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Abstract: Play Store reviews play an important role in demonstrating that deci-
sions are made from the user’s perspective, and contain a wealth of knowledge
that can be used to understand quality issues and help developers build higher-
quality mobile applications. Even for very important information, it can ensure
the authenticity of user-generated content. In Play Store, wearable applications
were recently launched, and are always open and easy to use, and are gradually
being welcomed by users. Driven by popularity and self-interest, profit-incentive
developers are developing low-quality applications and hiring robots to exagge-
rate ratings, reviews, or install counts. This is how spam in applications increases.
Low-quality applications reduce the user’s quality experience and trust, because
after users download an application, they will know the irrelevant and annoying
content of the application. As a result, the reputation of the Play Store is damaged.
Therefore, we analyzed the review content of different wearable applications and
proposed a regression model that has a wide range of recommended features,
including sentiment, content similarity, language and time features, to detect
wearable applications in the Play Store. We use advanced machine learning tech-
niques to evaluate and verify the quality of the model. Compared with existing
models, the performance of our proposed model is very good, with an error rate
as low as 0.40 MSE. Therefore, our regression model is most suitable for deep
neural network (DNN) training.
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1 Introduction

From 2009 to 2019, the development of mobile applications on the market increased exponentially, with
approximately 3.3 million available applications recorded [1]. Play Store reviews play an important role in
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presenting decisions from the user’s perspective, and noteworthy data can ensure the effectiveness of user-
generated content. Due to the development of technology in recent years, the usage rate of wearable devices
is on the rise [2], and developers have begun to develop applications specifically designed to run
continuously on these wearable devices, called wearable applications. Despite the prosperity, many
applications still receive low-star ratings [3] or reviews for lack of specific features, irrelevant
descriptions, or poor user experience, all of which are related to the quality of the application. The Play
Store allows users to search for any mobile application, install it, and provide feedback by rating or
reviewing the application. These reviews and star ratings are basic indicators of application quality and its
benchmarks.

Reviews on the Play Store represent a rich source of information related to the application. Therefore, it
seems good to have users read reviews before downloading the app. However, new users will not even
communicate whether the app is relevant after reading the reviews. The application leaderboard shows
the ranking of the application, which is another way to promote the application. The top-ranked apps
have higher downloads and millions of dollars in revenue. Therefore, application developers with profit
incentives use illegal means by inflating ratings, reviews, or install counts [4], and some online
application reviews sell software and websites, and many companies use them for commercial and profit
incentives [5,6]. The user only downloads the application that appears at the top of the list and after
downloading; the user understands the inappropriate content of the application, which reduces the user’s
quality experience and trust. Therefore, there is a need to detect low-quality applications.

In this paper, we propose a regression model to divide wearable applications into low-quality and high-
quality by analyzing the effects of comment content and proposed functions. Our basic research contributions
are as follows:

� We propose a regression model that can effectively analyze reviews and descriptions about apps in the
Play Store. We discussed detailed background analysis on the classification and analysis of review
fraud, spam and incentive reviews and ratings, and app reviews and ratings.

� We evaluated by investigating the parameters such as content, sentiment, vocabulary, and statistical
features in data set. We also elaborated on the key features that might aid in assessing the quality of
wearable applications.

� We analyze the quality of applications through machine learning and feature engineering techniques,
which include a series of functions that help improve the prediction of applications.

The structure of this article is arranged as follows. Section 2 provides an overview of related works.
Section 3 introduces the proposed model. Section 4 discusses the results using the original and selected
feature data sets. Finally, Section 5 draws our conclusions.

2 Related Works

This section discusses some of the background information most relevant to this research. This
information is mainly divided into the following categories.

2.1 Reviews Sentiments

In Rodrigues et al. [7] proposed a new method to evaluate App through comment sentiment analysis.
The author conducted various analyses to confirm the correlation between the number of star ratings and
the review content of various apps on Google Play. It turns out that the information in the comment does
not display the star rating correctly. This study presents sentiment ratings by summarizing the opinions
given by users in the comments. In Sangani et al. [8] present a detailed sentiment analysis of comments
on various applications. They scrapped the comment dataset, cleaned it up, extracted features, applied
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linear regression to it, and provided a list of topics so that developers could interpret the comments. Average
rating and representative reviews are their goals, but for a fixed learning rate with only average review length,
their algorithm complexity is O(nk). In addition, the data set they use only contains reviews of popular apps.
In Zhu et al. [9] uses a fuzzy logic model based on comment sentiment analysis to detect fraud in
applications. Therein, the data set for 5 different application categories: social, shopping, gaming, finance,
and news is used. The data set is passed through several stages of preprocessing and feature extraction,
which helps extract user comment scores and help classify the application as fraudulent or genuine. The
proposed method achieves an accuracy of 83% on average.

In, Liu et al. [10] uses text mining to extract features of applications and summarize user comments
related to different applications and Natural Language Processing (NLP) techniques for writing rules.
They extracted 600 reviews for each application and user reviews of two recent applications. They use
SAS Sentiment Analysis Studio for sentiment analysis. The results show that the technology based on
NLP rules outperforms the default model with 90% accuracy. In Luiz et al. [11] proposed a framework
focusing on three different building blocks, namely sentiment analysis, topic modeling and summary
reasoning. Therein, the authors extract semantic topics and related features from text data, and assign
semantics to each extracted feature so that developers can effectively identify which topics will adversely
affect the rating of the application. The results show that topic modeling can combine data in
subcategories, which helps to determine which features have a positive and negative impact on the
overall evaluation of the application. In Guzman et al. [12] uses NLP technology to extract application
features in user reviews and topic modeling in order to group these features into more meaningful
features. By combining these two technologies, the author generates abstracts with different granularities,
which will help analyze user comments to identify new user needs or schedule future versions.

2.2 Fraud, Spam and Incentivized Reviews and Ratings

In Xie et al. [13] uses the automatic data collection system App watcher to analyze promotional
incentives and suspicious reviewers, monitors applications that provide paid review services, and captures
relevant metadata about the applications (e.g., the number of applications, service prices, and services
Start Time). The system also exposes promotional apps through popular websites and app stores, and
builds a basic tracker to restrict suspicious lists to promote apps. In Rahman et al. [14] proposed a new
application review semantic analysis method for fraud detection. Therein, the authors use app review
ratings, package names, and main conversations to detect fraud in apps. They apply NLP technology to
obtain action words and fuzzy logic to further classify comments, and then conduct pattern analysis in the
conversation, and finally analyze and compare the results.

In Abu-El-Rub et al. [15] analyzed incentive reviews on the Play Store and recognized the wide variety
of review types and spam such as advertising, copy, and hidden profit incentives. They discovered a new type
of abuse in the comments. By writing these comments, users promoted non-popular applications by targeting
popular ones. They also detected promotional comments with 91% accuracy. In Li et al. [3] solved the
problem related to low-rated applications and proposed a sextant method that uses apk file data and
Convolutional Neural Network (CNN) to detect low-rated applications. The technique is based on static
program analysis, which can prevent reputational risks in the application market because these low-
quality applications are exposed to end users and facilitate the manual review process. On average, their
method achieved 92.31% accuracy.

In Damaini et al. [16] developed a fraud detection ranking system to get a better user experience based
on rankings, ratings, and reviews. In this way, the two types of fraud are assisted by analyzing the user’s
comments and ratings on the application, and finally the three pieces of evidence are used to calculate the
aggregation to evaluate the credibility of the application’s leading session. In Seneviratne et al. [17] used
app metadata and detected spam apps. The suggested method manually marks the deleted applications
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according to some checkpoint heuristics, which show the reason for the application being deleted. A 35% of
the deleted applications were spam. The authors map these heuristics to identify the spam applications.
Authors also build an Adaptive Boost classifier for early detection of spam applications, with an accuracy
rate of 95%. However, the precision of this method is 85–95%.

In Zhu et al. [18] focused on ranking, rating, review, recommendation based evidences. They used real
data from the Play Store for evaluation, and collected the data set of the top 300 applications from the App
Store rankings for experimental purposes. Compared with existing methods, they obtained a higher accuracy
rating. In Sandulescu et al. [19] solved the problem of the same person writing false comments under
different names, and posted each comment under multiple names. They proposed two methods of junk
opinion detection. The first method extends the semantic similarity, and it uses WordNet to find the
dullness between the review words. The second method is based on topic modeling, using the topic
similarity of reviews: bag of words and bag of opinions phrases. The experiment was conducted on three
different data sets from these applications: Yelp, Trustpilot, and Ott. The first method is better than the
vector model. The result shows that the accuracy score of the comment classifier is very high.

In Arp et al. [20] proposed an effective and interpretable system called DREBIN for detecting malicious
applications. They perform extensive static analysis to collect the extracted feature sets mapped into the
vector space for the system through learning-based detection. Their system is superior to several
technologies with a 94% malware detection capability. In Fu et al. [21] proposed a WisCom integrated
system for Play Store user reviews, which can analyze millions of reviews and user ratings. This system
is able to identify inconsistencies in reviews, reasons why users like or dislike apps, and provide valuable
insights for app market-related users and preference-related apps. In [21], the author conducted a review-
centered, market-centered, and application-centered analysis of reviews. It also collected app metadata
information for approximately 171,493 user reviews.

In Ghai et al. [22] proposed a comment processing method. They suggest some parameters to discover
the usefulness of comments. These parameters show the different changes of a particular comment relative to
other comments, thereby increasing the possibility of detecting spam or not detecting spam based on the
score assigned to each comment. The method also divides comments into helpful and unhelpful with a
threshold of 0.75. In Gao et al. [23] proposed a framework to identify emerging issues by analyzing user
comments. After evaluating the framework on six popular apps in Play Store and App Store, feedback
from different users showed that 88.9% of users agreed that the framework helped to solve the identified
problems in app development. In, Maalej et al. [24] introduced several probabilistic methods to classify
app reviews for feature requests, bug reports, and user ratings. They use comment metadata to classify
user comments. Therein, the NLP, text classification and sentiment analysis techniques are adopted to
over-extract comment data. Their results show that the classification results of separate metadata are not
good. When combined with NLP, the classification accuracy obtained is between 70–90%.

In Platzer [25] proposed a system to automatically classify user comments related to the motivation for
use in the comments, named recommendation system, application reward decision support system, download
prediction mechanism, and learning environment for mobile application development. Author conducted
feature-based opinion mining, latent semantic indexing and sentiment analysis for review content and
reviewed quality evaluation. In Khalid et al. [26] developed a system so that end users better understand
different mobile applications. They also analyzed the existing review systems and identified different
deficiencies and made suggestions to help improve the quality of user reviews. In Vasa et al. [27]
conducted a preliminary analysis of Apple App Store reviews. The detailed analysis included a data set of
approximately 17,330 applications, including 8.7 million reviews. Their results show that it is useful for
users to give short comments with ratings, while users give longer comments with ratings. In some
categories, the ratings of applications are significantly higher than other categories, but the category
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influences the length of the comment. However, reliable quality predictions for wearable applications need to
be designed to help users understand the true ratings before installing them on the Play Store.

3 Proposed Model

We propose a prediction model to detect whether the quality of the application is low or high. The
proposed framework consists of five stages, as shown in Fig. 1. In the first stage of preprocessing, data
cleaning is performed. The data set is cleaned to remove noise. In the second stage, data conversion
techniques are applied to improve the reliability of the preprocessed data set. In the third stage, the
proposed features are calculated from the features of the existing data set. In the fourth stage, a feature
selection technique is applied to select a feature subset from the feature set of the original data set.
Finally, train the classifier on the data set we prepared, and divide the application into two categories,
namely low quality and high quality. Finally, different performance indicators are applied to evaluate the
performance of each training classifier. The steps in Fig. 1 are discussed in the following subsections.

3.1 Data Acquisition

The data set used is taken from [28] and has many functions related to wearable applications. The
retrieved data set takes the form of two files, one contains application metadata and the other contains a
comment data set, which contains functions related to each application (for example, application ID,
rating, review text, application Description, commenter’s name, comment score, maximum installs,
minimum installs, etc.). The data set contains nearly 4720 application data, and its score is associated
with each comment given by the user. Initially, there were only about 1,198 applications from 2015 to
2016, and a data set of 146,205 comments in total was used for further processing. The number of
applications has a rating range of 1 to 5, where 1 is the lower rating and 5 is the highest rating.

3.2 Data Pre–Processing

From the comment data set, only English comments were initially filtered, because app comments have
different languages and symbols, and they must be preprocessed before features are extracted. Before

Figure 1: Proposed regression model
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eliciting features, we have performed operations such as lowercase letters, stop word removal, and
punctuation removal. After filtering the English comments, the comment text becomes lowercase. As a
result, a lot of words were merged, which reduced the dimension of the problem. Stop words are the most
common and most frequent words in the text, such as “a”, “the”, etc. Such words are useless in the text
and cannot provide useful information for comment classification. Therefore, such words are deleted to
save processing time. The use of punctuation marks is common among users to avoid grammatical errors.
Therefore, we delete the comma, exclamation mark, question mark, etc. to further maintain the
consistency of the content.

3.3 Feature Engineering

The useful features calculated from the data set are divided into four categories, namely, emotion,
language, content similarity, and time features.

3.3.1 Sentiment Features
We perform sentiment analysis on text comments to obtain the user’s positive or negative sentiment

towards the application. The sentiment score ranges from –1 to + 1, with 0 in the middle. A score from
0 to + 1 indicates the positivity of the application, and the higher the value, the more positive the
evaluation. Similarly, a score from 0 to –1 indicates a negative impact on the application, and a lower
value indicates a greater negative impact in the review. We use the Python NLTK suite to calculate the
features in the comment dataset-in addition to sentiment features, we also use the following general
features related to sentiment in the comments represented in the Tab. 1.

We first identify the positive and negative words in the reviews by Eq. (1), and then use the Eq. (2) to
calculate the polarity of the number of reviews as follows:

Tpp ¼ Tpw

Total words
(1)

Tnp ¼ Tnw

Total words
(2)

We calculate the sentiment score by subtracting the ratio of positive polarity and negative polarity in the
following,

Table 1: List of proposed sentiment features with symbols

Symbol Features Description

Tpw Total_positive_words Total positive words in a review

Tnw Total_negative_words Total negative words in a review

Tpp Total_positive_polarity Total positive phrases in a review

Tnp Total_negaitive_polarity Total negative phrases in a review

Pr Positive_ratio The ratio of positive phrases to total words

Nr Negative_ratio The ratio of negative phrases to total words

Ss Sentiment score Overall sentiment score for a review
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Ss ¼ Tpp� Tnp (3)

3.3.2 Content Similarity Features
The content similarity is determined by a similarity measure that reflects the closeness between two

documents or texts. The similarity measure calculates the similarity based on terms in the text. For this
purpose, we use the Jaccard and Cosine similarity measures to estimate the similarity of the review
content. The similarity is calculated between the comment text and the comment title. Just as the title of
the review is “Great Radar”, the text of the review is “Great Basic Radar”, and it is also calculated
between the review text and the application description. Jaccard similarity is calculated by dividing the
total weight of shared terms by the total weight of unique terms in the review, as follows:

SJSð ti!: tj
!Þ ¼ ti : tj

jtij2 þ jtjj2 � ti
!
: tj
! (4)

Cosine similarity is measured by matching similar reviews by common methods, regardls of their size in
a multi-dimensional space. Each dimension represents a term that has its weight in the report, and the weight
is non-negative. The similarity is determined, by the angle between the number of reviews or the cosine of the
angle, which corresponds to the correlation between the vectors, in the following:

Ti; Tj ¼ Ti : Tj
k Ti k2 : k Tj k2 (5)

where Ti and Tj are n–dimensional vectors over number of terms T = {x1, x2……..xn}. Tab. 2 shows the
general content-similarity characteristics with descriptions.

3.3.3 Linguistic Features
We extract language features from comment content. Since spam and fake comments are mainly created

by users and robots for financial gain, language features equivalent to different writing styles are used to
detect such comments. Therefore, in order to capture such comments, the commonly used language
features are: 1) lexical features; and 2) syntactic features. Lexical features capture character-level and
word-level features, such as unique word count, total words, word redundancy ratio, etc. The general
lexical features calculated with symbols and descriptions are shown in Tab. 3.

Table 2: List of proposed content similarity features

Content_similarity Features Description

jacc_reviewtext_appdesc Jaccard similarity between review text and app description

jacc_reviewtext_shortdesc Jaccard similarity between review text and app short description

cos_reviewtext_appdesc Cosine similarity between review text and app description

cos_reviewtext_shortdesc Cosine similarity between review text and app short description

jacc_similarity Jaccard similarity between review text and review title

cos_similarity Cosine similarity between review text and review title
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In Eq. (6) Wacp for the review text is calculated by dividing the No of characters by Wtes, as follows:

Wacp ¼ No of characters

Wtes
(6)

Unique and stopwords ratio is given by the Eqs. (6)–(7) as follows,

Wuc ¼ Wtu

Total no of words
(7)

Swr ¼ Wtes

Wtis
(8)

Word redundancy ratio in the content is mathematically defined in Eq. (9),

Wrr ¼ No of unique words

Total no of words
(9)

We calculate synthetic features to identify words or phrases from user comments on the quality and
functionality of the application. Therefore, part-of-speech (POS) tagging features are calculated to identify
such noun words and phrases. Synthetic features represent sentence-level features, including the
frequency of function words, POS tags, such as noun concentration, count noun, count adj, etc. The
general synthetic characteristics are shown in Tab. 4.

3.3.4 Temporal Features
Features that are related to or change over time are considered temporal. The time interval is the basic

highlight of setting up fake reviews and ratings for apps to promote them to high rankings (such as safely and
quickly raising or lowering the position of the app). Spammers usually use various names to post a large
number of comments with high or low ratings. In a specific time frame, if a spam attack occurs, the
amount of comments may increase sharply, and the score may increase or decrease at the same time [29],

Table 3: List of proposed lexical features with symbols

Symbols Lexical Features Description

Wuc Unique_word_count Number of unique words in review content

Wtes Total_words_excluding_stopwords Total number of words excluding stopwords

Wtis Total_words_including_stopwords Total number of words including the stopwords

Ld Lexical_density The ratio of lexical words in a review.

Ttr Type_token_ratio Ratio of different words to the total number of words

St Total_stopwords Total number of stopwords like ‘a’, ‘to’ etc.

Swr Stopwords_ratio Stopwords ratio in a review.

Wacp Average_char_per_word Average number of characters per word

Wrr Word_redundancy_ratio Ratio of unique words to the total number of words

Ctcis Title_count_char_including_stopwords Number of characters including stopwords in the title

Ctces Title_count_char_excluding_stopwords Number of characters excluding stopwords in the title

Tcis Title_count_including_stopwords Number of words including stopwords in the title

Tces Title_countr_excluding_stopwords Number of words excluding stopwords in the title
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so the pattern between the two can be detected to highlight such issues and published applications.
Comments posted together or posted between the comment given and the developer’s response. The
general time characteristics are shown in Tab. 5.

3.4 Data Transformation

At this stage, data transformation techniques are applied to the preprocessed data set, transforming it into
a structure suitable for the classification process. Therefore, the different size values need to be changed to a
predetermined range to obtain useful data about the prepared data set. We use the following method to
transform the data into an appropriate form. The preprocessed data set and the calculated features are
modified in a structure suitable for the classification process. We use data normalization process, for
example, min-max normalization is used to normalize the data feature values within a certain range. All
features values must be normalized to obtain the uniform quality of each data value. The formula for
min-max normalization is given by the following.

Normmin�max ¼ Xi �minðX Þ
maxðX Þ �minðX Þ (10)

3.5 Data Selection

The data set used for investigation may contain multiple attributes, and a large number of attributes may
be unnecessary or redundant for the mining task. Although it may be feasible to select a part of the useful

Table 4: List of synthetic features with symbols

Symbol Synthetic Features Description

Nc count_noun Total number of nouns in the text.

Vc count_verb Total number of verbs in the text.

Advc count_adverb Total number of adverbs in the text.

Adjc count_adjective Total number of adjectives in the text.

Ic count_interjection Total number of interjections in the text.

Nv noun_verb Noun with verb concentration in the text.

Advv adverb_verb Adverb with verb concentration in the text.

Vadv verb_adverb Verb with adverb concentration in the text.

Adjv adjective_verb Adverb with verb concentration in the text.

Vn verb_noun Verb with noun concentration in the text.

Prr personal_pron_ratio Ratio of personal pronouns (e.g., I, he, us) to the total number of words

Table 5: List of temporal features with symbol

Symbol Temporal Features Description

Pt posted_time_interval Total number of nouns in the text.

Rt reply_time_interval Total number of verbs in the text.
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functions of the region, it can be a cumbersome and time-consuming task, mainly when the behavior of the
information is not significant. It may be disadvantageous to forget the applicable features or keep the
irrelevant features. Therefore, feature reduction reduces the size of information by removing these
features from it. A technique called information gain is applied to reduce the data size.The goal of
information gain is to locate the smallest attribute set.The resulting probability distribution of the data
class is as close as possible to the abnormal dispersion obtained by using all the attributes. Mining the
reduced feature set has an additional advantage, which is to improve the accuracy and reduce the
complexity of the proposed model. The information gain formula follows the following:

InformationGainðA; BÞ ¼ EntropyðAÞ � EntropyðA; BÞ (11)

3.6 Applied Regression Model

We use various machine learning (ML) regression models to predict the quality of Google Play Store
apps, as shown in Tab. 6. In this section, we investigated the most commonly used indicators for
regression problems, as well as the basic workflow of the classifiers used.

We implemented the ML regression model in Python, and tested and verified them on the prepared data
set to obtain accurate prediction results. Different statistical techniques can be used to split the data set into a
training set and a test set [30,31]. We split the preprocessed data set into two subsets, such as the training set
and the test set. Therefore, 75% of the prepared data set is used to train the regression model, and the
remaining 25% of the data instances have been used for testing purposes. This method helps to avoid the
possibility of data overfitting and gives accurate prediction results. We define classification limits to mark
application quality so that the predictions of each implemented regression model can be divided into two
categories, such as low quality and high quality. If the predicted score is higher than the threshold, it
indicates a “high-quality application”; a value below the threshold is designated as a “low-quality
application”. The classification threshold (T) of the proposed model is by the following:

T ¼ If Predictedscore � 0:5; Highquality
Otherwise; Lowquality

� �
(12)

3.7 Evaluation

We use mean square error (MSE), mean absolute error (MAE), and root mean square error (RMSE) to
determine the validity of the regression model. The average absolute error is used for evaluation. It measures
the deviation between the actual value and the predicted value. It is obtained by taking the difference between
the predicted value and the target value and is given by,

Table 6: List of trained classifiers on the labeled dataset

No Regression Models

1 Deep Neural Networks (DNNs)

2 Linear regression (LR)

3 Support Vector Regressor (SVR)

4 Random forest (RF)

5 Xtreme Gradient Boost (XGB)

6 Stochastic Gradient Descent (SGD)
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MAE ¼
Pn

i¼1 jbYi � Yij
N

(13)

MSE measures the average of the squared difference between the estimated value and the actual value;
take the square to remove any negative values; the equation is given by

MSE ¼
Pn

i¼1 ðŶ i � YiÞ2
N

(14)

RMSE is used to find the error rate of the regression model and check whether the size of the error is the
same as the size of the target. It is determined by the square root of the MSE given by followings,

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðŶi � YiÞ2
N

s
(15)

4 Results and Discussion

In this section, we introduce the experimental setup, results and discussion of the proposed regression
model. The comparison highlights the performance of different implemented regression models in terms of
MAE, MSE, and RMSE. Fig. 2a shows the error rate of the implemented regression model; it can be
observed that all regression models perform well and effective in predicting regression model.

Figure 2: Rate of the regression models: (a) MAE; (b) MSE; (c) RMSE
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It can be observed that the DNN model performs well compared with all implemented regression
models, with a smaller MAE value of 3.1. Fig. 2b visualizes the MSE error rate based on the
implemented regression model; it can be observed that all regression models perform well and effective
in predicting application scores with low error rates. It turns out that compared with all other
implemented models, the MSE of the DNN model is smaller, only 0.4.

Fig. 2c shows RMSE highlight the error rate in the prediction process. We observe that RMSE of the
DNN model is lower than 6.1 compared to all other implemented models. Therefore, the prediction result
of DNNs model is the best among all applied regression models. Because the RMSE value of the test
data is small, it shows that our model is most suitable for the model data. Fig. 3 shows the relationship
between MAE loss and epoch. It can be observed that the MAE value decreases as it moves to the target
value, and the prediction rate of the DNN model increases as the number of epochs increases. In each
epoch, the MAE value decreases and the prediction accuracy improves.

Tab. 7 shows the actual and predicted scores of ten randomly selected wearable applications. The
prediction results presented are obtained using implemented regression models such as DNN, RF, LR,
SGD, SVR, and XGB. The actual score and predicted score for each application are between 0 and 1.
Fig. 4 shows the predicted scores obtained for each Google Play store application using RM. It can be
clearly shown that, except for the DNNs model, the prediction score of each regression model is higher
than 0.5. In Fig. 5, the predicted score of the DNN model is close to the expected score. In Fig. 5, the
comparative analysis of Google Store apps is based on actual and predicted scores using DNN models.
According to the defined classification threshold, if the expected score is higher than or equal to the
threshold (T) value, the application is classified as a high-quality application; otherwise, it is a low-
quality application. Tab. 8 shows the results of the classification application based on defined thresholds
and actual class quality values. It can be clearly seen that the DNN model accurately predicts the
application score compared with other implemented regression models. In [32], the author uses a dataset
of user reviews to predict app star ratings, in which multiple linear regression model and support vector
machines are used. The author reports the predicted results of MSE of 0.67 and 0.927. The regression
model we proposed uses the DNN model to achieve the most promising prediction results. Our model
performs well with a low error rate of 0.40 MSE. Tab. 9 compares the results of the proposed model with
the existing models. It is found that compared with the previous method, the proposed model can
effectively predict the quality of the apps.

Figure 3: Loss value analysis of DNN model
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Table 7: Actual and predictive score of the implemented regression models

Application Actual Score DNNs LR RF SGD SVR XGB

Google Play Music 0.78 0.766 0.797 0.742 0.790 0.790 0.770

Maps – Navigation & Transit 0.86 0.843 0.812 0.868 0.800 0.790 0.830

SFR TV 0.72 0.713 0.880 0.868 0.910 0.860 0.870

S02 Watch Face for Android Wear 0.64 0.699 0.820 0.740 0.780 0.810 0.820

Wearscope 0.36 0.384 0.760 0.524 0.790 0.740 0.520

Instawear Pro 0.42 0.438 0.744 0.552 0.760 0.750 0.630

Messenger 0.84 0.823 0.805 0.822 0.810 0.800 0.810

Amazon Shopping 0.86 0.865 0.816 0.870 0.800 0.800 0.850

Wear Barometer 0.44 0.445 0.720 0.590 0.750 0.720 0.620

The Taxi App 0.86 0.854 0.806 0.850 0.790 0.790 0.790

Figure 4: Predicted score of the applications using regression models analysis
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Figure 5: Actual and predicted score values of the applications using DNN model

Table 8: Google applications quality based on classification threshold value

Application Actual Class DNNs LR RF SGD SVR XGB

Google Play Music High High High High High High High

Maps – Navigation & Transit High High High High High High High

SFR TV High High High High High High High

S02 Watch Face for Android Wear High High High High High High High

Wearscope Low Low High High High High High

Instawear Pro Low Low High High High High High

Messenger High High High High High High High

Amazon Shopping High High High High High High High

Wear Barometer Low Low High High High High High

The Taxi App High High High High High High High

Table 9: Comparison of the proposed model results with baseline papers

Research Model Mean Square Error (MSE)

B. Gaska et al. [32] (SVM) 0.927

Monett and Stolte [33] (LR) 0.67

Proposed Regression model (DNNs) 0.40
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5 Conclusions

We propose a novel regression model to predict and classify the quality of the application. This article
describes the entire structure of the model from data acquisition to App classification. Our regression model
is developed through feature engineering, involving multiple features, such as emotion, language, content
similarity, and temporal features. These features combine to form a hybrid model. We validated our
model by applying different advance machine learning algorithms like DNNs, LR, RF, SVR, SGD, and
XGB to a large dataset of reviews collected for the number of wearable apps. The proposed regression
model uses various performance indicators, such as MAE, MSE, and RMSE, to evaluate the performance
of all regression models. The experimental results show that the DNNs model performs well in terms of
MAE, MSE, and RMSE of 3.10, 0.40, and 6.10, respectively. Our proposed hybrid feature set is most
suitable for predictive models, and the proposed model performs well from existing working models and
state-of-the-art technologies in predicting the quality of wearable applications.
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