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Abstract: The codebook design is the most essential core technique in constrained
feedback massive multi-input multi-output (MIMO) system communications.
MIMO vectors have been generally isotropic or evenly distributed in traditional
codebook designs. In this paper, Gaussian mixture model (GMM) based cluster-
ing codebook design is proposed, which is inspired by the strong classification
and analytical abilities of clustering techniques. Huge quantities of channel state
information (CSI) are initially saved as entry data of the clustering process.
Further, split into N number of clusters based on the shortest distance. The cen-
troids part of clustering has been utilized for constructing a codebook with statis-
tic channel information, with an average distance that is the shortest towards the
true channel data. The enhanced GMM based clustering codebook design outper-
forms traditional methods, particularly in the situations of non-uniform distribu-
tion of channels as demonstrated via simulation results which match theoretical
analyses concerning achievable rate. The proposed GMM based clustering code-
book design is compared with DFT-based clustering codebook design and
k-means based clustering codebook design.

Keywords: Gaussian Mixture Model (GMM) based clustering; Massive MIMO;
Codebook design; DFT

1 Introduction

Massive multiple-input multiple-output (MIMO) is becoming the major driver for 5th generation
wireless communication as well as transmission systems to enhance data speeds [1]. The precision of
channel state information (CSI) has been important for beam development and spatial multiplexing
improvements in transceivers with a huge number of antenna components [2]. The most popular approach
for acquiring CSI is restricted feedback dependent on codebook, in which the receiver exclusively
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transmits return to the transmission index of the optimal weight vector of MIMO from a predefined
codebook.

A significant study has been dedicated to the construction of a codebook in recent decades. To optimize
the lowest gap between the codebook of MIMO vectors, a codebook namely the Grassmannian quantization
codebook is developed. The independent channel is considered and involved in performing an identical
distribution that its dominating acute singular vectors are uniformly distributed in space [3,4]. The
alternative method namely random vector quantization (RVQ) produced the codebook randomly using
MIMO vectors as isotropic assumption [5,6]. Furthermore, the DFT codebook technique evenly split the
whole angular domain further into two B accelerated portions as well as created the codebook solely
depending on the acceleration of the angle of arrival or departure [7,8], wherein the amount of feedback
bits is denoted as B. The Multi-input multi-output (MIMO) channel is isotropic or distributed uniformly,
which is a frequent assumption. This assumption is mostly not met in the real-world wireless
environment. Thus, the MIMO channel being limited in the angular zone [9], and its multiple directions
are focused on a specific angle limit. This prompted [10] to investigate a non-uniform codebook model
that surpassed the uniform codebook approach. The propagation atmosphere is either uniform or not, it
must be adopted by the codebook design.

By employing a machine learning approach, it is possible to design a wireless physical layer [11–13],
feedback method of CSI depending on deep learning technique for massive MIMO has been implemented,
where convolutional neural networks convert the indices of the channels to receiver's compressed
expressions and then inverse transformation is performed on transmitter side [14,15]. Comparable to
mentioned techniques, the channel is considered sparse, which isn't a universal assumption; for example,
it's not appropriate for a dynamic dispersed ecosystem. The K-means algorithmic approach is well-known
as it is often utilized as a clustering technique. It is utilized in MIMO identification [16,17], and NOMA
client clustering [18] due to its capacity to classify and analyze huge volumes of data. It's essential
mentioning that channel data may be divided into several groups, where each can be defined using
clustering centroids.

A Gaussian mixture is a multiple distributions probability of a convex combination, often termed as
mixture components [19]. Since finite mixture methods have been more popular in recent times are
utilized as a combination of two distinct normal distributions to evaluate measurements of a large dataset
containing 1000 crab. In diverse fields including medicine [20], sociology [21], physics [22], and several
others application fields, Gaussian finite mixture models having proved effective for modeling
complicated data.

Cluster analysis is a method of classifying information flows into various groups or clusters, and hence,
the group containing the data points is comparable with one another rather than data points available in other
clusters. The various types of clustering process can be categorized into divisive algorithms or hierarchical
agglomerative with distinct linkages, partition optimization methods including model-based clustering [23],
K-mean, Kmedoids, and density-based clustering. The connection among clustering and Gaussian mixture
models is used in the latter. It is assumed that every mixture component oversees simulating a certain
data set. Whereas this assumption is broken and requires a specific treatment, including combining
mixture components [24–26], may be necessary, and concentrate mainly on the one-to-one connection
among clusters as well as mixture components.

In this paper, Section 2 includes the literature review related to massive MIMO codebook design.
Section 3 includes the proposed Gaussian mixture model (GMM) based clustering for designing a
massive MIMO codebook. Section 4 compares the performance of the proposed system model with DFT,
and k-means based clustering method concerning achievable rate and Section 5 includes the conclusion.
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2 Literature Survey

Depending on the MIMO channel properties, certain codebook designs for large MIMO systems have
been studied. The codebooks for massive MIMO systems are generated by the compression of channel
matrices to a smaller dimension through sparsity leveraging of channel descriptions in the domain of
angle [27–30]. The construct the MIMO channel description into overfitted dictionaries because the
departure angle, as well as the arrival angle, are non-uniform inside the angle-domain. With the premise
that the departure angle information stays invariant in a departure angle coherence period, the departure
angle adaptive subspace codebook formulated the channel profits very accurately [31]. An adaptive
codebook depending on instantaneous CSI is proposed with the codebook scaling size only
proportionally with the channel correlation matrix's ranking [32]. Thus, the statistical property is heavily
reliant on these traditional codebook designs.

The antenna arrays have been customizable, as well as the transmission methods are more adaptable,
according to developing wireless transmission systems. The azimuth codebook of Kronecker-product as
well as the elevation codebook derived from 2 unique feedback mechanisms produces a codebook for 2D
antenna arrays [33]. A novel double codebook is presented for the rectangular array construction in a
uniform co-polarized. The correlation matrices of the 2 orthogonal directions based on Kronecker-product
[34] represent the entire long-term characteristics. To summarize, the codebook design must account for a
wide range of wireless situations as well as antenna array topologies in large MIMO systems.

Deep learning (DL) methods are preferred mainly for prediction for successfully tackle the CSI feedback
issue [35–39]. In [40], a deep neural network (DNN) understands the characteristics of the wireless
communication channel as well as the geographical features in the angle zone using training to provide
channel estimate and departure angle estimation. At the receiver site, Conventional neural networks
(CNNs) understand the structural channel sparsity acquired from training sampling data then converted
CSI into a relatively optimum amount of codewords in [41–43].

3 System Model

The massive MIMO system communication is provided with one downlink cell is considered wherein
base station (BS) is linked with both Nt antennas as well as K antenna users at the same time. A pre-coding
matrix w is selected appropriately from the codebook based on the current Pre-codingMatrix Indicator (PMI)
to pre-process the transferring information. Therefore, the k-th user xk a sent signal is computed as xk ¼ wsk,
wherein sk is the representation of signal meant for k users.

The signal power generally assumed to be normalized is given as E sksHk
� �

, wherein E �½ � represents the
expectation operator as well as I identity matrix. The k-th number of users with received signal may be
represented as

yk ¼ hkwsk þ nk (1)

Here, Nt1 channel sequence acquired from a base station (BS) is transmitted to k-th users is denoted as hk
and nk�CN 0; rð Þ is a Gaussian mixture white noise vector having identical and independent distribution to
the k-th mobile user acquired from BS. We use wk k2 ¼ 1 to account for the transmitter's power constraints.

As illustrated in Fig. 1, the codebook with C ¼ c1; c2; c3; . . . :; c2B is shared among the transmitter as
well as the receiver. The CSI measurement including reference signals are forwarded by the transmitter,
whereas the receiver chooses a pre-coding vector w from N ¼ 2B codewords depending on the relevant
selection criterion.
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w ¼ argmax
ci2C Hkcij j2
� �

;8i (2)

The receiver returns the matching codeword index to the transmitting side using a limited feedback
method. The transmitting side selects pre-coding matrix w acquired from the codebook C depending on
the index followed by the transmitted signals using the chosen w is produced. Unlike conventional
codebook design approaches, Gaussian mixture model-based clustering codebook design will use the
GMM based clustering processing unit to evaluate CSI statistical characteristics and create a codebook
depending on representation values of the statistical characteristics.

3.1 Channel Model

At the BS, the antennas including a uniform rectangular array (URA) as well as uniform linear array
(ULA) configurations have been considered. ULA offers better performance in terms of capacity than
URA due to azimuthal orientation of the array. The traditional channel model depending on narrowband
ray is used. The antennas with ULA consist of downlink channel sequence may be written as

hk ¼
ffiffiffiffiffi
Nt

p XPk
i¼1

gk;ia hk;i
� �H

(3)

Here, Pk represents the amount of dominating pathways to the k-th users obtained from BS, gk;i
represents the complex profit of k-th users in i-th path, assuming it to be autonomous and identical
distribution with no mean as well as 1 variance, and Angle of Departure (AoD) of the k-th users in i-th
path is represented using hk;i. The antenna array response aðhk;iÞ may be computed using the following
formula:

a hk;i
� � ¼ 1ffiffiffiffiffi

Nt
p 1; ej2p

d
� sin hk;i ; . . . ; ej2pðNt�1Þd� sin hk;i

h iT
(4)

Here, BS’s antenna spacing is denoted as d, and the carrier with wave-length is denoted as λ. Angle of
Departure (AoD) of the k-th users in i-th path is represented using θ(k,i). The number of users simulated is
from 1 to 100 for antenna size of 10 to 100.

The channel matrix of downlink for a URA of antennas comprising horizontal antennas is denoted as Nt1

as well as vertical antennas is denoted as Nt2 may be written as

Figure 1: Massive MIMO system
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hk ¼
ffiffiffiffiffi
Nt

p XPk
i¼1

gk;ia ’k;i; hk;i
� �H

(5)

Here, Nt ¼ Nt1 � Nt2. The response array að’k;i; hk;iÞ is written as follows:

a ’k;i; hk;i
� � ¼ 1ffiffiffiffiffi

Nt
p 1; ej2p

d
� sin hk;i ; . . . ; ej2pðNt�1Þd� sin hk;i

h iT
�

1ffiffiffiffiffi
Nt

p 1; ej2p
d
� cos hk;i sin’k;i ; . . . ; ej2pðNt�1Þd� cos hk;i sin’k;i

h iT (6)

The AoD’s elevation as well as the azimuth of the k-th users in i-th route are hk;i as well as ’k;i. The
combination of channel vectors across all K users is denoted by

H ¼ h1; h2; . . . . . . ::; hk½ � (7)

3.2 Problem Formulation

Assuming, overhead to remain constant is N ¼ 2B, the goal of this study is to create a suitable Gaussian
mixture model based clustering codebook for a massive MIMO system communication. Using the
constrained feedback method, k-th user with the achievable rate Rk is expressed as

Rk ¼ log2 1þ SIN Rkð Þ ¼ log2 1þ
c
K hHk wk

		 		2
c
K

PK
i¼1;i 6¼k

hHk wi

		 		2
0BBB@

1CCCA (8)

Here, the precoding matrix chosen from codebook C is denoted as w, and the transmitting power is
denoted as c. As a result, matric wk may also be represented as ck. Eq. (8) may be rewritten in the
following way:

Rk ¼ log2 1þ
c
K hHk ck
		 		2

c
K

PK
i¼1;i 6¼k

hHk ci
		 		2

0BBB@
1CCCA (9)

The function achievable rate is given as ck 2 C. As a result, a quantizer may be built to optimize the
mean of the achievable rate. The decent codebook construction inappropriate scenario setting might
improve the achievable rate of every client, in distinct locations at distinct time moments. Thus, by
resolving the constraint optimization issue as follows, the greatest mean achievable rate may be attained.

maxE Rk½ �c¼ maxEc log2 1þ
c
K hHk ck
		 		2

c
K

PK
i¼1;i 6¼k

hHk ci
		 		2

0BBB@
1CCCA

26664
37775 s:t:ck 2 C; 8k ckk k2 ¼ 1 (10)
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The above equation is rewritten and expressed as,

ck ¼ argmaxEc log2 1þ
c
K hHk ck
		 		2

c
K

PK
i¼1;i 6¼k

hHk ci
		 		2

0BBB@
1CCCA

26664
37775 s:t:ck 2 C; 8k ckk k2 ¼ 1 (11)

The difference among statistics channel information is denoted as H
:
and actual channel information is

represented as dðH;H: Þ ¼ jH� H
: j. For lower dðH;H: Þ, the codebook design technique is observed to yield a

greater sum rate. Increasing the mean rate may accomplish via the reduction of mean distance as much as
possible.

maxE Rk½ �c¼ maxEck2C d2 H;H
:� �h i

(12)

As a result, the proposed efficient codebook design reduces the sum distance between actual as well as
statistics channel information.

3.3 Key Propagation Characteristics

The DNN is particularly designed to determine critical propagation properties including delay, elevation
angle, channel gains, and azimuth angle. A formula bA ¼ f s H;�ð Þ governs the prediction process, with bA
denoting undetermined propagation properties, H denoting acquired channel sequences, Θ denoting DNN
weights, as well as f s �ð Þ denoting the sigmoid function.

The fully connected ‘L’ layers in DNN, comprising a single input layer, L-2 hidden layers followed by a
single output layer, are chosen Fig. 2. The channel sequence H with the nonlinear cascaded transformation is
the output bA acquired from the DNN model. bA maybe computed in this way:

bA ¼ f s H;�ð Þ ¼ f s
l�1ð Þ
s f s

l�2ð Þ
s . . . f s

1ð Þ
s Hð Þ

� �� �
(13)

Figure 2: The proposed codebook design
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The q-th characteristic baq as an instance is utilized to show how the GMM based clustering process
works, which is identical for all other qualities. To take advantage of the channel information as well as
to speed up the convergence process in GMM based clustering method, with q-th characteristic of N
uniform centroids baq ¼ baq;1; . . . ;baq;i; . . . :;baq;I
 �

, I have been selected as the early centroids tq ¼
tq;1; tq;2; . . . ::; tq;N

 �

, in which baq;i is representing the q-th characteristic in i-th data samples, the number
of sample data is denoted as I, the q-th characteristic’s l-th centroid is denoted as tq;l, and the no. of
clusters is denoted as N.

Every data object is linked with the nearby centroid as per the nearest neighbor principle. The data itembaq;i is allocated to l-th GMM based clustering, with the shortest length between i-th component baq;i and l-th
GMM based centroid cluster tq;l. It may be stated as follows:

l� ¼ argmin
l2N

d baq;i; tq;1� �
 �
(14)

Here, d baq;i; tq;1� � ¼ baq;i; tq;1� ��� ��2, then combine baq;i with GMM based cluster clusterq;l� which denotes
the baq term’s l�th cluster.

Following the assignment of all data items, the centroids are upgraded using the centroid criterion, which
selects the things with the smallest mean distance of each cluster as the fresh centroid. The q-th
characteristic’s l-th cluster baq, is shown as follows,

tq;l ¼ argmin
tq;12clusterq;l

X
baq;i2clusterq;i d baq;i; tq;1

� �
; 8i; j (15)

Here, baq l-th cluster is denoted as clusterq;l.

Continue GMM based clustering procedure still items, as well as centroids of every cluster, remain the
same. Lastly, the baq q-th features of N centroids tq is obtained. The centroids set may then be generated by
repeating this procedure for all propagation features and expressing it as T ¼ t1; . . . :; tq

� �T
. The following

method summarizes the GMM based clustering process.

3.4 Codebook Construction

In the massive MIMO, we examine several codebook designs approaches to enhance the resilience of the
proposed model designing. The codebook construction technique will be shown using a variety of important
propagation properties.

Both in correlated and uncorrelated channel environments, the angle features are critical for codebook
design. The structural codebook only requires angle features in the event of substantial channel correlation.
Therefore, we use the angle features to understand a unique propagation feature’s codebook design. The
method of codebook building will be illustrated in detail using DFT codebook design depending on
centroids.

The angle characteristic with centroid generates every individual codeword cl;i. The proposed codebook
may be represented as C1 ¼ c1;1; c1;2; . . . ; c1;N

� �
, wherein C1 is the first entry.

c l;ið Þ ¼ 1ffiffiffiffiffi
Nt

p
1

e�j2pd
� cos hi

. . . . . . . . . :
e�j2pd

� Nt�1ð Þ cos hi

264
375
T

(16)
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Angle-based codebooks are expressed as follows as per the centroids:

C1 :; ið Þ ¼ 1ffiffiffiffiffi
Nt

p �e�j2pd
� Nt�1ð Þ cos phase t1;ið Þð Þ (17)

¼ 1ffiffiffiffiffi
Nt

p �A t1;i
� �

(18)

In codebook design, the gain, as well as angular features, is employed once the channel is uncorrelated.
Each codeword is formed using the x-axis component as well as the y-axis component depending on the valid
space v ¼ v1; v2; . . . ::; vNf g.

C2 :; ið Þ ¼ 1ffiffiffiffiffi
Nt

p �e�j2pd
� Nt�1ð Þ cos phase t1;ið Þð Þ�t2;i (19)

¼ 1ffiffiffiffiffi
Nt

p �A t1;i
� ��t2;i (20)

The double-polarized channel codebook construction is done initially utilizing horizontal as well as
elevation angles; later k-means clustering is used to get the final codebook.

C3 :; ið Þ ¼ 1ffiffiffiffiffi
Nt

p �e�j2pd
� Nt�1ð Þ cos phase t1;ið Þð Þ � 1ffiffiffiffiffi

Nt
p �e�j2pd

� Nt�1ð Þ cos phase t1;jð Þð Þ (21)

¼ 1ffiffiffiffiffi
Nt

p � A t1;i
� �� A t1;j

� �� �
(22)

Here, the horizontal angles are represented as t1;i and elevation angles are represented as t1;j.

3.5 Algorithm of the Proposed Codebook Design

STEP 1: As the beginning centroids provide N sample data of the q-th propagation feature, expressed as
a tq ¼ tq;1; tq;2; . . . ::; tq;N


 �
.

STEP 2: The ‘d’ distance is estimated using d baq;i; tq;1� � ¼ baq;i; tq;1� ��� ��2, in which baq;i 2 baq.
STEP 3: baq;i combined with GMM based cluster clusterq;l� as per the closest neighbor principle.

STEP 4: Depending on the centroid criterion, every individual cluster are upgraded with the centroid
tq;l ¼ arg min

tq;12clusterq;l
Pbaq;i2clusterq;i d baq;i; tq;1� �

; 8i; j.

STEP 5: If the q-th characteristic’s centroid is constant, then step 3 as well as step 4 as to be recurrently
used still acquiring the final centroid output tq ¼ tq;1; tq;2; . . . ; tq;N


 �
.

STEP 6: The propagation characteristics of every centroid have to be recurrently performed still
acquiring T ¼ t1; . . . ; tq

� �T
.

STEP 7: The valid space is obtained using v ¼ v1; v2; . . . ; vNf g.
STEP 8: For various circumstances, generate the codeword that corresponds to v.

The proposed Gaussian mixture model (GMM) based clustering codebook design approach performs in
massive MIMO systems. The difference rate is estimated among the perfect CSI as well as enhanced
codebook-based feedback method. In an ideal world, the optimal pre-coding vector is represented as
cideal, and the associated achievable rate Rideal maybe obtained through the following expression.
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Rideal ¼ E log2 1þ hHk cideal
		 		2� �h i

(23)

The rate difference, which is determined by DR ¼ Rideal � R, may be represented as

DR ¼ Rideal � R

¼ E log2 1þ hHk cideal
		 		2� �h i

� E log2 1þ hHk ci
		 		2

1þP
j 6¼i

hHk cj
		 		2

0BB@
1CCA

2664
3775

¼ E log2 1þ hHk cideal
		 		2� �h i

� E log2 1þ hHk ci
		 		2 þX

j6¼i

hHk cj
		 		2 !" #

þ E log2 1þ
X
j 6¼i

hHk cj
		 		2 !" #

	 E log2 1þ hHk cideal
		 		2� �h i

� E log2 1þ hHk ci
		 		2� �h i

þ E log2 1þ
X
j 6¼i

hHk cj
		 		2 !" #

	 E log2 1þ hHk cideal
		 		2� �h i

� E log2 1þ hHk ci
		 		2� �h i

E log2 hHk cideal
		 		2 � hHk ci

		 		2� �h i
(24)

Eq. (20), can be recast as for the 2nd codebook design technique discussed in the previous
subsection.

DR ¼ E log2 hHk cideal
		 		2 � hHk A t1;iÞt2;i

� �		 		2� �h i
(25)

The reduction in minimizing rate interest as,

minDR ¼ max hHk A t1;iÞt2;i
� �		 		2 (26)

Using the above-mentioned expression because of the channel model,

minDR ¼ max AH
k gkAðt1;iÞt2;i

� �
¼ sin2 AH

k ;A t1;i
� �� �

sin2 gHk ; t2;i
� �

(27)

4 Result and Discussion

The aggregate rate of the GMM-based clustering codebook technique has been provided in this section
under a variety of situations and with distinct antenna array configurations. The aggregate rate of proposed
GMM-based clustering models is also compared to the traditional DFTmethod and K-means for Nt ¼ 16 and
Nt ¼ 128 is shown in Figs. 3 and 4. The CSI matrices are randomly constructed depending on the channel
system include both pieces of training as well as a testing (3). The mean angles of AoD are fixed to
’¼’0þD’, in which ’0 is a constant selected randomly from the range 0; ’BW½ �, as well as the angle
dispersion, are fixed to D’. D’ is selected randomly from the range 0; ’BW½ �. The angle dispersion ’BW

is the parameter that distinguishes between the various channel distributions. The codebook construction
of the conventional DFT angel range is analyzed in this experiment. If ’BW¼ p

6 or p, non-uniform as well
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as uniform channel scenarios are indicated. The conventional DFT codebook is created in the simulations
using the AoD evenly generated within p.

Fig. 5 shows the achievable rates for the corresponding SNR for k-means based clustering codebook
method for various numbers of antennas Nt ¼ 16; 32; 64; 128. As the k-means clustering codebook is
better compared to DFT-based clustering, it is mainly used for the analysis in comparison with the
proposed GMM based clustering codebook model. Fig. 6 shows that the proposed GMM based clustering
codebook performs efficiently and acquires achievable rates for various antenna values Nt ¼ 16; 32;
64; 12. The performance of the system in a situation with larger antennas surpasses rather than other
scenarios consisting of minimum antennas implying that using massive antennas in GMM based
clustering codebook method efficiently improves the system performance of massive MIMO.

Figure 3: Comparison of proposed GMM based clustering with k-means and DFT based clustering methods
for Nt ¼ 16

Figure 4: Comparison of proposed GMM based clustering with k-means and DFT based clustering methods
for Nt ¼ 128
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The Symbol-error-rate (SER) of proposed GMM based clustering with DFT and k-means based
clustering is plotted in Fig. 7. The SER is defined using Nt ¼ 128 as the fixed antenna value. The
Symbol-error-rate (SER) performance approaches towards a channel with complete information. Although
the GMM-based clustering receiver has an error rate of, higher Signal-to-noise ratio (SNR) regime,
reduction in the error rate is achieved by using additional receive nodes in case of both perfect and
approximated channel knowledge scenarios. The performance of the suggested GMM-based clustering
codebook design for Nt ¼ 16; 32; 64; 128 is shown in Fig. 8 shows that massive MIMO has a lower
symbol error rate and there is no noticeable difference between the two massive MIMO codebooks in the
lower SNR situation, but the proposed codebook design outperforms effectively in the higher SNR
scenario. As a result, the proposed GMM-based clustering is suitable for large MIMO codebook
construction.

Figure 5: Achievable rate of k-means based clustering codebook model

Figure 6: Achievable rate of GMM based clustering codebook model
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5 Conclusion

We presented a Gaussian mixture model (GMM) based codebook approach for massive MIMO in this
paper. It combines GMMwith clustering methods that were used to create the codebook. The DNN learns the
important CSI characteristics whereas the GMM based clustering algorithms obtain the statistic information
for the associated characteristics. By utilizing DNN frameworks, the proposed GMM based clustering
codebook approach can reduce channel parameters. Furthermore, because the clustering algorithmic
approach can understand characteristics of the wireless channel, it ensures CSI feedback's performance in
a variety of changing wireless settings. The proposed GMM based clustering codebook design
outperforms existing methods, as demonstrated by simulation results as well as theoretical analysis
concerning achievable rate. Fortunately, by upgrading the clustering processes regularly, the suggested
codebook architecture may understand and adapts to the real world.

Funding Statement: The authors received no specific funding for this research.

Figure 7: SNR vs. SER comparison for Nt ¼ 128

Figure 8: SNR vs. SER of the proposed GMM based clustering model
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