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Abstract: The interest in using fractal theory and its applications has grown in the
field of image processing. Image enhancement is one of the feature processing
tools, which aims to improve the details of an image. The enhancement of digital
pictures is a challenging task due to the unforeseeable variation in the quality of
the captured images. In this study, we present a mathematical model using a local
conformable differential operator (LCDO). The proposed model is formulated by
the theory of cantor fractal to generalize the definition of LCDO. The main advan-
tage of utilizing LCDO for image enhancement is its capability to enhance the low
contrast intensities using the coefficient estimate of LCDO. The proposed image
enhancement algorithm is tested against different images with different qualities
to show that it is robust and can withstand dramatic variations in quality. The
quantitative results of Brisque, and Piqe were 30.38 and 35.53 respectively.
The comparative consequences indicate that the proposed image enhancement
model realizes the best image quality assessments. Overall, this model
significantly improves the details of the given datasets, and can potentially help
the medical staff during the diagnosis process. A MATLAB programming instru-
ment utilized for application and valuation of the image quality measures.
A comparison with other image techniques is illustrated regarding the visual
review.
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1 Introduction

Kolwankar et al. [1–5] formulated the fractal operators for the usual fractional calculus of Riemann-
Liouville operators. It was utilized to deal with non-differentiable structures appearing in both science and
engineering [6]. Numerous other opinions and facts of the local fractional calculus were offered, such as
the geometric fractal. Yang et al. formulated what is called “the cantor fractal” in the logical
modifications of the definitions to the subject of local derivatives on fractals. Different studies and
applications are indicated in the literature [7–12].

Anderson et al. [13] presented a unique conformable fractional calculus (CFC) that is connected with a
control term called “the proportional-integral-derivative controller”. This controller is a loop device that is
used in industrial, thermal study and economy to control the suggested systems. Furthermore, Ibrahim
et al. [14] extended CFC to the complex plane to investigate the systematic solution of a class of complex
differential equations. More extensions have been reported in the literature [15–17].

The image acquisition process sometimes generates poorly-illuminated images. To mitigate this issue,
we suggest a new mathematical model that is based on combining the idea of fractal derivative and the
conformable derivative to formulate the proposed LCDO for image enhancement. Applying the LCDO to
enhance images based on estimating of the conformable differential operator. The coefficients are
suggested by using the fractal sine function, which is a generalization of a fractal flame. We aim to
provide an enhancement method to recover the interpretability or perception of data in pictures for human
viewers, or to provide better input for other automated feature processing performances. The performance
of the proposed image enhancement model was assessed using relevant image quality metrics, and
compared with state-of-the art image enhancement techniques.

Medical imaging performances from time to time make pictures that: have objects, are low in difference,
and/or do not obviously display the boundaries of the intuitive structures. To get these matters, we offer a
novel mathematical modeling system, which is depended on the class of LCDO to improve the low
contrast intensities of medical images. We aim to provide an enhancement technique for medical pictures
so that physicians can offer scientific diagnoses earlier and additional positively.

The main contributions of this study are, as follows:

1-We present a unique low-light image enhancement method which can achieve better contrast
enhancement on real low-light images.
2-We suggest a LCDO model using the coefficient estimation of a conformable differential operator for
real low-light medical images enhancement.
3-The proposed LCDO can be applied as an efficient pre-processing step for any image processing
approach.

2 Related Works

Image enhancement methods are designed to enhance the visual appearance of an image such that the
details of the image are significantly improved without altering the information of the image. In the literature,
image enhancement can be categorized into spatial and frequency (regular) domain. Spatial domain image
enhancement works on pixel values, while the image enhancement in frequency domain uses a transform
approach of the images.

Recently, few image enhancement algorithms based on the concept of fractional calculus have been
proposed. The fractional operators have the ability to keep the high frequency contour features, and to
enhance the texture details. Roy et al. [18] proposed a new fractional calculus enhancement algorithm
based on Laplacian operations. The method was proposed to remove the generated Laplacian noise from
text inside video frames. Similarly, a fractional-based image enhancement design was proposed by
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Al-Shamasneh et al. [19]. The proposed model relies on pixel probability of the neighboring pixels to
enhance kidney images obtained from self-collected MRI dataset. Moreover, Raghunandan et al. [20]
proposed a low contrast license plate image enhancement model based on the Riesz fractional operator.
The model achieved good results for the text images only. Alternatively, Al-Ameen et al. [21] proposed a
tuned single-scale Retinex algorithm for improving the dynamic range of MRI scans. The proposed
enhancement model is able to improve the brightness and contrast of the input MRI scans, but the
preservation of fine details was not achieved. For poorly illuminated images, Fu et al. [22] proposed the
fusion-based image enhancement method by applying different techniques to adjust the image
illumination. This approach effectively improved the images illumination. However, the aim of the
method is restricted to weakly illuminated images but not for images that suffer from degradations, and
poor quality.

Despite the good results of this method, it was not shown to be able to preserve the fine details of medical
images, which is required for the diagnosis process. Likewise, more image enhancement methods have been
proposed deep learning approaches. Li et al. [23] proposed a deep learning approach to enhance dark images.
This approach operated well without any paired training data for low-light enhancement jobs. The
experimental results on various low light datasets show the effectiveness of this method. Using the same
approach, Zhang et al. [24] have developed an adaptive fractional order image enhancement method
based on the information of fractional order differential and the image segmentation. The image
enhancement depends on the result of the image segmentation algorithm which is used to segment the
image into the objects and the background. This technique makes the algorithm unable to preserve the
contrast information of the image efficiently. Recently, [25] presented a mathematical model for medical
image enhancement based on the class of fractional partial differential equations (FPDEs). The main
advantage of FPDE is its ability to enhance the low contrast images. Similarly, [26] proposed a new
medical image enhancement approach based on fractional calculus. This approach successfully improved
the quality of the image while preserving the details, but it is not suitable for enhancing non-uniform
illumination area inside the input images.

To overcome this problem, this investigation presents a new mathematical design based on LCDO for
image enhancement, which is the main contribution of the study. The main advantage of LCDO is its ability
to enhance the low contrast intensities through pixels’ illumination value based on a fractal conformable
differential operator of the entire image. The proposed algorithm can enhance the image to a certain
extent, and can display image information in a better way compared to the traditional image enhancement
model.

3 Methods

This section briefly outlines the background of fractal theory and defines Fractal conformable
differential operator. In terms of the LCDO, we introduce the fractal flame which is derived based on
LCDO to get the enhanced image.

3.1 Conformable Operator

The conformable derivative of differential functions f(χ) is given by the formula

Caf ðvÞ ¼ v1�a df ðvÞ
dv

;

which has applications in various scientific applications and engineering (see [13]). Moreover, the
conformable derivative satisfies the limit
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lim
a!1

Caf ðvÞ ¼ df ðvÞ
dv

and it is not conformable at the limit

lim
a!0

Caf ðvÞ 6¼ f ðvÞ:

Definition 1 Let α∈ [0, 1]. A differential operator Ca is conformable if and only if C0 is the identity
operator and C1 is the classical differential operator. Specifically, Ca is conformable if and only if for
differentiable function f = f(χ),

C0f ðvÞ ¼ f ðvÞ and C1f ðvÞ ¼ d

dv
f ðvÞ ¼ f 0ðvÞ:

Anderson et al. [13] showed that in the control theory, a proportional-derivative controller for controller
output μ at time χ with two tuning parameters has the algorithm

lðvÞ ¼ jp�ðvÞ þ jd
d

dv
�ðvÞ

� �
;

where κp is the proportional gain, κd is the derivative gain, and � is the error between the state variable and
the process variable. Based on this view, they formulated the enhanced definition.

Definition 2 Consider the continuous functions κ0, κ1:[0, 1] × R→ (0, ∞) such that

Caf ðvÞ ¼ j1ða; vÞf ðvÞ þ j0ða; vÞf 0ðvÞ; (1)

where κ1(α, χ) ≠ −κ0(α, χ),

lim
a!0

j1ða; vÞ ¼ 1; lim
a!1

j1ða; vÞ ¼ 0; j1ða; vÞ 6¼ 0; 8v; a 2 ð0; 1Þ; (2)

and

lim
a!0

j0ða; vÞ ¼ 0; lim
a!1

j0ða; vÞ ¼ 1; j0ða; vÞ 6¼ 0; 8v; a 2 ð0; 1Þ: (3)

Definition 3 The integral operator corresponds to Ca has the formulaZ C

af ðvÞdav ¼ f ðvÞ þ ke0ðv; v0Þ; (4)

where k∈ R, dav ¼ dv
j0ða; vÞ ; j0 6¼ 0 and

e0ðv; nÞ ¼ exp �
Z

n

v
j1ða; &Þ
j0ða; &ÞÞ d&

� �
: (5)

As an example of κ1 and κ0, one can assume that

j1ða; vÞ ¼ ð1� aÞva; j0ða; tÞ ¼ av1�a; t 2 ð0; 1Þ:

3.2 Local Fractional Calculus

We shall use the definition of the local fractional calculus that given in [4]. Let Caða; bÞ; a 2 ð0; 1� be a
fractal set and let f 2 Ca: For ɛ > 0 and |χ − χ0| < δ, the limit
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f ðaÞðvÞ :¼ ððaÞf ðvÞ ¼ lim
v!v0

�ðaþ 1Þðf ðvÞ � f ðv0ÞÞ
ðv� v0Þa

is finite and exists. We note that

ðð2aÞf ðvÞ ¼ ððaÞðððaÞf ðvÞÞ; ðð3aÞf ðvÞ ¼ ððaÞðððaÞðððaÞf ðvÞÞÞ . . .
For example f ðvaÞ ¼ van; has a fractal derivative

ððaÞvna ¼ �ðanþ 1Þ
�ðaðn� 1Þ þ 1Þ v

ðn�1Þa: (6)

Thus, in general, for an analytic function f, we have the structure of fractal derivative as follows [5]
-Theorem 9:

ððaÞf ðvÞ ¼
X1
n¼1

�nða; bÞ
�ðaðn� 1Þ þ 1Þ v

ðn�1Þa;

where f is defined in some fractal set. In our study, we shall use a fractal function defining by the fractal sine
function

sinaðvaÞ ¼
X1
n¼0

ð�1Þnvð2nþ1Þa

�ð1þ ð2nþ 1ÞaÞ ; a 2 ð0; 1Þ

and fractal cosine function

cosaðvaÞ ¼
X1
n¼0

ð�1Þnv2na
�ð1þ 2naÞ ; a 2 ð0; 1Þ:

The integral corresponds to the local fractional derivative operator is defined, as follows [4]:

I ðaÞf ðvÞ ¼ 1

�ð1þ aÞ
Zb
a

f ðvÞðdvÞa:

3.3 Local Conformable Differential Operator (LCDO)

By combining the information in 3.1 and 3.2, we obtain the following LCDO:

Definition 4 For α∈ [0, 1], consider the continuous functions in a fractal set j0; j1: ½0; 1��
Caða; bÞ ! ða; bÞ
such that

CðaÞf ðvÞ ¼ j1ða; vÞf ðvÞ þ j0ða; vÞf ðaÞðvÞ; (7)

where κ1(α, χ) ≠ −κ0(α, χ), f ðaÞðvÞ ¼ limv!v0
�ðaþ1Þðf ðvÞ�f ðv0ÞÞ

ðv�v0Þa and

lim
a!0

j1ða; vÞ ¼ 1; lim
a!1

j1ða; vÞ ¼ 0; j1ða; vÞ 6¼ 0; 8v; a 2 ð0; 1Þ; (8)

and

lim
a!0

j0ða; vÞ ¼ 0; lim
a!1

j0ða; vÞ ¼ 1; j0ða; vÞ 6¼ 0; 8v; a 2 ð0; 1Þ: (9)

We have the following properties.
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Proposition 1 Consider the LCDO in Definition 4. Assume the functions ϕ and ψ ≠ 0 are differentiated in
a fractal set Ca; a 2 ½0; 1�: Then
CðaÞ½afðvÞ þ bwðvÞ� ¼ aCðaÞfðvÞ þ bCðaÞwðvÞ;

CðaÞ½fw�ðvÞ ¼ CðaÞfðvÞ: wðvÞ þ CðaÞwðvÞ: fðvÞ � fðvÞ: wðvÞ j1ða; vÞ;

CðaÞ f
w

� �
ðvÞ ¼ wðvÞ: CðaÞfðvÞ � fðvÞ: CðaÞwðvÞ

w2ðvÞ þ fðvÞ: j1ða; vÞ
wðvÞ :

The integral operator corresponding to C(α) is given byZ C

ðaÞfðvÞ: ðdavÞa ¼ fðvÞ þ kðae0ðv; v0ÞÞ;
where dav ¼ dv

j0ða; vÞ and

ae0ðv; nÞ ¼ exp �
Z

n

v
j1ða; &Þ
j0ða; &ÞÞ ðd&Þ

a
� �

:

Using the definition of LCDO, we have

CðaÞ½afðvÞ þ bwðvÞ� ¼ j1ða; vÞ½afðvÞ þ bwðvÞ� þ j0ða; vÞ½afðaÞðvÞ þ bwðaÞðvÞ�
¼ aðj1ða; vÞfðvÞ þ j0ða; vÞfðaÞðvÞÞ þ bðj1ða; vÞ wðvÞ þ j0ða; vÞ wðaÞðvÞÞ
¼ a: CðaÞfðvÞ þ b: CðaÞwðvÞ:

Using the multiplication law of the fractal operator, we have

CðaÞ½fw�ðvÞ ¼ j1ða; vÞ½fw�ðvÞ þ j0ða; vÞ½fw�ðaÞðvÞ
¼ j1ða; vÞ½fw�ðvÞ þ j0ða; vÞð½w�ðaÞfþ½f�ðaÞwÞðvÞ þ ðfwj1 � fwj1ÞðvÞ
¼ wðvÞðj1ða; vÞfðvÞ þ j0ða; vÞfðaÞðvÞÞ þ fðvÞðj1ða; vÞwðvÞ þ j0ða; vÞwðaÞðvÞÞ � ðfwj1ÞðvÞ
¼ CðaÞfðvÞwðvÞ þ CðaÞwðvÞfðvÞ � fðvÞwðvÞj1ða; vÞ:

Finally, applying the division law of fractal derivative, we obtain

CðaÞ f
w

� �
ðvÞ ¼ j1ða; vÞ f

w

� �
ðvÞ þ j0ða; vÞ f

w

� �ðaÞ
ðvÞ

¼ j1ða; vÞ f
w

� �
ðvÞ þ j0ða; vÞ wfðaÞ � fwðaÞ

g2

 !
ðvÞ þ f

w
j1 � f

w
j1

� �
ðvÞ

¼ wðvÞðj1ða; vÞfðvÞ þ j0ða; vÞfðaÞðvÞÞ � fðvÞðj1ða; vÞwðvÞ þ j0ða; vÞwðaÞðvÞÞ
g2ðvÞ

þ fðvÞj1ða; vÞ
wðvÞ ¼ wðvÞCðaÞfðvÞ � fðvÞCðaÞwðvÞ

w2ðvÞ þ fðvÞj1ða; vÞ
wðvÞ :

The last part can be obtained from Definition 3. This completes the proof.
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3.4 Fractal Flame in Terms of LCDO

Our class is based on the fractal flame component. Note that the individual function has the following
form:

�jðx; yÞ ¼
X

tn2Variations
xn � tn; j ¼ 0; 2; . . . ; n� 1;

where the parameter ωn is called the weight of the variation υn. Note that

υ0 = (x, y), υ1 = (sin(x), sin(y)) and t2 ¼ x
x2þy2 ;

y
x2þy2

� �
:

Using these components, the gamma correction is defined simply by

tout ¼ Atcin;

where υin is one of the component of the individual function, A is the image or video that must process and
γ∈ (0, 1) (encoding gamma). A gamma value γ < 1 is known as an encoding gamma, and the progression of
encoding with this compressive power-law nonlinearity is titled gamma compression; contrariwise, a gamma
value γ > 1 is named a decoding gamma, and the presentation of the spread-out power-law nonlinearity is so-
called gamma growth. The logic behind utilizing LCDO as medical picture enhancement occurs in its ability
to improve the low difference forces through the suggested fractional improved operator. Encoding gamma is
utilized to enhance the treatment of bits when encoding a picture or the bandwidth utilized to move the
picture, from the pleasing benefit of the non-linear method (power-law) in which one observes color,
optic and light.

In a generalization study, γ indicates the slope of the input-output curve. Operating Θ j(x, y) by LCDO,
where it defines on the fractal set Ca; we obtain

CðaÞ
x �jðx; yÞ ¼

X
tn2Variations

xn � CðaÞ
x tn; CðaÞ

y �jðx; yÞ

¼
X

tn2Variations
xn � CðaÞ

y tn; (10)

where CðaÞ
x and CðaÞ

y are the LCDO in the x and y direction respectively.

For example,

CðaÞ
x t0 ¼ j1ða; xÞxþ j0ða; xÞ�ð1þ aÞx1�a;

CðaÞ
y t0 ¼ j1ða; yÞyþ j0ða; yÞ�ð1þ aÞy1�a;

and

CðaÞ
x t1 ¼ j1ða; xÞsinaðxaÞ þ j0ða; xÞcosaðxaÞ; CðaÞ

y t0 ¼ j1ða; yÞsinaðyaÞ þ j0ða; yÞcosaðyaÞ:
In the application part, we shall consider κ1(α, x) = 1 − α and κ0(α, x) = α.

Hence, we have the fractal conformable gamma corrections

tout ¼ AðCðaÞtinÞc;
where

CðaÞtin ¼ CðaÞ
x t0 ¼ ð1� aÞxþ a�ð1þ aÞx1�a (11)

IASC, 2022, vol.32, no.2 943



where x presents the pixel value in the direction of x −axis (similarly, for y-axis), and C(α)υin refers to the
fractal conformable variation of the individual function. The fractal conformable operators showed a
significant improvement in the application of image processing (see [27–29]). In this effort, we combined
these operators to bring a hybrid differential operator.

3.5 The Algorithm

The following steps of the algorithm are presented to enhance the input image:

1. Consider the input image.

2. Experimentally obtain the fractal power (α) as tune image enhancement value.

3. Use the image to find the pixel probability value (x).

4. The values of α and x are used to enhance the input image as in Eq. (11).

5. The quality of enhanced image is evaluated by using two no-reference image quality assessment
metrics (Brisque, and Piqe).

In the proposed enhancement model, the fractal power α is the parameter for the fine detail enhancement,
and it is fixed experimentally as shown in Fig. 1. It is observed that when the value of α is equal to 0.5, the
best score for BRISQUE is obtained (lower is better). Therefore, we consider 0.5 as the experimental value of
α in this study.

The histogram analysis of the input and the enhanced images are shown in Figs. 2b, 2d respectively. It is
apparent from Fig. 2b that the probability distribution of the input image pixels looks compact, while the
probability distribution of the pixels in the enhanced image Fig. 2d looks more scattered. This implies
that the image's quality and contrast have been improved.

4 Results and Discussions

The proposed image enhancement model LCDO is tested using the different images with different
qualities. The code of the proposed image enhancement algorithm was developed using MATLAB 2020b.
In this study, the brain MRI benchmark (BRATS) dataset [26] has been used to test the proposed image
enhancement algorithm.

Figure 1: The average BRISQUE measure for altered values of the fractal power α
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Figure 2: continued
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To assess the suggested image enhancement design, we use two, no-reference image metrics, which are:

i) “The blind reference less image spatial quality evaluator (Brisque)”, which calculates the
perceptual quality of images [30].

ii) “Perception based Image Quality Evaluator (Piqe)”, which calculates the image quality affected by
arbitrary distortion [31].

It is noted that lower scores of Brisque, and Piqe indicate better quality of the enhanced images.

To demonstrate that the proposed enhancement model is efficient as a medical image enhancement tool,
we implemented the following existing methods for the comparative study: the fractional entropy based
enhancement method of kidney images by Al-Shamasneh et al. [19]. The image enhancement method for
license plates by Raghunandan et al. [20], a method that is based on the Riesz fractional operator. The
MRI brain images enhancement method by Al-Ameen et al. [21]. The fusion-based enhancement method
of poorly illuminated images by Fu et al. [22]. And finally, the image enhancement model based on the
class of fractional partial differential equations (FPDEs) [25].

The qualitative results of the proposed and the existing methods are illustrated in Fig. 3. It can be seen
that all of the images have different trends with the dark and bright areas. When we compare the enhancement
results of existing methods with the suggested method, the proposed method shows better enhancement
results than the existing methods in terms of image quality. In the case of the existing method, it could be
seen that FPDEs methods [25] (Fig. 3f) produce over-enhanced images, while the proposed method
yields natural appearance by enhancing the dark areas and maintaining the bright areas of input images.

Overall, the brightening caused by the proposed model makes the structures of the medical images,
which usually represent boundaries, well defined and clear. This is accredited to the model's capability to
capture high frequency details efficiently. The proposed method introduces fair visual results for the
weakly illuminated images. This is the contribution of the fractional integral entropy in this study.

Figure 2: Sample output of the proposed algorithm along with histogram analysis. (a) Input image,
(b) Histogram detail of input image, (c) Enhanced image, (d) Histogram detail of enhanced image
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Figure 3: continued
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The achieved quantitative results of the proposed enhancement method and the existing image
enhancement models are stated in Tab. 1. Most of the image enhancement methods reported in the
literature use the no-reference image quality metrics, therefore, the Brisque and Piqe scores have been
used for the quantitative comparisons as presented in Tab. 1. The suggested method achieves the best
Brisque and Piqe for almost all of the images from the two datasets.

In summary, it can be said that the proposed method achieves the best results compared with the
mentioned methods due to its consistent results across the different datasets.

Figure 3: The brain MRI enhancement results of the proposed and existing enhancement models. (a) Input
image, (b) Al-Shamasneh et al., (c) Raghunandan et al., (d) Z. Al-Ameen, (e) X. Fu et al., (f) FPDEs,
(g) Proposed method

Table 1: Assessment of various image enhancement methods and the proposed model

Methods MRI images

BRISQUE PIQE

Input images 36.50 41.00

Enhanced images by:

Al-Shamasneh et al. 2018 [19] 36.46 39.83

Raghunandan et al. 2017 [20] 33.37 36.35

Z. Al-Ameen 2016 [21] 46.42 40.62

X. Fu et al. 2016 [22] 35.42 40.56

FPDEs [25] 42.35 40.77

Proposed method 30.38 35.53
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5 Conclusions

In this study, we presented a novel method for image enhancement utilizing fractal flame, which is based
on LCDO. The proposed method embraces the local fractional theory and the fractal conformable differential
operator. This model applied the LCDO, which dynamically enhanced the fine details of the medical images.
The proposed enhancement model enhanced the fine details in images of the input low light images. The
experimental results indicate that the proposed LCDO approach outperforms existing methods under the
general application of image enhancement. This gives the proposed model the advantage of being more
scalable for low light image enhancement than the existing methods. Future works may adapt the present
model for specific applications to achieve maximum enhancement benefit.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.
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