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Abstract: Extracting the features from an image is a cumbersome task. Initially,
this task was performed by domain experts through a process known as hand-
crafted feature design. A deep embedding technique known as convolutional
neural networks (CNNs) later solved this problem by introducing the feature
learning concept, through which the CNN is directly provided with images. This
CNN then learns the features of the image, which are subsequently given as input
to the further layers for an intended task like classification. CNNs have demon-
strated astonishing performance in several practicable applications in the last
few years. Nevertheless, the pursuance of CNNs primarily depends upon their
architecture, which is handcrafted by domain expertise and type of investigated
problem. On the other hand, for researchers who do not have proficiency in using
CNNs, it has been very difficult to explore this topic in their problem statements.
In this paper, we have come up with a rank and gradient descent-based optimized
genetic algorithm to automatically find the architecture design of CNNs that is
vigorously competent in exploring the best CNN architecture for maneuvering
the tasks of image classification. In the proposed algorithm, there is no require-
ment for handcrafted pre- and post-processing, which implies that the algorithm
is fully mechanized. The validation of the proposed algorithm on conventional
benchmarked datasets has been done by comparing the run time of a graphics pro-
cessing unit (GPU) throughout the training process and assessing the accuracy of
various measures. The experimental results show that the proposed algorithm
accomplishes better and more persistent ‘classification accuracy’ than the original
genetic algorithm on the CIFAR datasets by using fifty percent less intensive
computing resources for training the individual CNN and the entire population.

Keywords: Convolutional neural network (CNN); genetic algorithm (GA);
differential architecture search (DART)

1 Introduction

Convolutional neural networks (CNNs) are one of the leading techniques of ‘deep learning’ [1] and have
exhibited superior performance in several real-world problems over the various customary machine learning
algorithms [2]. The first CNN was developed in 1998, known as LeNet5 [3]. Subsequently, various versions
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of CNN, namely AlexNet [4], VGG [5], GoogleNet [6], and ResNet [7], have been proposed on the basis of
variation in architectures. The reasoning behind such designs is that a deeper CNN typically is able not only
to handle more complex problems but also to deal with large amounts of data. The state-of-the-art CNN is
specifically designed by domain experts who possess knowledge of datasets and CNN architecture. However,
such a combination is rare, as researchers having proficient knowledge of data may not be well adroit with
CNN architecture design or vice versa. Consequently, there is a vast demand to come up with an algorithm
that not only allows researchers to explore the best CNN architecture but also use fewer computational
resources. In fact, in the literature, distinct algorithms for automation purposes have been stated over the
past few years. These algorithms can be classified into two groups depending on their base techniques.
The first group is ‘evolutionary algorithms’ [8] like the genetic CNN algorithm. The second group is
based on reinforcement learning like neural architecture search [9]. However, these algorithms have
demonstrated very optimistic classification accuracy against onerous benchmark datasets like CIFAR
10 and CIFAR 100 [10]. However, certain limitations exist in this regard. Firstly, both category
algorithms suffer from the usage of high computational resources. Secondly, manual assistances based on
domain expertise are desirable for most of the algorithms in both categories. As a result, the development
of such an algorithm is exigent to perform the following tasks:

� Automatically best CNN architecture design for given data

� Use of limited computational resources

� No manual assistance

In this paper, a proposition of rank and a gradient descent-based optimized genetic algorithm have been
given to find the architecture design of CNNs automatically using optimized computational resources. The
main benefits of presenting this paper are as follows:

1) It optimized the well-known evolutionary method known as the genetic algorithm for automation and
efficient computational resource utilization.

2) It converted a discrete set of candidate architecture searches into a continuous architectural search by
using DARTS or the gradient-based architecture search method [11].

3) It has demonstrated that gradient-based architectural search achieves extremely promising results on
CIFAR-10 and CIFAR-100 through massive image classification studies. This is an exciting
conclusion given that the most effective architectural search approaches to date have relied on
non-differentiable search approaches such as RL and evolutionary approaches.

This article is divided into the following sections. Section 2 presents the background of the proposed
methodology. Section 3 shows the proposed contribution. Then, Sections 4 and 5 discuss the
experimental design and results. Conclusion and the scope for future work are stated in Section 6.

2 Background

In this section, we will discuss CNNs in general, the different types of CNNs, the genetic algorithm, and
the principle of network architecture searches. These topics are part of the background of the proposed
algorithm and will also help the reader understand the proposed algorithm.

2.1 Convolutional Neural Networks

In this subsection, we will discuss the basics of CNNs. The CNN is an important invention in the world
of computer vision. It is a multidisciplinary concept that combines mathematics and biology with computer
science. In 1988, Fukushima discovered the architecture of a neural network known as CNN [3]. This was the
first CNN, which later became the basis for all subsequent CNNs. In CNNs, there are two important layers:
convolution and pooling. The convolutional layer uses filters for convolution operation. The output of this
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convolutional layer is called a feature map, which gives the parameters of CNN. Sometimes a padding
operation is also used along with a convolution operation. After the convolution operation, the pooling
layer performs the pooling operation. There are two types of pooling: average and max pooling. The
number of parameters of pooling depends on the size of the kernel. The fully connected layer [FC] comes
after the last convolutional layer. Although the power of a CNN mainly depends upon the manner of
filters’ usage and the way the layers are connected, gradient back propagation is the main learning
algorithm for all types of CNNs. To design an optimized CNN architecture, it is mandatory to know the
parameter calculation of each layer. According to [12], the size of a CNN layer is calculated based on the
below equation

Cw¼ Ch¼ ðI þ 2 � P� f Þ=s þ 1 (1)

where I is the size of the input image, P is padding, f is the size of the filter, and s is stride (which defines how
far the filter will move from one position to the next position Cw), and Ch is the size of the convolution layer.
Fig. 1 demonstrates the working of a CNN with its number of parameters. The following steps are taken to
find parameters mathematically.

1. As shown in Fig. 1, for Convolution-I layer, (I = 227, f = 3, p = 1, s = 1, and total filter = 32). This
means

Cw ¼ Ch ¼ 227þ 2� 1� 3

1
þ 1 ¼ 227

As there are 32 filters, the total number of neurons in the feature map of the first convolutional layer is
227 × 227 × 32 = 1,648,928

2. The size of this layer is the previous layer’s input size divided by the size of stride. As shown in Fig. 1,
Stride is 2, and the previous layer’s input size is 227. So, maxpooling1 = 227

2 � 113.
3. As shown in Fig. 1, for Convolution-II layer, I = 113, f = 5, p = 2, s = 1, and total filter = 64. This

means

Cw ¼ Ch ¼ 113þ 2� 2� 5

1
þ 1 ¼ 113

As the number of fitters is 64, the total number of neurons for the feature map of the second
convolutional layer is 113 × 113 × 64 = 817,216

4. As shown in Fig. 1, stride is 2 and the previous layer’s input size is 113. Therefore,
maxpooling2 = 113

2 � 56
5. As shown in Fig. 1, for Convolution-III layer, I = 56, f = 7, p = 3, s = 1, and total filter = 128. This

means

Input 
Image 
227×227

Figure 1: Convolutional neural network
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Cw ¼ Ch ¼ 56þ 2� 3� 7

1
þ 1 ¼ 56

As the number of fitters is 128, the total number of neurons for the feature map of the third convolutional
layer is 56 × 5 ×6 128 = 401,408

6. As shown in Fig. 1, the last layer (the fully connected layer) is responsible for calculating the class
score. The input size for this layer is 401,408.

In this paper, the primary center of attention is the convolution and pooling layers. Fundamental objects
are encoded by the proposed algorithm to represent CNNs. In the upcoming two subsections, we will discuss
the types of CNNs that have been used as population and peer competitors for our proposed algorithm.

VGG-19. VGG stands for the Visual Geometry Group (of the University of Oxford) [5]. VGG came
after Alex Net. It took ideas from old CNNs and changed them to achieve a high level of accuracy. It is
mainly trained on Image Net dataset, which has 1.2 million images. The architecture of VGG is shown
below in Fig. 2.

Important points about VGG are as follows: The size of the input is always fixed at 224 × 224. It does not
require any special processing, as only normalization is applied. The kernel size is 3 × 3. A rectifier linear unit
is used to provide nonlinearity during processing. Three fully connected layers of 4096 neurons are used. The
last layer is the classification layer in which the softmax function is used.

ResNet. [13] Because of the vanishing gradient problem, it is extremely difficult to train a very deep
neural network (a neural network with many layers). Skip connection is a solution that allows the user to
take the activation from one layer and instantly feed it to another layer that is further deeper in the
network, allowing them to train networks with more than 100 layers. The residual block is formed
by these skip connections or shortcuts. Residual networks are made up of residual blocks. These
networks may grow deeper without compromising performance. The residual block structure is depicted
in Fig. 3 below.

Figure 2: VGG-19 architecture

Figure 3: Residual block
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Residual Network Equation:

yl ¼ hðxlÞ þ f ðxl; wlÞxl (2)

xlþ1 ¼ f ðylÞ (3)

In these equations, f(yl) and h(xl) are ‘identity mappings’ (i.e., the signal could be directly propagated
from one unit to any other unit, either forward or backward). This discussion is enough to establish the
benefit of ResNet over other networks and is also helpful to understand the proposed algorithm because
this is one of the networks we used in our population.

2.2 Genetic Algorithm

The genetic algorithm [14,15] flowchart is given in Fig. 4. First, the initial population of the individual is
triggered randomly (regarding our proposal algorithm, the convolutional neural network is the individual of
the population with its variable architecture), and subsequently, the fitness of the individual is evaluated. To
measure this fitness, we use a novel fitness function. In the case of our proposed algorithm, the fitness of the
individual is measured based on its performance on image classification then the individuals whose fitness is
the best are selected to generate offspring. Offspring are generated by crossover and mutation. After this, we
merge these offspring into the population, and the above process continues until we get the optimized
solution.

2.3 Principal of Network Architecture Search

In recent years, CNN architectures have shown remarkable performance in classification, localization,
video classification, segmentation, and captioning. Examples of their applications include DCNN for
hyper spectral imaging segmentation [3], image registration [16], handwritten character recognition [17],
and optical image classification [18]. As the manual design of CNN classification is time-consuming—
and because the deep learning frameworks are heavily data-dependent and deal with versatile data—this
type of classification requires frequent architecture changes. Therefore, it is mandatory to develop an
algorithm that can find the best CNN architecture automatically and quickly.

Suitable architecture designing can be considered as a search problem [9]. As shown in Fig. 5, this
system is divided into three parts: the search space, searching strategy, and performance estimation.
Concerning this work, the collection of CNN architectures are a search space. Here, one point is very
important: the proper search space definition can reduce the complexity of a system and save time. The
search strategy is the core of this NAS system, with better strategies generating better CNN architectures.
However, there is always a back-and-forth in between the classification performance and speedup. In this
work, because we use a single GPU, fast convergence is required. Performance estimation is the final
important component used by the strategy to evaluate the performance of a system. In our case, the
classification accuracy and execution time of a CNN to find the best architecture for a validation data set
are the main performance measures considered.

Figure 4: Flow chart of genetic algorithm
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3 Proposed Methodology

This section mainly deals with the proposed work. Subsection 3.1 introduces the framework of the
proposed algorithm, and Subsections 3.2–3.5 provide the details of each step. To provide a better
understanding of the work, we will give remarks with justifications for each section. The proposed
algorithm’s framework is shown in ‘Algorithm 1.’

Algorithm 1:

Input: CNN building blocks, size of the population, number of generations (G), data set for classification.

Output: best CNN architecture.

1 I0 ← initialize the population with a defined size by generating individuals randomly

2 for (i = 0; i <G; i = i + 1) do

• Fast fitness evaluation of each individual in Ii using proposed Algorithm 3

• Ji ← select the best parents per fitness and generate the offspring by using genetic operations.

• Ii+1 ← new population selection from the joint pool of I and J

3 Return the Best Individual According to Fitness Ii

Algorithm 1 introduces the framework of the proposed algorithm. It starts by working with the initial
population of the CNN. After several evolutionary steps, it discovers the best architecture of CNN for the
classification of the image. During progressions, the population is initialized instantly with the size
defined beforehand, and individuals are encoded using the bit representation encoding technique [6]
(line 1). There is one counter, i, that is initialized with zero for the current generation.

During evolution, the fitness of an individual is evaluated on a given image dataset using the proposed
algorithm. After that, the best parents are selected according to fitness and rank values, and then new
offspring are generated using crossover and mutation genetic operations. Then, a new population is
selected from the joint pool of the surviving individuals and the current population, which becomes the
population for the next generation. This process continues with the maximum range of generations as
shown in Fig. 4.

The proposed algorithm has a standard pipeline of GA. However, one point to be noted here is that GA
provides a unified framework to solve optimization problems. When this algorithm is used for a particular
problem, its components must be redesigned. In the proposed algorithm, we carefully followed the bit
encoding strategy, genetic operations. With this, we also proposed the novel “individual fitness evaluation
algorithm” for individual fitness evaluation and the calculate_rank algorithm to accelerate convergence.
We also used a differential architecture search to train individuals to make the CNN architectures
automated and time-efficient.

Figure 5: Automatic architecture design principle
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Algorithm 2: Individual Training:

Input: learning rates β1 and β2, number of epochs, w, and α

Output: Best CNN architecture

1. For every epoch:

a. For every training and validation batch,

i. a a� b2raLvððw� b1rwLtðw; aÞ; aÞ
ii. w  w� b1rwLtðw; aÞ

2. Choose the best a� according to the performance on the validation dataset.

3. oi;j ¼ maximumðo 2 O ao �i;j Þ find the best CNN

Algorithm 2 explains the gradient-based architecture search method (also known as the differential
architecture search method) [11]. To find the best solution for any problem, it is always important to
define the search space precisely. The incessant relaxation of the architecture representation is allowed by
the gradient-based search. It does not search a discrete set of candidate architectures but relaxes the
search space to be incessant so that the architecture can be optimized regarding its validation set
performance by ‘gradient descent.’

Although the idea of searching in continuous space is not new, this method is different from the previous
one. It discovers efficient performance building blocks with complex graph topologies within rich search
space. Moreover, this method is not restricted to any particular family of neural networks; it is a
generalized method. The efficiency of gradient-based optimization, unlike the random hidden search,
allows it to exhibit tremendous performance with relatively few computational resources.

This method searches [19,20] a computation cell (shown in Fig. 6) as a building block of the final
architecture. Searched optimal cells are stacked together to form an efficient CNN architecture. Each cell
is like a direct acyclic graph and consists of two inputs and one output; the inputs are given by the
previous two cells. Let us consider Ni as the node of the cell and Oi, j as an operation set (like pooling,
convolution padding, and so on) between Ni and Nj. Thus, the output of Ni is calculated based on all
previous nodes per Eqs. (4) and (5). The cell output, Cout, is calculated as the concatenation of the
output of each intermediate node.

Figure 6: Scrutiny of DARTS: (a) unknown operations initially (b) continuous relaxation of the search space
(c) Bi-level optimization, and (d) final architecture
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Ni ¼
X

j, i

oi;jðNjÞ (4)

Cout ¼
X

concatnateðNi Þ (5)

The search procedure can be accelerated by considering the gradient-based optimization method. It is
well-established that gradient-based approaches always require a continuous search space. So, by using a
soft-max function, this categorical space can be converted into a continuous search space. The output of
an operation set is ‘the weighted sum of the outputs of each operation in the operation set,’ which is
described by Eqs. (6) and (7).

Co
i;j ¼

expoðao
i;jÞP

o02O expoðao
i;jÞ

(6)

oi;jðNjÞ ¼
X

o2O
Co
i;j oðNjÞ (7)

where Co
i;j is operation o’s coefficient under operation set O between node Ni, the Nj coefficient is obtained by

the softmax operation, and aoi;j is a parameter optimized by the gradient descent method. Upon completion of
the search, the most appropriate operation, according to oi;j ¼ maximumðo 2 O aoi;jÞ, is selected as the final
operation, and then the network architecture is determined. Due to the above-described method, the discrete
search space is changed to continuous search space on which gradient descent can be applied. After this
continuous relaxation, the goal is to find the optimal α and w, which can be obtained by minimizing the
losses through training and validation. Let Lt and Lv be training and validation losses, respectively. Then
optimal parameter can be obtained by the bi-level optimization algorithm, which can be understood by
using Eq. (8).

min
a

Lvðw; aÞ such that w ¼ min
w

Ltðw; aÞ (8)

where α is the gradient descent parameter for CNN architecture and w is the weight in CNN. After the bi-
level optimization shown in line 1.a.i, the optimized values α* and w* are used to design the CNN
architecture. Instead of finding the best architecture through human or manual expertise, this work uses
the gradient descent parameter to find the best CNN architecture.

Algorithm 3: (Proposed Algorithm) Fitness Evaluation

Input: Population Ii

Output: Population Ii contains individual with fitness values.

1 if i == 0 then

2 lookup = {};

3 Make look_up as global variable;

4 end

5 for every individual in Ii do

6 if the index of individual in look_up then

7 f ← get the fitness using index from look_up;

8 rank←find rank using Proposed Algorithm calculate_rank (individual, f)

(Continued)
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8 Set f and rank to individual;

9 else

10 while GPU is available do

11 evaluate individual on GPU asynchronously using proposed algorithm Fast Individual

Fitness evaluation

12 end

13 end

14 end

15 Return Ii.

The method of fitness evaluation is described by Algorithm 3 to evaluate the fitness of each individual in
population Ii and ultimately return the population whose fitness has been evaluated. Explicitly at the initial
population level, a global cache signified as ‘look_up’ is generated. This cache stores individual fitness with
obscured architectures (lines 1–3). After that, the fitness of every individual found is taken from this memory,
and their ranks are calculated according to the proposed Algorithm 6, which is described in a later section
(lines 5–8). Otherwise, an individual is assigned to the available GPU for fitness evaluation. The whole
process is done asynchronously (lines 10–12). One point to be noted here is that from look_up, each
individual is accessed based on its index.

Algorithm 4: (Proposed Algorithm) Individual Fitness Evaluation

Input: The individual, GPU availability, training epochs, the global look_up buffer, the training data, the
validation data,

Output: The individual and its fitness.

1 Build CNN using encoding strategy over given data set;

2 valid_fit ← 0;

3 for every epoch in the given training epochs do

4 Train the CNN using Algorithm 3 on training data by using the given GPU;

5 v_f ← Calculate the error rate and time taken to process the image on validation data;

6 if v_f > valid_fit then

7 valid_fit ← v_f;

8 end

9 end

10 mark valid_fit as the fitness of individual;

11 set the index of the individual into look_up buffer;

12 Return individual

Algorithm 4 presents the logic of the evaluation of individual fitness. At the outset, the CNN is decoded
from the individual, and a classifier is added to this CNN (line 1) based on the image classification given in

Algorithm 3: (continued)
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the dataset. In the proposed algorithm, the softmax classifier [15] is used, and classes are derived from the
benchmark data set. After decoding, various operations like batch normalization, dropout, and stride are
added to perform the training of CNN. All configurations are managed per the literature to achieve
optimized performance.

Training is performed using Algorithm 2 (line 4), which is the best available differentiable architecture
search method to reduce the time of training and achieve fast automation. When the training phase is
completed based on the time taken to train, error rate, and the accuracy fitness values assigned to
individuals, the index of an individual with its fitness is finally set in the look_up cache (lines 10–11).

The next reason for designing DART-based, asynchronous, and cache components, for example, is given
here. First, the training of the CNN is time-consuming. So, it is better to make a decision based on the best
architecture design as discussed in Algorithm 2. DART does not completely run the CNN until it finds the
best architecture. Therefore, it only considers the positive CNN and kills individuals that underperform. So, it
is the fastest way to decide the best architecture since multiple training sessions are not required to find the
best performance.

Second, deep learning architectures reach their full potential with large amounts of data, which
necessitates a lengthy training period. However, most architectures are based on gradient-based
optimization, which can be performed in parallel and asynchronously—and, in this work, fitness
evaluation also supports this technique. Indeed, there are various existing libraries such as tensor flow
and Pytorch that also support this technique. The cache component is also used to provide the
memorization based on the following assumptions.

1. Fitness evaluation is not required again for individuals whose architectures have not changed and that
have survived until the next generation.

2. After the crossover and mutation operation, the regeneration of the same architectures may be
probable. One problem that can arise is that duplicate key generation is also handled by dictionary
concept, which is an index and value mapping. For example, a record such as “index1 = 88.12,”
which denotes the index, is “index1,” and its fitness value is “88.12.”

Algorithm 5: Offspring Generating

Input: Ii Population set and fitness, crossover probability cp, the mutation operation probability mp, list of
mutation operation ml, and mutation operation selection probability pl.

Output: offspring set Ji.

1: Ji = { }

2 while |Ji| < |Ii| do

3 I1 ← randomly select two points and then select the best one from Ii

4 I2 ← Repeat Line 3;

5 while I2 == I1 do

6 step 4;

7 end

8 r ← random value in between (0, 1);

9 if r < cp then

10 randomly divide the initial population into P1 & P2 find O1 & O2 using crossover

11 Ji ← Ji U O1U O2;
(Continued)
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12 else

13 Ji ← Ji U P1 U P2;

14 end

15 end

16 for each individual p in Ji do

17 r ← random value from (0, 1);

18 if r < mp then

19 based on randomly chosen place t do mutation from operation chosen from

The list of operations based on probability pl

20 end

21 end

22 Return Ji

The process of offspring generation is shown in Algorithm 5. It contains two main parts: crossover and
mutation. During the crossover operation, two parents are selected, one from each list of randomly generated
individuals based on their fitness evaluation (lines 1–4). This selection process is called binary tournament
and is often used as a single-point optimization technique. As a parent is selected, one random number is
generated to help determine whether the crossover will occur. If the randomly regenerated number does
not fall below the crossover probability, then both individuals are placed on the Ji list. Otherwise, the
parent individuals are split into dual parts, and both parts are interchanged, which creates offspring (lines
9–15).

Furthermore, during mutation, a random number is again generated performed according to (lines 16–
20). As it relates to the proposed work, the following operations are carried out.

� Randomly changing the value of parameters of building blocks

� Adding a pooling layer

� Adding a skip layer

� Removing a layer from a particular position

All the configurations of this algorithm are based on the best performance of the system and are
recommended in the literature. One difference in the proposed algorithm is that a higher probability is
given to the addition of a skip layer because it increases the depth of architecture, which improves the
performance. However, it is the opposite of a pooling layer. For other operations, equal probabilities
are given.

Algorithm 6: Calculate_rank (individual, Past_rank_index) (Proposed Algorithm)

Input: The individual, individual fitness that is Past_rank_index

Output: Individual Current rank that is Curr_rank_index

1 curr_rank_index = past_rank_index

2 if past_rank_index == −1

curr_rank_index = 0

Algorithm 5: (continued)

(Continued)
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3 find acc, loss, r2_score, and weight update count n_weight and time n_seconds

With respect to current individual

4 curr_rank_index /= acc # acc and r2_score gives positive correlation then

5 curr_rank_index /= r2_score

6 if loss > 1:

7 curr_rank_index *= loss

8 else:

9 curr_rank_index /= loss

10 curr_rank_index /= n_weights/n_seconds

11 return(curr_rank_index)

The process of the rank calculation of individuals is exhibited in Algorithm 6. This algorithm assigns
ranks to all individuals based on their performance according to the following parameters: accuracy,
r2_score error, weight updates, and time taken to pass through the allotted images. Accuracy, R2 score,
and past rank have a positive effect on rank calculations. Other factors, such as loss, number of weights
updates (n_weights), and estimated time (n_seconds), have an inverse effect on a rank calculation. In
other words, the higher the value, the lower the rank of this particular CNN will be. This calculated rank
helps in selecting the next generation’s population, as our goal is to optimize the time taken by the
convergence algorithm. So, this function rank calculation varies substantially according to the time taken
if other parameters remain constant. Initially, current_rank is set to the past rank (line 1). If the CNN
architecture is new, then the current rank is set to 0; otherwise, current_rank varies according to the acc,
loss, r2_score, weight, update count (n_weight), and time (n_seconds). These parameters are calculated in
line 3. The next step is to find curr_rank_index, which is updated with accuracy and r2 score (line 4–5).
If the loss is greater than 1, curr_rank_index is multiplied by the loss (lines 6–7); otherwise,
curr_rank_index is updated by n_weigh and n_times (lines 8–10). Finally, the current rank is returned
(line 11).

4 Experimental Design

Numerous image classification experiments have been carried out in order to assess the performance of
the proposed algorithm. Peer competitors were specifically chosen to be compared against the proposed
algorithm. Specific peer competitors have been introduced in Subsection 4.1 to be compared against the
proposed algorithm. Subsequently, the benchmark datasets are deployed as elaborated in Subsection 4.2.
Eventually, the parameter settings of the proposed algorithms are exhibited in Subsection 4.3.

4.1 Peer Competitors

State-of-the-art algorithms were selected as peer rivals to demonstrate the efficacy and efficiency of the
suggested algorithm. Specific peer rivals have been picked from among the three distinct categories. The first
relates to state-of-the-art CNNs, which are manually developed, such as ResNet [7] and VGGNet [5].
Specifically, ResNet version 2 achieves excellent classification accuracy while having few parameters of
any of its variations. It is worth noting that algorithms from this category have dominated large-scale
visual recognition tasks in recent years [21]. The second and third sections comprise CNN architectural
design methods from the “partial tuning” and “automated” categories, respectively. CNN-GA with cutout

Algorithm 6: (continued)
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falls into the second group, while CNN-GA falls into the third. The term “cutout” refers to a “regularization
procedure” [22] employed in CNN training that may be able to revive the final performance. A noteworthy
characteristic is that the proposed method primarily focuses on providing a “time-efficient automatic”
technique for users who do not have significant domain expertise in adjusting CNN structures to create
competent CNN structures. According to the “no free lunch” theorems [23], CNNs with architectures
developed with manual tuning should have higher classification accuracies than those with “automatic”
tuning, including the proposed approach. Clearly, comparing the proposed method to CNN architectural
ideas from the “automatic” category is unfair. We would still want to provide detailed comparisons to
CNN architectures created with domain knowledge in this experiment to demonstrate the efficiency and
efficacy of the proposed method among all existing state-of-the-art CNNs.

4.2 Experimental Dataset

Here, we use the CIFAR10 and CIFAR100 benchmark datasets for the image classification task [3].
These datasets were selected for the following reasons: 1) both datasets are stringent in terms of picture
sizes, classification categories, noise, and rotation in each picture, and 2) they are widely used to assess
the performance of deep learning algorithms, and the curacy of the majority of comparable methods have
been publicly revealed. The CIFAR10 dataset, in particular, is an image classification benchmark for
detecting 10 kinds of natural things such as airplanes and birds. It is made up of 60,000 RGB pictures,
each with a 32 × 32 pixel resolution. In addition, the training and testing sets include 50,000 photos each.
There is an equal number of photographs in each category. Nonetheless, the CIFAR100 dataset is
comparable to the CIFAR10 dataset, with the exception of 100 classes. In order to get a fast overview of
both datasets, we randomly picked three classes from each benchmark dataset, followed by a random
selection of 10 photos from each class. Fig. 7 depicts a selection of these photos. Specifically, Fig. 7a
shows photos from CIFAR10, whereas Fig. 7b shows photos from CIFAR100. The class names of the
photos in the same rows are shown in the left column of Fig. 7. It can be seen that the items to be
categorized within these benchmark datasets typically occupy discrete portions of the whole image, and
their placements differ in different photos.

The classification algorithm’s modifications are also difficult. The training set is divided into two
portions in the experiments. The first 90 percent of the photos serve as the training set for training the
participants, while the remaining photos serve as the fitness evaluation set for measuring fitness. Due to
the enormous number of classes in the CIFAR100 dataset, most architecture discovery methods have not
performed tests on it to demonstrate the ascendant.

4.3 Parameter Setting

The basic goals of this study, as has been described previously, are to create an autonomous architecture
and uncover algorithms for researchers without CNN domain expertise. Similarly, to increase the application
of the proposed technique, we designed the architecture so that adept users do not have to be experts in

Figure 7: Examples of (a) CIFAR-10 and (b) CIFAR-100 images

IASC, 2022, vol.32, no.2 759



evolutionary algorithms. As a result, only the parameters of the suggested algorithms have been established
based on conventions. Specifically, the crossover and mutation probabilities are set to 0:9 and 0:2,
respectively, as indicated in [15]. Meanwhile, with a batch size of 48, the Adam optimizer is used to train
100 epochs at a learning rate of 0.025, a momentum of 0.2, and a weight decay of 0.0003. We also
utilized a dropout of 0.5 and a grad clip of 5 to avoid over fitting and gradient explosion, and for the loss
function, cross-entropy is employed. During the differential architecture search for the optimal CNN, an
arch learning rate of 0.0003 and an arch weight decay’ of 0.001 are employed. Indeed, the majority of
peer competitors follow a similar training regimen. When the proposed algorithm concludes, we select
the one with the greatest fitness value and train it for 100 epochs on the original training set instead of
350 epochs [15], as we avoid over fitting by employing early stopping regularization. Finally, the
classification accuracy on the testing set is summarized for comparison with peers.

In theory, any probability of adding mutation may be set by keeping it greater than the others.
Furthermore, the population size and number of generations are set to 20, and the peer competitors use
comparable parameters. A greater population size and a higher maximum generation number should
result in improved performance, as well as the engrossment of additional computing resources.
Nonetheless, such ideal settings are beyond the scope of this research because the existing settings, as
used by other publications [15], easily outperform the majority of peer rivals, as shown in Tab. 1.

It is worth noting that the proposed algorithm’s tests are carried out on a single GPU card model named
RTX 2060 Super-8 GB rather than three GPU cards with the same model of NVidia GeForce GTX 1080 Ti,
which is a less powerful configuration.

5 Experimental Results and Analysis

This section provides an overview of the comparison of results between the suggested algorithm and the
selected rivals. In studying the best CNN architecture, the reader will be able to understand the suggested
algorithm and the evolutionary paths. In this way, the algorithms will be understood better.

5.1 Overall Results

As the state-of-the-art CNN pairs have to be constructed manually, the primary task in studying related
CNNs is to compare the classification accuracy and the number of parameters and “GPU days.” Explanatory

Table 1: Comparison of results

Name CIFAR10 CIFAR 100 Parameters GPU Days Manual
work

Base CNN 71.93 34.81 4,528,970 N/A Yes

VGG19 94.71 89.10 21,240,010 N/A Yes

VGG19 + cutout 89.79 73.38 20,024,384 N/A Yes

ResNetV2 86.96 57.12 42,292,222 N/A Yes

ResNetV2 + cutout 77.42 41.55 38 million N/A Yes

CNN-GA (Yanan Sun et al. arxiv:2020) 95.22 – 2.9 M 35 Not needed

CNN-GA (Yanan Sun et al. arxiv:2020) – 77.97 4.1 M 40 Not needed

CNN-GA-DARTS 94.24 87.20 6 million 14 Not needed

CNN-GA-DARTS-Cutout 90.19 85.34 5 million 13 Partial
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words include the GPU Day unit since the algorithm has been executed one day on a single GPU. After the
method concludes, the reflection of the computer resources contained inside is apparent. In turn, the name of
the architecture that identifies the algorithm was used as the name of the identified CNN while comparing the
accuracy of the classification and the number of parameters among the pairs.

For instance, the algorithm offered is called CNN-GA. Tab. 1 shows the comparison between the method
presented and the peer competition after 20 epochs, respectively. In the table, the name of competitors is
shown in the first column. In addition, the last column shows how much manual compliance the
associated CNN needs during the discovery of the CNNs’ structures. In the second and third columns, the
CIFAR10 and CIFAR100 data sets are classified precisely, while in the fourth column, the numbers of
parameters are shown in the respective CNNs. The fifth column shows the use of GPU days solely for
the semi-automatic and automated methods.

CNN-GA-DARTS achieves 7.72% and 4.7% improvement in CIFAR 10 data settings over Resnet-
V2 and VGG-Cutouts, having a manual category, respectively, while utilizing just 14% and 30% of their
respective paramae. CNN-GA-DARTS achieves the best classification precision with both the CIFAR-
10 and the CIFAR-100. In the automated category, CNN-GA-DARTS yields 94.24% accuracy, which is
1.02% less than CNN-GA over CIFAR-10% and 87.20% over CIFAR-100, which is 11.88% higher than
CNN-GA. In short, CNN-GA-DARTS overrides the majority of the state-of-the-art CNN algorithms built
manually and automatically in terms of classifications, the number of parameters, and the number of
computer resources used. Although some semi-automatic algorithms exhibit better classification accuracy,
CNN-GA-DARTS is a completely automatic algorithm and does not necessitate any human proficiency in
the course of solving real-world tasks, which is the main pursuit in this paper.

5.2 Evolutionary Trajectories

Fig. 8 depicts the evolutionary trajectory of the proposed algorithm on the CIFAR10 dataset; specifically
to attain better convergence of the proposed algorithm 20 generations are considered. In line with this, the
initiation is, to collect the individuals selected in each generation. With the use of the dashed line, the most
efficient and median classification accuracy is also being connected in the meantime. The number of
generations is represented by the horizontal axis, and the classification accuracy is signified by the
vertical axis as depicted in Fig. 8. The evolution progress is accelerated by the best and median
classification accuracies depicted in Fig. 8. It can be observed height of each box is continuously
decreasing i.e., in exploring the architectures of CNNs on the CIFAR10 dataset, the evolution is moving
towards a stationary state The up-gradation of the classification accuracy transpires unceasingly from the
second generation to the eighteenth generation. Henceforth, not much change is seen in the classification
accuracy until the termination of the evolution. This implies that since the proposed algorithm is linked
up well with this setting, then in this specific case, the setting of 20 generations is rational.
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6 Conclusions

The goal of this research was to develop an autonomous architecture design method for CNNs using the
updated GA (abbreviated CNN-GA-DARTS), which is efficient for finding the best CNN architecture in
tackling image classification challenges for users who do not have expertise in adjusting CNN
architectures. This goal was achieved by providing a DART-based individual training and rank-based
individual fitness assessment function, as well as by establishing a parallel and a lookup cache
component, to significantly accelerate the fitness evaluation supplied in a limited computational resource.
The proposed approach was tested using two daunting benchmark datasets and compared against five
state-of-the-art rivals, five personally constructed CNNs, and one automated method investigating the
architectures of CNNs.

According to the results, the CNN-GA-DARTS outperforms most manually developed CNNs and
artificial peer rivals in terms of classification accuracy. Also, in comparison to most of its peers, the CNN
found by CNN-GA-DART has few parameters. Furthermore, significantly fewer computing resources are
used by CNN-GA-DART than by the majority of its automated and manually tuned peer rivals.
Regardless of whether they are familiar with CNNs or GAs, users can utilize CNN-GA-DARTS to solve
picture categorization problems because this method is fully automated. Furthermore, the CNN
architecture built by CNN-GA-DARTS on CIFAR10 performs well. Three components have been devised
to speed up the fitness evaluation while conserving many computing resources. Future research works
may consider using various combinations of optimization algorithms to generate automated architectures.
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