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Abstract: Digital clinical histopathology technique is used for accurately diagnos-
ing cancer cells and achieving optimal results using Internet of Things (IoT) and
blockchain technology. The cell pattern of Synovial Sarcoma (SS) cancer images
always appeared as spindle shaped cell (SSC) structures. Identifying the SSC and
its prognostic indicator are very crucial problems for computer aided diagnosis,
especially in healthcare industry applications. A constructive framework has been
proposed for the classification of SSC feature components using Support Vector
Machine (SVM) with the assistance of relevant Support Vectors (SVs). This fra-
mework used the SS images, and it has been transformed into frequency sub-
bands using Discrete Wavelet Transform (DWT). The sub-band wavelet coeffi-
cients of SSC and other Structure Features (SF) are extracted using Principle
Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Quadratic
Discriminant Analysis (QDA) techniques. Here, the maximum and minimum
margin between hyperplane values of the kernel parameters are adjusted periodi-
cally as a result of storing the SF values of the SVs in the IoT devices. The per-
formance characteristics of internal cross-validation and its statistical properties
are evaluated by cross-entropy measures and compared by nonparametric
Mann-Whitney U test. The significant differences in classification performance
between the techniques are analyzed using the receiver operating characteristics
(ROC) curve. The combination of QDA + SVM technique will be required for
intelligent cancer diagnosis in the future, and it gives reduced statistic parameter
feature set with greater classification accuracy. The IoT network based QDA +
SVM classification technique has led to the improvement of SS cancer prognosis
in medical industry applications using blockchain technology.
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1 Introduction

Medical industry applications are one of the fastest growing industries in the world for diagnosing
diseases with the help of IoT applications through blockchain technology to protect patients from harmful
chronic diseases. In which, the modern advances in digital clinical histopathology images have proposed
numerous cancer cell classification techniques for brain, breast, cervix, liver, lung, prostate and colon
cancer [1–3]. A Synovial Sarcoma (SS) is often occurring commonly in the extremities of adolescents
and young adults [4]. It has a variety of morphological patterns, but its chief forms are monophasic and
biphasic spindle cell patterns [5]. Histologically, in SS cancer image, the spindle cell patterns seem to be
a small oval-shape structure, and it is called as spindle shaped cell (SSC) [6]. The Histopathological
Image Analysis (HIA) for cancer classification is impeded by the reasons such as, (1) nonspecific clinical
measurements misleading, (2) stained slide preparation, and (3) different medical imaging modalities [7].
The precise classification of normal and abnormal cancer cells is based on the diameter, shape, size, and
cytoplasm of features [8]. These features provide the basic and significant information to the pathologists
for appropriate treatment plans. Furthermore, the pivotal points of cancer cell classification have been
focused in the literature review section.

Over the past three decades, many researchers have examined the problem of identifying which features
are useful for differentiating either normal or abnormal cancer cells [9]. Most of the normal cells have a
nucleus diameter of 5 to 11 microns, and it is suggested to be almost unchanged. Whereas abnormal cells
with a diameter of 18 micron nuclei has been reported to have increased the size of the nucleus in the
stained bio-marker region [10]. These above features are normally designated in the name of subjective,
local, global, morphological, statistical texture feature set, and Haralick by the classification techniques
[11]. Numerous mathematical approaches have been adopted, including linear discriminators, Bayesian
classifiers, nearest-neighbor classifiers and more, for cancer cell classification [12].

The cancer classification was performed by kappa statistics in the HIA of biopsy tissue specimens [13].
Due to the limitations in human practice, a computerized system is needed to diagnose cancer, and it can help
the pathologist, as well as it is possible to develop an independent system for cancer classification [14]. A
cancer nucleus is classified into one of five staining intensity classes (negative, weak, moderate, strong,
and very-strong) using Radial Basis Function (RBF) neural networks [15,16]. The drawbacks in this
classification have been rectified using Linear Discriminant Analysis (LDA) and k-Nearest Neighbor (k-
NN) classifiers [17].

This classification accuracy is improved by fractal analysis including correlation, entropy, and fractal
[18]. Grading the histopathological images using energy and entropy features calculation from the
multiwavelet coefficients of an image is proposed in [19]. Both the global features (color and texture
characteristics of the entire image) and the morphometric features (spatial relationship between
histological objects) are concentrated in [20]. The performances of several existing classifiers such as
Gaussian, k-NN, and Support Vector Machine (SVM) have been subsequently evaluated. The
characteristics of texture feature using the combination of entropy based fractal dimension estimation and
Differential Box-Counting (DBC) method has been analyzed in [21]. The Higher Order Statistics (HOS)
and spectra based approach provides more valuable information on the variability between cancer and
non-cancer cell patterns with respect to different stages and grading [22].

The segmentation of objective features with help of region of interest (ROI) using Boosted Bayesian
Multiresolution (BBMR) technique has been proposed by [23]. The statistical texture features set, and
Gabor filter are used in Adaboost ensemble method to increase the decision boundary for better
classification [24]. The classification of cluster-area in white, pink, and purple color features of colon
images have been focused in [25]. Subsequently, the geometric features have been proposed to better
quantify the elliptical nature of epithelial cells for the classification of colon images using Hybrid Feature
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Set (HFS) [26]. The types of training set analysis methods and its corresponding classes of feature extractions
using SVM are mentioned in [27]. Spindle Shaped cells (SSC) are specialized cells that are longer than they
are wide. They are found both in normal, healthy tissue and in tumors.

In practical situations, unexpected rare tumor is not included in the training data due to different staining
(bio-markers) processes. However, in discrimination model, SVMs have also forcibly categorized the above
rare tumor into pre-defined classes. Handling of rare tumor is always a complex problem, and it leads to
reduce the accuracy of classification between cancer and non-cancer cells [28]. Hence, SVMs seek one-
class kernel parameter, and it is determined based on either PCA or LDA. Further, it has been applied to
the histopathological images by few researchers so far. According to Tab. 1, most of the researchers have
proposed SVM based methods, but they have not yet applied structure based feature components
classification particularly in SS cancer images [29,30]. This has paved the way to focus on cancer
classification using structure based feature components.

SVM integrated SF and blockchain technologies lead to access to a wide range of histopathological
imaging data for processing the cancer classification [31]. Storing and sharing of histopathological
imaging data through a decentralized and secure IoT network can lead to in-depth learning in health care
centers and medical industry [32]. Here, the input images are decomposed into frequency sub-band
coefficients using Discrete Wavelet Transform (DWT). Then the extraction of lower dimensional features
set is performed for the distribution of sub-band coefficients using PCA, LDA, and QDA. Those feature
sets are considered as inputs to the SVM classifiers. Here, three types of kernel functions are used to
classify the cancer and non-cancer cell structure, such as linear, RBF, and Analysis of Variance
Randomized Block (ANOVA RB). The rest of this paper is organized as follows. The brief descriptions
of basic theories, features components, and SVM formulation are given in Section 2. The classification
accuracy of experimental results is analyzed and compared in Section 3. The importance of structure
based feature components, SVM classifiers and kernels are discussed in Section 4, and the summary of
the analysis is given in Section 5.

2 Materials and Methods

In this section, mathematical definitions of DWT, PCA, LDA, QDA and SVM with three kernel trick
functions are intuitively explained.

2.1 Discrete Wavelet Transforms (DWT)

The DWT is a discrete set of wavelet scales and translationswith some rules, and it is an implementation
of discrete time series known as DWT. The discrete sample function f(n) and the resulting coefficients [33,34]
are known and the DWT transform pair of f(n) is defined by

Table 1: Spreading factor determination in PCA + SVM classifier

PCA + SVM with kernel functions % of PC1 variance with respect spreading factor (γ)

58% 61% 64% 68% 70%

Linear 1 1 1 1 1

RBF 0.8571 0.7241 0.6381 0.5117 0.6033

ANOVA RB 0.7563 0.6958 0.6431 0.6683 0.6124
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where j0 is an arbitrary starting scaling, for j ≥ j0 and the DWT of function f∈ L2(R) related to wavelet
function ψ(n) and scaling function s(n) is defined as
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where sj0;kðnÞ and ψj,k(n) are the functions of discrete variables and normally j0 = 0, (i.e., M = 2j), n = 0, 1, 2,
…, M − 1, j = 0, 1, 2, …, J − 1 and k = 0, 1, 2, …, 2j − 1. These two functions are mathematically expressed
by scaling and translation operation using

sj;kðnÞ ¼ 2j=2Sð2jn� kÞ (4)

wj;kðnÞ ¼ 2j=2wð2jn� kÞ (5)

The standard Haar wavelet and the discretized scaling and wavelet functions are employed
corresponding to the Haar transformation matrix of the row M ×M which is obtained from Haar basis
function, and it is defined as

w0ðnÞ ¼ w00ðnÞ ¼
1ffiffiffiffi
N

p ; n 2 ½0; 1� (6)

and

wkðnÞ ¼ wpqðnÞ ¼
1ffiffiffiffi
N

p
þ2p=2 ðq� 1Þ=2p � n, ðq� 0:5Þ=2p
�2p=2 ðq� 0:5Þ=2p � n, q=2p

0 Otherwise; n 2 ½0; 1�

8<
: (7)

where, k = 2p + q − 1, 0 ≤ p ≤ n − 1, q = 0 or 1 for p = 0, and 1 ≤ q ≤ 2p for p ≠ 0.

2.2 Principal Component Analysis (PCA)

In PCA, mathematical representation of linear transformation of original image vector into projection
feature vector [35] is given by

Y ¼ WTX (8)

where, Y is the m ×N feature vector matrix, m is the dimension of feature vector, and transformation matrix
W is an n ×m, whose columns are the eigenvectors (I) corresponding to the eigenvalues (λ) computed using
λI = SI. Here, the total scatter matrix S and the average image of all samples are defined as

S ¼
XN
i¼1

ðxi � lÞðxi � lÞT (9)

where, l ¼ 1
N

PN
i¼1

xi . After applying the linear transformation WT, the scatter of the transformed feature

vectors {y1, y2…yn} is WTSW. In PCA, the projection W is chosen to maximize the determinant of total
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scatter matrix of the projected samples, that is

W ¼ argMAXw jWTSW j ¼ ½w1; w2; . . .wm� (10)

where, w1, w2,…wm is the set of n-dimensional eigenvectors of S, andm is corresponding largest eigenvalues
of S. In other words, the input vector in n-dimensional space is reduced to a feature vector in m-dimensional
subspace. As a result, the dimension of the reduced feature vector m is much less than the dimension of the
input image vector n.

2.3 Linear Discriminant Analysis (LDA)

The main goal of the LDA is to discriminate the classes by projecting class samples from p-dimensional
space into finely orientated line. For a N-class problem, m =min (N − 1; d) different orientated lines will be
involved [36]. For example, we have N-classes, X1, X2, …, XN. Let the i

th observation vector from the Xj be
xji, where j = 1, 2, …, J and i = 1, 2 … Kj. J is the number of classes and Kj is the number of observations
from class j. The co-variance matrix is determined in two ways (1) within-class co-variance matrix CW and
(2) between-class co-variance matrix CB. They are given as

Cw ¼
XN
j¼1

Cj ¼
XN
j¼1

1

Kj

XKj

i¼1

ðxji � ljÞðxji � ljÞT (11)

CB ¼
XN
j¼1

Njðlj � lÞðlj � lÞT (12)

where, lj ¼ 1
Kj

PKj

i¼1 xji and l ¼ 1
K

PK
i¼0 xi are the mean of class j and global mean, respectively.

The projection of observation space into feature is accomplished through a linear transformation
matrix T:

y ¼ TTx (13)

The corresponding within-class covariance matrix �CW and between-class covariance matrix �CB in the
feature space are given as

�CW ¼
XN
j¼1

XKj

i¼0

ðyji � �ljÞðyji � �ljÞT (14)

�CB ¼
XN
j¼1

Kjð�lj � �lÞð�lj � �lÞT (15)

where, �lj ¼ 1
Kj

PKj

i¼1 yji and �l ¼ 1
K

PK
i¼0 �yi . It is honest to show that:

�CW ¼ TTSWT (16)

�CB ¼ TTSBT (17)

The linear discriminant is then defined as a linear function for which the objectives function J(T) is
given as
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J ðTÞ ¼ j�CBj
j�CW j ¼

jTTCBT j
jTTCWT j (18)

Here, the value of J(T) is maximum, and it can be shown that the solution of Eq. (17) is that ith column of
an optimal transformation matrix T is the generalized eigenvector corresponding to the ith largest eigenvalue
of matrix C�1

W WSB. To obtain the discriminant profile, the LDA classification score (Lik) for a given class k is
calculated by the Eq. (19) and it is considered equivalent to the class covariance matrices:

Lik ¼ ðXi � �XkÞT
P�1

pooled
ðXi � �X kÞ � 2logepk (19)

where, Xi is a measurement vector unknown to a sample I; Xk is the mean measurement vector of class k;
Σpooled is a pooled covariance matrix; and πk is the prior probability of class k [36].

2.4 Quadratic Discriminant Analysis (QDA)

The QDA classification score (Qik) is estimated for each class k using the variance-covariance matrix
and the additional natural logarithmic term, as defined as follows;

Qik ¼ ðXi � �X kÞT
X�1

k

ðXi � �X kÞ þ logk j�k j � 2logepk (20)

where, logk|Σk| is the nature logarithm of the determinant of the variance-covariance matrix Σk; and Σk is the
variance-covariance matrix of class k. The variance-covariance matrix (Σk), the pooled covariance matrix
(Σpooled), and the prior probability (πk) are calculated as follows;

�k ¼ 1

Nk

XNk

i¼1

ðXi � �X kÞ ðXi � �X kÞT (21)

�pooled ¼ 1

N

XK
k¼1

Nk�k (22)

pk ¼ Nk

N
(23)

Here, K is the total number of classes, N is the total number of objects in the training set, and Nk is the
number of objects in class k [37].

2.5 The Constructing of Support Vector Machine (SVM)

Let us consider two classes case α1 and α2 and we have a set of training data X = {x1, x2,….., xN}⊂ PR.
The following rules are labelled by the training data.

yi ¼ þ1; xi 2 a1;
�1; xi 2 a2:

�
(24)

In appearance, SVM is a binary classifier, and it can evaluate image data points and assign them to one of
two classes. The input observation vectors are projected into higher dimensional feature space F. The
function f(x) takes the form
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f ðxÞ ¼ ðv � hðxÞÞ þ b (25)

With θ: PR→ F and v ∈ F, where (⋅) is denoted by dot product. Mostly, all the preferable data in these
two classes satisfy the following constraints.

yjðv � hðxiÞ þ b� 1 � 0; 8i: (26)

Consider the points θ(xi) in F for which the equality in Eq. (26) holds that these points lie on two
hyperplanes, the first one is H1:(v ⋅ θ(xi)) + b = +1 and the other one is H2:(v ⋅ θ(xi)) + b = −1. These two
hyperplanes are parallel and no training points fall between them. The margin between them is 2/‖v‖.
Hence, a pair of hyperplanes with a maximum margin can be found by minimizing ‖v‖2 subject to Eq.
(26). This problem can be written as a convex optimization technique

Minimize
1

2
kvk2 (27)

Subject to yiðv � hðxiÞ þ b� 1 � 0 8i ; (28)

where Eq. (27) is a primal objective function and Eq. (28) is a corresponding constraint. Both can be solved
by constructing a Lagrange function. Hence, the positive Lagrange multipliers are taken into consideration
ωi; i = 1, 2, …, N, one for each constraint in both equations. The Lagrange function [38] is defined by

Lp ¼ 1

2
kvk2 �

XN
i¼0

xiyiðv � hðxiÞ þ bÞ þ
XN
i¼1

xi; (29)

The gradient of Lp must be minimized with respect to both v and b values, and they must vanish. The
gradients are given by

@LP
@vs

¼ vs �
XN
i¼1

xiyihðxisÞ ¼ 0; s ¼ 1; 2; . . . ; p (30)

@LP
@b

¼ �
XN
i¼1

xiyi ¼ 0 (31)

where p is the dimension of space F. By combining these conditions and other constraints on primal
functions and Lagrange multipliers, we obtain the Karush-Kuhn-Tucker (KKT) condition is obtained and
it's given by

@LP
@vs

¼ vs �
XN
i¼1

xiyihðxisÞ ¼ 0; s ¼ 1; 2; . . . ; p (32)

@LP
@b

¼ �
Xn
i¼0

xiyi ¼ 0 (33)

yiðv � hðxiÞ þ b� 1 � 0 and xi � 0 8i (34)

xiðyiðv � hðxiÞ þ b� 1Þ ¼ 0 8i (35)
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Here, v, b and ω are the variables to be solved. From the KKT Eq. (31), the following is obtained

v ¼
XN
i¼1

xiyihðxiÞ
XN
i¼1

xiyi ¼ 0 (36)

Therefore,

f ðxÞ ¼
XN
i¼0

xiyiðhðxiÞ � hðxÞÞ þ b ¼
XN
i¼0

xiyilðxi; xÞ þ b (37)

where l(xi, x) = (θ(xi) ⋅ θ(xj)) is a kernel function that uses the dot product in the feature space.

In this study, three different kernel functions have been used, and they are calculated as follows:

i) Linear kernel :

lðxi; xÞ ¼ ðxTi : xjÞ (38)

ii) Gaussian Radial Basis Function (RBF) :

lðxi; xÞ ¼ expð�ckxi � xjk2Þ (39)

iii) Analysis of variance randomized block (ANOVA RB) kernel : z

lðxi; xÞ ¼
Xn
k¼1

expð� 1ffiffiffiffiffi
2c

p ðxki � xkj Þ2Þd (40)

where l(xi, x) is positive definite for values in RBF kernel case, c ¼ 1
2r2 is a spreading factor that

controls the width of the kernel function, d is the dimensionality or degree of input space, and σ is a
standard division. Substitute Eq. (36) into Eq. (29). This leads to maximization of dual function LD
as given by

LD ¼ � 1

2

XN
i¼0

XN
j¼1

xixjyiyjlij þ
XN
i¼0

xi: (41)

Here, the dual function incorporates the constraints, and the dual optimization technique is
obtained as defined by

Maximize � 1

2

XN
i¼1

XN
j¼1

xixjyiyjlij þ
XN
i¼1

xi (42)

Subject to
XN
i¼1

xiyi ¼ 0; (43)

xi � 0 8i:
Both primal Lp and dual LD constraints are represented with same objective function, but with different

constructions. On this, optimization of the primal and dual constraints are a type of convex optimization
problem and it can be rectified by using the gird-point search algorithm. Finally, the SVM classifier
classifies x by the following classification criteria and it is defined by

x 2 Class i if f ðiÞðxÞ ¼ max
for all j2M

f ðjÞðxÞ: (44)
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where x an input data vector which is entering the classifier and M-dimensional value vector f (i)(x), i = 1, 2,
…, M (one dimension for each class) is generated.

3 Experiment Results

Histopathological Synovial Sarcoma (SS) cancer images have been downloaded from the online link
http://www.pathologyoutlines.com/topic/softtissuesynovialsarc.html for training the classifier model. The
stained slide SS images are collected from the Kilpauk Medical College and Hospital, Government of
Tamilnadu, Chennai, India for external validation purpose. In MATLAB, the multispectral color images
are stored individually in red, green, and blue components and the size of each image is 128 × 128 pixels,
respectively. The total number of images is 5400, the number of samples per second in each image is
49152, and eight iterations have been considered in each image for computation. Most of the medical
image classification methods used the ratio of 70% for training the classifier, 15% for internal validation,
and 15% for external validation from the overall dataset. The overall procedure and the implementation
flow of SSC classification are represented as a block diagram, Fig. 1. A multiclass kernel machine has
been implemented to operate on all groups of features simultaneously and combine them without
increasing the number of required classifiers.

More interestingly, an SVM has two adjustable parameters that should be optimized for margin
maximization and error minimization. One is the determination of spreading factor (γ) in each kernel
function and grid-search based optimization technique. The grid search is performed by 256 samples
with uniform resolution in log2-space, for example, γ is log2γ∈ { − 126, − 124, − 122, …, 128}. Second is
the linear representation and its corresponding weighting coefficients. It is determined by the Lagrangian
multiplier (ωi). The higher weighting coefficient with relevant input vectors is called as SVs. This is done
by linear algebra, in which the features of basis vectors are considered as a matrix form with a linear
transformation as positive and negative labeled data points.

The statistical testing for the internal cross validation work, the non-parametric test such as Mann
Whitney U test has been applied with dependent cross-entropy measures to analyze the matching
characteristics of decision-making with respect to null-hypothesis (Ho), and alternate-hypothesis (H1). The

Figure 1: Block diagram of overall procedure and its internal operation of SSC structure classification
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cross-entropy measures are used to find the cross-information between the observed and the predicted sample
variables. The null-hypothesis represents the sample means of minimum cross-entropy, and it provides
valuable information about the well separation of two classes based on the hyperplane. The above-
mentioned systematic procedure is applied to PCA + SVM, LDA + SVM, and QDA + SVM for the
purpose of spreading factor (γ), cross-entropy and p-value determination.

3.1 PCA + SVM

In PCA, the transformed space, in descending order of accounting variance is orthogonal and the sub-
band coefficients are jointly-normally distributed. With the help of principal component regression (PCR), it
is capable to find out the best fit of regressor coefficients based on the direction of variations among the other
pairs of eigenvalues. The eigenvalues and the eigenvectors are determined from the covariance or correlation
matrix. When the PC variance is high, it is easier to extract the coefficients which are linearly correlated with
each other. It is very helpful to find different multiple groups of pixels based on its intensity relevant to cancer
(SSC) or non-cancer (non -SSC) pixels.

The characteristics of data classification based on its highest 68% PC variance and the corresponding
kernel functions are shown in Fig. 2a which has most of the data points are inclined to the first
component regressor line. Based on the consistent cell structures in PCR with iterative procedure, it is
capable to find the regressor lines and these lines are helpful to extract the hidden feature components for
cancer classification. The SVM classification with three different kernel functions is represented in the
form of inverse mapping l−1 for convenience Figs. 2b, 3c, 3d.

The performance of discrimination between the structured groups of sub-band features depends on the
effective prediction of regressor coefficients using the least mean square approach. The null hypothesis of
F-statistics is represented in the corresponding feature variables. The spreading factor determination is
defined by the proportion of variability in Tab. 1 and that has been explained by the corresponding

Figure 2: PCA + SVM classification model. (a) PCI 68% variance, (b) Linear, (c) RBF, (d) ANOVA RB
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highest PC. The determination of very narrow spreading factor γ among the data samples is the most
important for designing the classifier models perfectly.

The p-value for accepting the null-hypothesis based on the cross-entropy measures is tabulated in Tab. 2.
If the p-value is greater than the significant level (α = 0.05), then the null-hypothesis is accepted. The p-value
of 0.0676 is very different to accept the null-hypothesis, even RBF kernel function is used at the same time
consistently. It is possible to take the decision to reject the null-hypothesis, when the linear kernel is used.
The cross-entropy measure is always less during the transformation using ANOVA RB kernel function,
and it provides better performance than other kernels. The ANOVA RB gives better results compared to
other two kernel functions and it is a very time-consuming process, when more PCs take influence in PCA.

3.2 LDA + SVM

LDA finds the directions with maximize the variance in between-classes, and minimize the variance in
within-classes. The determination of separating the hyperplane between multiple classes is as follows: (1) to
find first and second order moments of all classes, (2) to find the individual co-variance matrix for each class,
(3) to construct linear equation using mean, standard deviation and co-variance matrix using Eq. (19), and (4)
to find the linear line for the separation between two classes using equivalent discriminant function. The
major assumption is that identically independently distributed (i.i.d) random variables are represented
with either unimodal or multimodal characteristics and its prior probabilities are known in advance. It
becomes easier to calculate the between-class Cb and within-class Cw scatter matrices even the
cumulative normalized-distance between two classes is very less. It reduces the computation complexity
based on relevant discriminant feature extraction.

The dataset and the corresponding discriminator linear line are determined by the identity covariance
matrix with a Gaussian distribution of the LDA, as shown in Fig. 3a. The mass of data points is normally
distributed towards the middle portion of the scatter plot. The mass of data is separated into two classes
using SVM hyperplane, and each of the classes occupies half of the space. The best boundary
discrimination is done by example of linear, RBF, and ANOVA RB kernels as shown in Figs. 3b–3d
respectively. The boundary is determined by the Bayes rule using the true (normal) distribution.

The determination of spreading factor in LDA + SVM with different kernel functions and cross-entropy
measures are given in the Tabs. 3 and 4. The average spreading factor is 0.5684 for RBF kernel and
0.52014 for ANOVA RB kernel, when the variance of inverse covariance matrix varies from 58% to
70%. In linear kernel, an alternate-hypothesis is accepted, due to the insignificance p-value during Mann
Whitney U test. The spreading factor γ is always unity in linear kernel, and much significance is not
possible to attain. The good indication is that the cross-entropy is less than 0.5 in ANOVA RB kernel
function. Hence, the performance of LDA depends only on the exact determination of mean and variance

Table 2: p-value for cross-entropy measures using Mann Whitney U test for PCA + SVM classifier

PCA+SVM classification parameters Kernel trick functions

Linear RBF ANOVA RB

Correctly classified 118 182 209

Incorrectly classified 76 45 37

Cross entropy measure 0.8652 0.7957 0.6539

p-value 0.0082 0.0676 0.2867

IASC, 2022, vol.32, no.2 1251



of the individual group pixels. The resulting boundaries are well separated between the SSC (∇ plus) over the
non-SSC (*) and the best boundary line is improved in ANOVA RB. The discrimination of class Lik gives
successive separation between two class feature vectors. Here, it is imperative to increase the performance of
linear discrimination.

Table 3: Spreading factor determination in LDA + SVM classifier

LDA+SVM with
kernel functions

% of inverse co-variance with respect to spreading factor (γ) for PC1

58% 61% 64% 68% 70%

Linear 1 1 1 1 1

RBF 0.6527 0.6289 0.5380 0.5192 0.5033

ANOVA RB 0.6831 0.6015 0.5140 0.4521 0.3511

Table 4: p-value for cross-entropy measures using Mann Whitney U test for LDA + SVM classifier

LDA+SVM classification parameters Kernel trick functions

Linear RBF ANOVA RB

Correctly classified 114 186 124

Incorrectly classified 78 56 110

Cross entropy measure 0.9252 0.8459 0.4971

p-value 0.0417 0.0947 0.6282

Figure 3: LDA + SVM classification model. (a) LDA feature components, (b) Linear, (c) RBF,
(d) ANOVA RB
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3.3 QDA+SVM

More Gaussian mixtures of feature components are added to provide the information on each class
density by single multivariate Gaussian density function. The covariance matrix of each class is equal to
the sum of the data points of all classes. Furthermore, the probability of each class πk is determined at the
given data point of k classes and the total number of comparisons is k � 1. The variance-covariance
matrix of the cell structure must have a multivariate normal distribution. Fig. 4a clearly shows two
different quadratic discriminant lines which are needed to differentiate the cell structures. The exact
classification of kernel functions is shown in Figs. 4b–4d. The individual class probability (πk) takes
major contribution to find the best discriminator boundary line. It requires more observations per class
ðni . pÞ 8 i. The variance-covariance matrix is estimated separately for each class, whereas LDA uses
a pooled estimation of a common variance-covariance matrix.

The determination of spreading factor in terms of inverse pooled co-variance matrix is represented in
Tab. 5. Due to the less percentage of pooled covariance matrices and the narrowed γ value, all the kernel
trick functions are performed well and it has been given in Tab. 6. The mean value of spreading factor is
minimum, even the variance of pooled covariance matrix has been increased from 58% to 70%. The
transformed data sample using ANOVA RB function does not affect the performance of cross-entropy
measure and it always leads to minimum values. Hence, the technique is very good option compared to
other two discriminator models for classification.

Figure 4: QDA + SVM classification model. (a) QDA feature components, (b) Linear, (c) RBF,
(d) ANOVA RB

Table 5: Spreading factor determination in QDA + SVM classifier

QDA+SVM with
kernel functions

% of inverse pooled co-variance with respect to spreading factor (γ)

58% 61% 64% 68% 70%

Linear 1 1 1 1 1

RBF 0.5742 0.4805 0.4831 0.3175 0.2133

ANOVA RB 0.5013 0.4413 0.3251 0.2531 0.1563
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3.4 Classifiers Evaluation Using ROC

The purpose of external validation is mainly to evaluate the classification performance between the
concern feature extraction methods and the kernel functions by ROC curve [38,39]. It is a curve which
depicts the interaction between the x coordinate as a 1- specificity and the y coordinate as a sensitivity.
These two parameters are mathematically expressed as sensitivity = TP/(FN + TP) and specificity = TN/
(FP + TN) using the confusion matrix. The threshold for the best cut-off range is in-between 0 to 1 with
0.05 uniform interval and 20 samples per parameter. The most common quantitative index for describing
the accuracy is expressed by the area under the ROC curve (AUC). It provides a useful parameter for
estimating and comparing the classifier performance. The AUC can be determined by Eq. (45). The AUC
performance results with different kernel functions are summarized in Tab. 7.

AUC ¼
XN�1

i

ðð1� specificityÞiþ1 � ð1� specificityiÞ � ðsensitivityi þ sensitivityiþ1ÞÞ=2 (45)

The grade system of AUC is categorized into four groups, which are excellent, good, worthless and not
good, and their common range values are 0.9 < AUC < 1.0, 0.8 < AUC < 0.9, 0.7 < AUC < 0.8 and 0.6 <
AUC < 0.7, respectively. Hence, Fig. 5a shows the result of AUC values for PCA + SVM with Linear,
RBF, and ANOVA RB kernel functions, and they have an AUC of 0.5753, 0.6569, and 0.7014,
respectively. Similarly, LDA + SVM and QDA + SVM with their three different functions, and the ROC
curves are shown in Figs. 5b and 5c. The results of AUC values are 0.6898, 0.7487, 0.8091 and 0.7525,

Table 6: p-value for cross-entropy measures using Mann Whitney U test for QDA + SVM classifier

QDA + SVM classification parameters Kernel trick functions

Linear RBF ANOVA RB

Correctly classified 189 212 118

Incorrectly classified 46 32 126

Cross entropy measure 0.8265 0.7759 0.6935

p-value 0.0829 0.1769 0.5867

Table 7: Classifiers estimation of the AUC, and Approximate Standard Error

SF Components + SVM + Kernel trick functions AUC Approximate Standard Error Grade

PCA + SVM + Linear 0.5753 0.1105 not good

PCA + SVM + RBF 0.6569 0.1062 not good

LDA + SVM + Linear 0.6898 0.1034 not good

PCA + SVM + ANOVA RB 0.7014 0.1023 worthless

LDA + SVM + RBF 0.7487 0.0970 worthless

QDA + SVM + Linear 0.7525 0.0965 worthless

LDA + SVM + ANOVA RB 0.8091 0.0879 good

QDA + SVM + RBF 0.8196 0.0860 good

QDA + SVM + ANOVA RB 0.9042 0.0658 excellent
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0.8196, 0.9042, respectively. Depending on the AUC value, the QDA + SVM with the ANOVA RB has
achieved as the excellent classification model, whereas the LDA + SVM with ANOVA RB and the QDA
+ SVM with the RBF are good models. Based on these results, it is demonstrated that QDA + SVM with
ANOVA RB has been chosen to be applied in the proposed SSC structure classification, because this
classifier QDA + SVM with ANOVA RB model has the greatest AUC than the others.

This ANOVA RB kernel is consistent (Tab. 7), and it possesses the lowest classification error to build a
hyperplane model. There is an attractive difference between the two analyses, that is, the classification error
and the ROC curve against the occurrence of other two kernels. As a result of approximate standard error, the
RBF kernel is better than the linear kernel. With respect to ROC curve analysis, it is clear that ANOVA RB is
better than RBF kernel. However, it is stated that the ROC curve analysis is particularly useful for the
performance evaluation in the current framework, because it has widely reported that it reflects the true
state of a classification problem rather than a measurement of classification error.

4 Discussion

A new approach has been proposed and the SSC structure feature components are extracted and
statistically classified using the combination of SVM with different kernel trick functions. When
differentiating cancer and non-cancer cells in SS images, the third-level decomposed cell SF is
discriminated using PCA, LDA, and QDA techniques, and the nonlinear features are transformed into
linear using kernel functions. The direction of variance and its different characteristics of the structured

Figure 5: ROC curves of PCA + SVM, LDA + SVM and QDA + SVM classifier models (a) PCA + SVM
classifier model (b) LDA + SVM classifier model (c) QDA + SVM classifier model
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cell pixels are key parameters for the classification. It depends on the input data variables subject to
centering. The PCA technique finds the direction of variance among the feature coefficients, but in QDA
and LDA, the variances of within-classes and between-classes are considered respectively. Here, LDA
uses a pooled covariance matrix and QDA uses each group's variance-covariance matrix. Both techniques
are tried to maximize the between-class variability, and minimize the within-class variability based on a
Mahalanobis distance calculation.

The kernel trick functions are used to discover the ‘right set of features’ when the mapping function l is
non-trivial. The performance analysis is compared based on the transformation of feature coefficients using,
(1) Inner product between f(x) and f(x2), (2) Exponential operation with single spreading parameter, and (3)
Sum of exponential operation with multiple spreading parameters into the higher dimensionality of the input
space. Then, SVM automatically discovers the optimal separating hyperplane in the complex decision
surface during mapping back into input space via l−1. The overall comparison performance between SF
techniques and kernel trick functions are given in Tab. 8.

The Gini coefficient is an elementary parameter that measures the superior performance between the
classifiers. It is based on the area dominated by the ROC surfaces. The determination of Gini coefficient
from the ROC curve is given by Eq. (46).

G ¼ 1�
Xn
k¼1

ðð1� specificityÞk � ð 1� specificityÞk�1Þ � ðsensitivityk þ sensitivityk�1Þ (46)

The proposed classification models showed the robustness of classifying SS cancer effectively and
accurately in QDA + SVM with ANOVA RB kernel function. The prediction residual error sum of
squares (PRESS) statistics shows that QDA + SVM is lower than the sum of square residuals (SSRES)
and its average variations of PCA + SVM, LDA + SVM, and QDA + SVM. The main purpose of PRESS
statistics is to measure how well the proposed classifier models will perform in predicting the new data.
The standard error (SERR) is also specified in each parameter to understand the maximum and minimum

Table 8: Overall comparison parameters with PCA + SVM, LDA + SVM, and QDA + SVM

Classification PCA + SVM LDA + SVM QDA + SVM

Algorithm
Parameters

Linear
[29]

RBF [28] ANOVA
RB

Linear
[30]

RBF [28],
[30]

ANOVA
RB

Linear RBF ANOVA RB
(Our study)

Correctly
classified

205 209 217 211 223 239 236 240 242

Incorrectly
classified

51 47 39 45 33 17 20 16 14

SE ± SERR 0.8692 ±
0.0296

0.8143 ±
0.0329

0.8613 ±
0.0295

0.7442 ±
0.0384

0.8462 ±
0.0302

0.9242 ±
0.0230

0.9237 ±
0.0232

0.9462 ±
0.0198

0.9370 ± 0.0216

SP ± SERR 0.6774 ±
0.0395

0.8190 ±
0.0358

0.8190 ±
0.0343

0.7442 ±
0.0358

0.9027 ±
0.0279

0.9435 ±
0.0207

0.9200 ±
0.0243

0.9286 ±
0.0229

0.9535 ± 0.0185

Gini
coefficient

0.3191 0.2998 0.2583 0.2898 0.2246 0.1240 0.1440 0.1172 0.1034

Total number
of data

256 256 256 256 256 256 256 256 256

Accuracy in % 80.08 81.64 84.77 82.42 87.11 93.36 92.19 93.75 94.53

PRESS 206.53 185.64 210.13 181.56 110.56 140.56 114.21 132.16 96.58

SSRES 159.31 168.51 155.83 148.11 148.10 147.16 156.53 151.31 144.83
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variations in sensitivity (SE) and specificity (SP). The QDA + SVM have obtained a higher classification rate
than the other classifier models.

ANOVA RB kernel trick function requires less computational time over other kernels functions. This
can be used to increase the accuracy of classification, reduce the timing of diagnostic procedures, to
speed up treatment plans, and improve prognosis and patient survival rates. This is an opportunity to
improve the results with deep learning techniques.

5 Conclusion

The SSC structure classification has been proposed as a new approach and it is totally based on the
combination of PCA + SVM, LDA + SVM, and QDA + SVM, for the prediction of relevant structured
SVs with the help of kernel trick functions. Based on the experiments carried out in this study, following
three conclusions have been drawn such as, (1) QDA based technique does not affect the ‘dependence-
observer’ and ‘intra-inter observer’ variability, since there is no general assumption about any practical
feature vector datasets, (2) QDA + SVM always trying to maximize the between-class variability while
minimizing within class variability based on a distance calculation, and (3) The significant differences in
SF component between shape and similarity are studied especially in ANOVA RB kernel trick function.
The evidence for structured support vectors and its randomized block variance of a related trick function
as few parameters are enough for easier recognition of cancer and non-cancer cells in SS cancer images.
In the future, deep learning investigation about SVM can be examined. Therefore, recent support vectors
and different structural features will enable future works to achieve integrated blockchain technology
based SS image data classification barriers and medical device industrial applications.
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