installed at our testbed factory. Wang et al. [3] is also different
from our study in that there is only a single furnace, while in our test bed, there are many furnaces
whose process costs must be individually estimated.

There are numerous studies [11–16] on batch-scheduling problems, not for heat treatment, but for other
batch-machine manufacturing processes (e.g., glass, semiconductor, and aluminum manufacturing). These
batch-scheduling problems assume that all jobs in a batch are completed simultaneously. In our problem,
however, the completion time of heating for a given batch may differ for each of the workpieces in the
batch because of their different holding periods. Tang et al. [17] proposed a dynamic programming
algorithm to build a heating schedule with a minimum makespan for producing steel products called tube
billets. While the workpieces should be grouped to form batches for heating, the type of problem solved
in this work is called a semi-continuous batch-scheduling problem because the workpieces in a batch are
put into and taken out of the furnace sequentially under the capacity constraint of a given furnace. The
batch itself, unlike ours, has no size constraints. Sobottka et al. [1] proposed a simulation-based
optimization method for scheduling parallel heat treatment furnaces with the objective of minimizing
the energy cost and the space cost for storing the products while meeting the production deadlines. The
problem is similar to ours in that heating and cooling are repeated multiple times and a batch should be
composed of workpieces with the same heat treatment temperature. In this work, it is assumed that the
information on the heat treatment temperature and the time taken for heating each workpiece is explicitly
provided. The energy cost was estimated using the thermal mass constant and heat transmission
coefficient appropriately determined for each furnace in advance. In contrast, the approach proposed in
this paper does not assume that such information is explicitly provided. We build a decision tree based on
historical data to determine a possible range of heat treatment temperatures for a given workpiece. We
also learn cost models from the process data collected to predict the energy cost and the time taken for
heating in a given furnace for a given batch. Finally, none of the previous works discussed in this section
considered spatial constraints when configuring a batch.
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4 Proposed Method

This section describes the proposed method to search for an optimal heat treatment schedule that satisfies
various constraints imposed on the batches of workpieces. Subsection 4.1 explains how we obtain the
information necessary for constraint checking. Subsection 4.2 introduces the data-driven models used for
predicting the costs of the heating and cooling processes. Subsection 4.3 describes the solution
representation used in our evolutionary search algorithm together with the decoding method. Subsection
4.4 presents our objective function for evaluating candidate solutions during the search.

4.1 Obtaining Information Necessary for Constraint Checking

To determine whether a batch for a furnace satisfies all the required constraints, we should know the
weight, shape, dimensions, and heat treatment temperature of each workpiece, as well as the size and
weight capacity of the furnace. All information except the heat treatment temperature can be obtained
from the enterprise resource planning (ERP) system of the testbed factory. The key factors affecting the
desirable temperature range for heat treatment of a workpiece are the raw material of the workpiece, the
physical properties (strength and hardness) of the end product requested by the customer, heat treatment
temperature recommended by the customer, and heat treatment technique (quenching, normalizing, etc.)
to be used. However, it is not easy to obtain rules for determining the temperature range for heat
treatment from a human expert, as there are an overwhelming number of different cases. Our solution to
this difficulty is to derive a decision tree by inspecting past process records of heat treatment. The data
obtained from historical records have five input features: material code, heat treatment technique, target
strength, target hardness, and heat treatment temperature recommended by the customer. The output value
of each data point is the temperature range of the heat treatment, whose lower and upper bounds are the
lowest and the highest heat treatment temperatures found in historical records, respectively.

The dataset consisting of approximately 2,500 past heat treatment cases was divided into a training set
and a test set with a ratio of 7:3. Fig. 2 shows the input and output of our decision-tree model learned from the
training set. Since the purpose of learning is to summarize past data rather than make predictions, we turned
off pruning to ensure that our decision tree was exactly fitted to the data with no training error. Nonetheless,
the tree can be used, although not perfectly, to determine the heat treatment temperature of a workpiece with
previously unseen requirements. If the heat treatment temperature recommended by the decision tree for a
new product turns out to be unacceptable, we can add to the training data this new case with the right
value of temperature range and relearn the tree. Tab. 1 shows the performance of our decision tree on the
test set of approximately 750 cases. For approximately 40% of all test data, the temperature
recommended by the decision tree agrees with the actual range. For the remainder, the recommended
range overlaps with the actual range. We have not seen test data that show a completely different range
than recommended.

Figure 2: The input and output of the decision-tree for determining the heat treatment temperature
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4.2 Data-driven Models for Cost Prediction

We use data-driven models based on an artificial neural network to predict the time and energy costs of
heat treatment processes. These models are used to evaluate candidate solutions while searching for an
optimal heat treatment schedule. Fig. 3 shows how the temperature changes with time during a typical
heat treatment process in a heating furnace. Initially, the temperature continues to rise until it reaches the
target temperature. After this heating period, the temperature is held constant until all workpieces are
removed. The length of the holding period, or the holding time, varies from workpiece to workpiece.
A workpiece can be removed from the furnace only after its predetermined minimum holding time has
elapsed. Some workpieces are forced to remain in the furnace for longer than their minimum required
holding time if the equipment for subsequent cooling is not ready. The value of the heating rate that is
set at the beginning of heating determines the expected length of the heating period, or the heating time.
The heating rate, defined as the amount of temperature increase per hour, is set depending on the target
temperature of the heat treatment. However, the actual heating time is often significantly longer than the
expected length because the furnaces are of different ages and sizes, and thus perform differently.
Therefore, the heating time is predicted by the model learned from temperature data gathered from
historical process records.

The features used for learning the model to predict the heating time are the total weight of the batch, the
maximum of the minimum required holding times of the workpieces, the heat treatment techniques to be
used, the target temperature, the expected heating time calculated from the value of the heating rate
setting, and the furnace ID. Note that a furnace can simultaneously accommodate workpieces requiring
different heat treatment techniques, as long as their temperature ranges for heat treatment have a common
subrange. Therefore, a batch may have workpieces that involve multiple heat-treatment techniques. We
use k-bit binary encoding, where k is equal to the number of different heat treatment techniques available,
and set the bits corresponding to the heat treatment techniques included in a batch. We also use binary
encoding to represent the furnace ID. If we had sufficient training data, we would have built a separate

Table 1: Performance of the decision tree model inferring heat treatment temperature information

Type of
Model output

Exact match
with actual range

Inclusion within
actual range

Partial overlap No overlap
at all

Up to 50°C lower Up to 50°C higher

% of test data 17.7 22.3 47.5 12.5 0.0

Figure 3: Temperature changes of a typical heat treatment furnace
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model for each furnace. In addition to all of the previously mentioned features, the features for learning the
model to predict the energy cost of a heating period include the predicted heating time. The mean absolute
percentage errors (MAPE) of prediction observed by ten-fold cross-validation for heating time and energy
cost were 8.2% and 16.3%, respectively.

As mentioned above, a workpiece should be held in a furnace longer than its minimum holding time if
the subsequent cooling process cannot begin immediately. While the minimum holding time of a workpiece
is determined using a simple formula that returns a value proportional to the thickness of the workpiece, the
holding times in delayed cases are estimated by simulating the operations of heating furnaces and cooling
equipment. The features used for learning the model to predict the energy cost of a holding period are the
total weight of the batch, target temperature, estimated holding time, number of door openings, and
furnace ID. The first holding period spans the time interval starting from the time at which heating is
completed to the time of the first door opening to remove the workpiece with the minimum required
holding time. After the door is closed, the second holding period lasts until the second door opening to
remove the next workpiece for cooling. The number of door openings for the first holding period is zero,
and that for the second period is one. In short, the number of door openings for the mth holding period
must be m – 1. The number m is meaningful because a larger m implies a smaller number of remaining
workpieces in the furnace, and thus the energy cost for holding would be lower. We would not have
included this number as a feature if we knew which workpiece was taken out at each door opening
because we would know the total weight of the workpieces remaining in the furnace. However, this
information was not recorded in our testbed factory. The reason for including the furnace ID as a feature
is the same as before; we do not have enough training data to build the model separately for each
furnace. The MAPE of prediction observed using ten-fold cross-validation for the energy cost during
holding was 15.2%. Finally, the time taken for cooling can be obtained from the rule in the field manual
for each cooling technique used in our testbed factory.

4.3 Solution Representation and Decoding

We use the restricted tournament selection (RTS) algorithm [18] to search for an optimal heat treatment
schedule. RTS is an evolutionary algorithm known to exhibit good performance by promoting population
diversity [19,20]. Fig. 4 shows our representation of a candidate solution, where the chromosome is
divided into three sections. The first and second sections contain the permutation of the IDs of the heat
treatment jobs. The jobs in the first section are for tempering only, and those in the second section are for
the remaining heat treatment techniques. The third section contains a binary code of length l, indicating
the role of each furnace. Its ith value is 1 if furnace i is reserved for the jobs in the first section and 0 if
in the second section. Furnaces are prioritized according to the order of their availability. A furnace is
available if it turns idle after finishing the previous heat treatment task. The tempering jobs are separated
from the remaining to promote energy efficiency. Since the temperature ranges for tempering are usually
lower than those of other heat treatment techniques, a batch consisting only of tempering jobs is likely to
have a common subrange at low temperatures. If tempering jobs are mixed with the jobs for different
heat treatments, the resulting common subrange tends to be at higher temperatures because the
temperature ranges of other techniques are likely to overlap with the upper part of the tempering ranges.

Figure 4: Representation of candidate solution
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As a job corresponds to a heat treatment that a workpiece should go through, multiple jobs are generated
for a single workpiece if multiple treatments are required. The multiple jobs for such a workpiece may belong
to different sections depending on the type of treatment, while there exists a technical ordering constraint that
should be followed among those jobs. The order of the jobs in a permutation represents the priority for being
assigned to a batch for a furnace, which implies that a batch can consist only of the jobs in the same section.
The decoding process of a permutation is the process of forming a batch with the jobs ready for treatment,
which involves checking various constraints. As the first of such constraints, a job in a permutation cannot be
assigned to a batch unless its preceding heat treatments, which are also jobs in the permutations, are already
completed. How do we know when a job or heat treatment is completed? The answer can only be obtained by
simulating the execution of the heat treatment schedule represented by a candidate solution. Therefore, we
cannot but perform the decoding in parallel with the heat treatment simulation, as detailed below. Owing to
the various representations used in a chromosome, different operators are applied to different sections when
recombining two individuals. Partially matched crossover and swap mutation are used for the first and second
sections, respectively. Uniform crossover and bit-flip mutation are used in the third section.

Fig. 5 shows the simulation procedure for assigning a batch to a furnace and then operating the furnace.
This procedure is invoked for any furnace that has become idle but has not been assigned a batch. Although
each call is made sequentially at the beginning following the order of the availability of the furnaces, they run
in parallel for all furnaces. A batch b allocated to a furnace f by the batchAllocation function (Fig. 6), as
described below, consists of ready jobs. Ready jobs are those that have had their preceding treatments
completed or that do not require any prior heat treatment. An empty b indicates a batch allocation failure,
which occurs in two situations: in the case where jobs remain to be done, f waits for a predetermined
period and then keeps trying another batch allocation until successful hoping that some jobs may turn
ready during waiting; and in the case where there are no more jobs, the procedure exits, and no further
batch allocation are attempted for f. A furnace can be used for preheating any time after batch allocation
is attempted but fails. However, a furnace under preheating operation can be preempted at any time by a
new batch allocation. Here, the workpieces being preheated in it are transferred to other furnaces
available for preheating. However, preemption is not allowed if no such furnace can be found.

Once a batch is assigned, f starts heating batch b. The time and energy costs for heating are obtained from
the cost models learned from historical data. After saving these values, the current time t is updated by adding
the time taken for heating. Then, f switches to the holding stage in which the workpieces requiring out-of-
furnace cooling (air or water cooling) are removed one after another. The time and energy costs for each
holding period are obtained again from the cost models. When each workpiece is removed from f for
cooling, the energy cost for the corresponding holding period is obtained from the relevant cost models.
The workpieces requiring air cooling are removed from f immediately after their required holding periods
are over. However, those requiring water cooling may have to remain in f longer than their minimum
holding periods if the water tank is busy to cool other workpieces. After saving the relevant values, f
switches to the final stage. If f is empty, it is naturally cooled to become ready for upcoming heating. If f
still contains workpieces for annealing, scheduled cooling is required for in-furnace cooling. After all
these steps, the furnace turns ready for the next batch allocation. The relevant data required for
constructing and evaluating the heat treatment schedule are recorded before terminating the procedure.
Among these, the start time of heating a batch is often adjusted heuristically during the construction of a
schedule to save energy costs. For example, the holding time of a workpiece may be longer than
necessary because the water tank for cooling is overloaded, and so is not readily available. This extended
holding time may be reduced if the heating start time is delayed.

Fig. 6 presents the batchAllocation function, which is called from the furnaceOperation procedure. It
returns a batch b allocated to the given furnace f, the range T of the heating temperature, and a flag w
indicating whether there are jobs waiting for treatments. The function first checks the role of f by looking
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at the third section of a given candidate solution s, and then determines whether the permutation P in the first
or second section should be decoded to form a batch. It is the batchFormation function (Fig. 7) that decodes
the selected permutation P to form a batch b for f and to determine the temperature range T suitable for
heating b. The batch b thus formed is checked to determine whether it can be allocated to f for heating. If
b is large enough for f in size and weight, it can be allocated to f unless f contains some workpieces for
preheating. If f is under preheating, the workpieces in it must be relocated to other furnaces before
loading b to f. However, the allocation fails if relocation is impossible, in which case b is set to empty.
When b is not sufficiently large to be allocated to f, allocation also fails. Here, it is necessary to check
whether there are enough jobs waiting for the completion of their preceding heat treatment. If there are, w
is set to TRUE to inform the furnaceOperation procedure that f should wait until more jobs become
ready. If there are not enough waiting jobs, the role of f is switched so that batch allocation can be
attempted by recursively calling batchAllocation to decode the job permutation in the other section of s.

Figure 5: Procedure of the furnace operation

IASC, 2022, vol.32, no.1 215



Fig. 7 provides the pseudocode for the function of forming a batch for a given furnace f by decoding
the given permutation P. The function scans P from left to right to find a job that has not been assigned
to any batch but has finished its preceding heat treatment and whose temperature range overlaps with
those of the workpieces currently in b. If a job satisfying all these conditions is identified, it is added to

Figure 6: Function of batch allocation

Figure 7: Function of forming a batch for a given furnace
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the current batch only when the weight and spatial constraints are satisfied. Whenever a job is added to the
batch, the temperature range of the batch is updated to the overlapping range between its previous range and
the range of the job added. Finding candidate jobs to be added to the batch and checking constraints continue
until the last job in the permutation is reached. We use the Maximal Rectangles algorithm [6] together with
the loading rules of our testbed factory to check whether the batch formed so far can be loaded into the
furnace satisfying spatial constraints. The Maximal Rectangles algorithm is a 2D bin packing algorithm.
With the workpieces turned to their rectangular bounding boxes, we use this algorithm to find the best
place to put workpieces in the bottom area of the given furnace. The loading rule is used to stack a
workpiece on top of another workpiece placed at the bottom.

4.4 Objective Function

We take a rolling-horizon approach to the search for an optimal heat treatment schedule. Given a horizon
of a predetermined length, which usually spans several days, our algorithm searches for an optimal schedule
for the jobs within a horizon but executes only the jobs scheduled for the first day of the horizon. After this
day, the algorithm keeps rescheduling with the horizon shifted or rolled by one day. The jobs for a horizon are
collected from a long-term list of jobs, giving higher priorities to those with earlier deadlines. A good
schedule for a given set of jobs is the one that achieves high productivity with low energy consumption.
The objective function is as follows:

Min w1T þ w2ð�W Þ þ w3E þ w4Dþ w5O (1)

where T is the makespan, W is the total weight of the processed workpieces, E is the total energy
consumption per ton, D is the tardiness, and O is the total amount of overtime spent on air cooling. The
makespan T is the period starting from the beginning of the first heat treatment until the end of all heat
treatment jobs. The total weight T can vary under a fixed horizon because of the uncertainty in forming
batches during scheduling. A smaller T with a larger W corresponds to a higher productivity. Since the
objective function is for minimization, the term W is made negative. E is calculated by dividing the total
energy consumption by the total weight W. D and E are the penalty terms for punishing constraint
violations. While all hard constraints are dealt with when a solution is decoded as explained in
Subsection 4.3, these two soft constraints are left untouched. Violations of soft constraints are not strictly
prohibited but should be minimized. D is calculated as the square root of the mean of the squares of the
delays of individual jobs. O is used for normalizing jobs that require subsequent quenching. The time
spent for air cooling should not exceed the predetermined period, whenever possible, to ensure product
quality.

5 Experimental Results

We conducted simulation experiments to compare the qualities of the schedules generated using our
method with those generated by a human expert in our testbed factory. The human-generated schedules
were taken from a production record of a recent period of six days. Our schedules to be compared were
generated by applying our rolling-horizon scheduling method to the same period, where the length of the
horizon is empirically set to five days. More specifically, a schedule for a five-day horizon was built, but
only a part for the first day was executed, and then this rolling-horizon scheduling and execution were
repeated six times for those six days in the period. Since our schedules could not be executed in the
testbed factory, we created a virtual factory, i.e., a factory emulator, to simulate both ours and the expert’s
schedules. The cost models used in the virtual factory and those used in our schedule optimization are
basically the same, except that the outputs of the latter models are blurred by adding Gaussian noises to
mimic the erroneous predictions that occur in real situations. To add e% approximate mean absolute error
to the model output o, we took a random value r from a zero-mean, unit-variance Gaussian distribution,
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and then we either added or subtracted o(e + r)/100 to o with the probability of 0.5. The level of noise we
added in our first experiment (Tab. 2) was approximately 10%. Because of the random noise added, the
results differ from simulation to simulation.

Tab. 2 compares the quality of the schedules generated by different methods. The values given are the
averages of the results of ten simulations. The weights in the objective function of our optimization algorithm
are empirically set as w1 = w4 = w5 = 1, w2 = 10, and w3 = 100. As can be seen in the table, two versions of our
method were tested. Version A is described in Section 4, where tempering jobs form a batch exclusively.
Version B is different from version A in that it allows tempering jobs to be mixed with other types of heat
treatment jobs when forming a batch. We can see that version A dominates version B in every aspect.
Note that the total weight processed using our method (version A) is almost 10% larger than that in the
results by the human expert, whereas the improvement in the energy consumption by our method is
approximately 24%, which is significant. However, our method is slightly worse than the human expert in
keeping the deadlines, as shown by the slightly higher value of tardiness in the table. The table does not
show any results regarding another soft constraint on air cooling time for normalizing jobs, as no
violation has been observed with any methods.

We continued the experiments described above to see the sensitivity of our optimization algorithm to the
prediction accuracy of the data-driven models employed. Here, we increased the noise level by 10% from
10% to 50%. The noise was added only to the outputs of the models used in our optimization algorithm,
while the models used in the factory emulator were kept untouched. Tab. 3 shows the quality of the
schedules obtained using our method (version A) with different levels of added noise. The numbers in the
table are the average results of ten simulations. Both the total weight processed and tardiness showed no
particular trend toward the increase of the noise level. However, the energy consumption gradually
increased with the noise. One notable point is that the energy consumption was still lower while the total
weight processed was larger than that of the human expert’s schedule (Tab. 2) even at the noise level of
50%. This suggests us that we may use data-driven models for schedule optimization without too much
concern to their prediction accuracy.

Table 2: Comparison of schedules generated using the proposed method and by human expert

Total weight
(ton)

Gas consumption per ton
(m3/ton)

Tardiness

Human expert 1708 27.0 89.3

Proposed method (A) 1871 21.7 91.2

Proposed method (B) 1806 27.4 91.2

Table 3: Comparison of schedules generated with different noise levels

Noise level (%) Total weight
(ton)

Gas consumption per ton
(m3/ton)

Tardiness

10 1871 21.7 91.2

20 1747 22.2 91.5

30 1865 24.3 91.9

40 1884 23.7 92.0

50 1744 25.5 91.9
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6 Conclusion

We solved the problem of heat treatment scheduling for an energy-intensive hot press forging factory
with the objectives of maximizing productivity and minimizing energy consumption. A major difficulty in
solving this problem is the formation of batches of heat treatment jobs under various constraints. The
approach we took to cope with this difficulty is to encode candidate solutions as a permutation of heat
treatment jobs and then to have all hard constraints satisfied during the decoding process of forming a
batch. However, because of constraints such as the one in which a job can be included in a batch only if
all its preceding heat treatments are over, the decoding process cannot but be performed in parallel with
the simulation of the partially decoded results. An advantage of this approach is that it allows our
optimization algorithm to easily find solutions. Although there are methods for constraint satisfaction
search that deal with the constraints during the search, they often face difficulty in finding a feasible
solution. One of our future works will be to develop a constraint satisfaction search algorithm for our
heat treatment scheduling problem and see whether it outperforms the proposed algorithm.

In this paper, we showed that the schedules obtained using our method achieve higher productivity with
lower energy costs than those obtained by human experts, but only through simulation experiments. Since
our virtual factory employs the same cost models used for our optimization search, the resulting
performance shown could be biased in favor of our method compared to the field expert. However,
through additional experiments in which the cost models used in the optimization search are deliberately
degraded, we have seen that our approach of adopting data-driven models is not too sensitive to the
prediction accuracies of those models. We suspect that model errors do not significantly deteriorate the
performance of the schedule optimizer in ranking the schedules by their quality during the search. When,
for example, the real energy cost for heating batch A is lower than that of batch B, A is rarely estimated
to be worse than B by erroneous models even though their individual estimates are not quite correct.
However, we need further study to clarify the effect of prediction errors of the data-driven models to the
performance of schedule optimizer.
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