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Abstract: Recently, deep learning has opened a remarkable research direction in
the track of bioinformatics, especially for the applications that need classification
and regression. With deep learning techniques, DNA sequences can be classified
with high accuracy. Firstly, a DNA sequence should be represented, numerically.
After that, DNA features are extracted from the numerical representations based
on deep learning techniques to improve the classification process. Recently, sev-
eral architectures have been developed based on deep learning for DNA sequence
classification. Convolutional Neural Network (CNN) and Recurrent Neural Net-
work (RNN) are the default deep learning architectures used for this task. This
paper presents a hybrid module that combines a CNN with an RNN for DNA clas-
sification. The CNN is used for feature extraction, and this is followed by a sub-
sampling layer, while the RNN is trained for classifying bacteria into taxonomic
levels. Besides, a wavelet-based pooling strategy is adopted in the subsampling
layer, because the wavelet transform with down-sampling allows signal compres-
sion, while maintaining the most discriminative features of the signal. The pro-
posed hybrid module is compared with a CNN based on Random Projection
(RP) and an RNN based on histogram-oriented gradient features. The simulation
results show that the hybrid module has the best performance among other ones.

Keywords: Deep learning; CNN; RNN; DNA; random projection; wavelet
transform; taxonomic classification

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI:10.32604/iasc.2022.017683

Article

echT PressScience

mailto:nfsoliman@pnu.edu.sa
http://dx.doi.org/10.32604/iasc.2022.017683
http://dx.doi.org/10.32604/iasc.2022.017683


1 Introduction

Deoxyribonucleic acid (DNA) molecules contain the essential inheritable information. Such information
is represented as a long sequence of nucleotides, which can be represented into four alphabets (nucleotides)
{A, C, T, G} [1–3] as shown in Fig. 1. The genome sequence is the complete list of sequences (nucleotides)
that makes up the DNA. These nucleotides are closely related among individuals of the same species. They
differ only in small subsets. More than 34,000 species [4] have their genomes sequenced, the bacterial being
one of them. Living things can be classified based on the similarity between DNA sequences. According to
the hierarchy, classification can be performed to Kingdom, Phylum, Class, Order, Family, Genus and Species
[5]. The main objective of this work is the classification of bacteria based on DNA sequences. Hence, the
DNA sequences with similar structures also have similar functions. The problem here is finding
regularities (repetitions) in DNA sequences to classify them into different groups with the same
regularities. Taxonomy classification allows to recognize and classify the discovered and undiscovered
species and other taxa based on DNA sequences. Sequence similarity is traditionally estimated using
sequence alignment methods [6,7]. These sequence alignment methods involve a feature selection stage.
Spectral representation of DNA sequences can be used to determine the sequence similarity in order to
enhance the classification performance [8,9]. The time computational complexity remains the reason for
restricting the use of alignment approaches.

Machine learning has emerged as a successful technique in classification and regression applications.
Classification is the activity of examining the features of an object, and assigning it to a predefined set of
classes based on supervised learning [10]. The selection of which features are more suitable to face the
given target remains a crucial and challenging step in machine learning. Deep learning has recently
emerged as a successful paradigm for big data processing because of the technological advances in the
low-level cost of parallel computing architectures. Hence, deep learning has given significant
contributions to several basic, but arduous artificial intelligence tasks.

Deep learning [11] is a relatively new artificial intelligence field that achieves remarkable results in
image recognition, text interpretation, translation, and other domains, such as drug and genome detection.
Deep learning reveals complex structures in vast databases by using back-propagation. The model adjusts
the internal weights to calculate data in the current layer based on the previous layer output data.
Classification models using deep learning have a multi-layered architecture. They consist of input,
hidden, and output layers. Each layer is a relatively simple computer unit that tries to learn a certain level
of representation; nevertheless, the layers are interconnected with non-linear functions. The output of a
lower layer is thus the input to a higher layer of the model.

Figure 1: DNA structure
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The Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) are supreme
models in deep learning that can be used for DNA signal classification. The CNNs are types of
discriminative connectionist models. They are originally designed to work directly on observed images
without pre-processing [12]. The CNNs comprise one or more convolutional layers, and subsampling
layers, followed by one or more fully-connected layers as in standard neural networks. The RNNs are
good in modeling of dynamic data characteristics. They can remember the context information due to
their recurrent schematic [13]. For tasks that include input data in the form of sequences such as speech
recognition and natural language processing, it is often better to use RNNs [14,15] than CNNs. A CNN
can be combined with an RNN to improve the classification accuracy in several applications. The output
of the final fully-connected layer of a CNN model is used as the RNN input [16]. The high-dimensional
data can be reduced to a low-dimensional data with the most significant features in the form of vectors
using different down-sampling layers. There are different kinds of down-sampling layers, such as pooling
and RP layers, to reduce the dimensionality of feature maps associated with multi-layer CNNs [17,18].

This paper presents a hybrid module consisting of a CNN followed by a wavelet-based pooling and an
RNN to improve the classifier accuracy. Since deep learning models can only work with numerical values,
we need to transform the DNA characters into numbers. The one-hot coding and Frequency Chaos Game
Representation (FCGR) are usually used for DNA classification in most research as sequence mapping
[19–23]. In the one hot coding, the DNA nucleotides are mapped as binary vectors with all elements set
to zero and one as A = (1 0 0 0), G = (0 1 0 0), C = (0 0 1 0) and T = (0 0 0 1). This representation
scheme was used efficiently for promoter recognition in imbalanced DNA sequence datasets using
support vector machines [24]. It was used for Ecoli promoter prediction using neural networks [25].
Furthermore, it was extended for gene identification in human, Drosophila melanogaster, and Arabidopsis
thaliana using a neural network-based multi-classifier [26]. The FCGR is a kind of DNA sequence
mapping that keeps up the patterns in the arrangement and changes picture highlights [27]. It is
considered a graphical and numerical representation.

The Chaos Game Representation (CGR) is a scale-independent representation developed by Jeffrey [27]
that explains the oligonucleotides frequencies as an image. The main physiognomies of the whole genome
using CGR can be shown [28]. The CGR pattern of the same genome nucleotide sequences is similar, but
differs from those of other species, quantitatively. This biological characteristic makes the unique
genomic signature that is suitable for classification and clustering. Besides, the CGR technique has the
advantage of presenting the abundance of all k-mers (a group of successive k nucleotides) in a given
sequence. To estimate the sub-sequence frequency occurrence, we should transfer from the Chaos Game
Representation to the FCGR [29]. An image can be constructed from the FCGR representation matrix as
indicated in Fig. 2 and the dimensions of this image are a function of the dimension k. For example, for
k = 6, the size of the input image is

ffiffiffiffiffi

4k
p

�
ffiffiffiffiffi
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p

(64× 64). In this paper, the FCGR is applied for DNA
sequence representation due to its effectiveness compared with the one-hot coding.

The main objective is to test whether the methods can classify the correct taxonomic class sequences,
even if we have only the 500 bp long part of all sequences available. There are several deep learning
(DL) techniques such as CNNs, RNNs, and the proposed hybrid module for achieving this objective. The
rest of this paper is organized as follows. Sections 2 and 3 present the related work and dataset,
respectively. The proposed module is explained in Section 4. The experimental results are explained in
Section 5. Finally, the concluding remarks are provided in Section 6.

2 Related Work to DNA Classification

There are several methods that have been used in the classification of DNA sequences such as alignment
methods and DL models [19,21,30]. The alignment methods depend on positioning of the biological
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sequences to identify regions of similarity. These methods may be alignment-based or alignment-free
methods [30]. Although the alignment methods are very effective in several applications, the key issue
that seriously limits the performance remains their time computational complexity. For this reason, it is
necessary to have sequence classification methods that do not depend on alignment. Recently, DL
methods have been used in bioinformatics. Angermueller et al. [31] presented a review study that
discusses the applications of DL approaches in regulatory genomics and cellular imaging. In [32], the
authors added a dropout layer to the deep neural network. This layer results in an improved performance
of Gene Expression Classification (GEC).

The CNN and RNN are the default DL architectures that are mainly used in recognition tasks and DNA
classification [21–23,33]. Collobert et al. [34] have firstly shown that CNNs can be used effectively for
sequence analysis, in the case of a generic text. Fig. 3 demonstrates the structure of a simple CNN. The
network begins with an input layer. Then, an initial layer of convolutional filters is used, followed by a
nonlinearity, and a pooling layer. The network ends with a fully-associated layer and a softmax layer to
forecast set labels. With the introduction of convolutional layers, the complexity of learning increases.
Hence, we adopt a pooling method or an RP method [16]. These methods reduce the number of
parameters. Therefore, the speed of the algorithm is increased. Recently, the CNNs have given effective
training on DNA sequences without using feature extraction [35,36]. The RP and wavelet-domain
pooling can be used as subsampling layers, for reducing the original CNN feature high dimension.
Johnson et al. [17] provided evidence that the RP has distance preserving properties in reducing
dimensions, so that the loss of information is well controlled. In addition, wavelet pooling contains a
subsampling stage in its structure, while giving more valuable features [18].

Recurrence networks process the input data one by one, one at a time, and store information about the
history of all previous states in their hidden layers. The simplified version of an RNN has an internal status ht,
which is a summary of the sequence seen before at (t−1), and is used in conjunction with the new input xt as
follows [23]:

ht ¼ rðWhxt þ Uhht�1 þ bhÞ (1)

yt ¼ rðWyht þ byÞ (2)

where Wh and Uh are the input weight matrix and the internal state weight matrix, respectively. Wy is the
weight matrix from the internal state, and bh and by are bias vectors. Their main purpose is to model
long-term dependencies, but in practice, it is difficult to retain information for a long time. As a result,

Figure 2: Distribution of K-mers in CGR
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memory networks have emerged, the most well-known being Long Short-Term Memory (LSTM) networks.
They use special hidden cells that store input data for longer periods of time [37]. In terms of performance,
the BLSTM can be compared to LSTM cells [38], which we also used in the construction of classification
models in this paper.

In recent years, the RNN has been used to classify DNA sequences without providing a priori
information (feature extraction) [23], where the authors used character embedding after mapping of the
DNA sequence by one-hot coding. In [39], the authors combined the histogram of oriented gradient for
feature extraction with an RNN used as a classifier in scene text recognition. The CNN has a powerful
feature representation ability compared to the hand-crafted features in the recognition task. The authors of
[40] used the CNN features with an RNN classifier in scene text word image recognition.

The Wavelet Transform (WT) is presented as a subsampling layer in the proposed hybrid module. The
basic idea of the WT is to select a certain sub-band after implementing the transformation [41]. The wavelet
transform can be implemented and a certain sub-band can be used to represent the DNA sequence, especially
the low-frequency sub-band. This process achieves the data reduction, while most of the signal energy
is kept.

3 Dataset

Datasets were obtained from the Ribosomal Database Project (RDP) repository [42], Release 11. Two
different sequences were used for comparison: (a) full-length sequences with a length of approximately
1200–1500 nucleotides and (b) 500 bp DNA sequence fragments. The complete set of data includes
sequences of the 16SrRNA gene of bacteria belonging to 3 different phylum, 5 different classes,
19 different orders, 65 different families, and 100 different genus.

4 The Proposed Module

The DNA databases have been mapped using one-hot coding or FCGR. Since more data with learned
features usually result in the best performance, effort should be spent on cleaning and normalizing data. The
mapped sequences are converted to a number of feature maps using Histogram of Oriented Gradient (HOGs)
or features extracted from CNN model. Then wavelet pooling layer or RP is used as subsampling layer.
Finally, the RNN with BLSTM is trained and compared with the CNN based on RP for choosing the best
performance. The performance is evaluated by different metrics such as Accuracy, Precision, Recall, and
F1 score. They can be defined as follows [43]:

Precision ¼ TP

TP þ FP
(3)

Figure 3: Typical architecture of a CNN
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Recall ¼ TP

TP þ FN
(4)

F1score ¼ 2TP

2TP þ FP þ FN
¼ 2� Precision� Recall

Precisionþ Recall
(5)

Accuracy ¼ TP þ FN

TP þ FP þ TN þ FN
¼ Number of true predictions of testing data

Total number of predictions
(6)

where TP represents true positives, FP represents false positives, TN represents true negatives, and FN
represents false negatives.

The DNA datasets were mapped using FCGR with k-mers equal to 6. The mapped sequences are
converted to feature maps extracted from trained multi-layer CNNs. Then, 2D DWT or 2D RP is used as
a down-sampling layer. Finally, the RNN with BLSTM is trained. The block diagram of the proposed
model is depicted in Fig. 4. This model consists of five layers, whose input is in the form of FCGR
images. The first four layers are composed of two convolutional layers, each followed by a down-
sampling layer (RP or DWT). These convolutional layers use filters of size 5 × 5, to give feature maps
that are converted to sequences. These sequences are fed to the BLSTM with 100 hidden layers (recurrent
layer). The architecture of the hybrid model is shown in Fig. 4b. Besides, the HOG features of the
BLSTM network have the same structure of the previous CNN features based on RNN with BLSTM
network except at the first layer, where it consists of feature maps extracted from HOGs followed by
max-pooling layer.

5 Experimental Results

Simulation experiments have been carried out to evaluate the encoded bacterial DNA sequence
classification based on different approaches for achieving high performance. The DNA sequences have
been encoded using the FCGR algorithm or by one-hot coding. The parameters used in the simulation are

Figure 4: The proposed module. (a) CNN based on RP model, (b) Architecture of the hybrid model

1886 IASC, 2022, vol.32, no.3



the k-mers of the FCGR algorithm equal to 6. A batch size of 128 training samples is employed to depict the
performance of the hybrid model. Five classification models have been adopted as follows:

a) Model 1: Classification of mapped DNA sequences using a classical CNN and an RP layer
(sub-sampling layer).

b) Model 2: Classification of feature maps extracted from HOGs using RNN with BLSTM.
c) Model 3: Classification of feature maps extracted with CNN followed by max-pooling using RNN

with BLSTM.
d)Model 4: Classification of feature maps extracted from CNN followed by wavelet pooling using RNN

with BLSTM.
e) Model 5: Classification of feature maps extracted from CNN followed by RP using RNN with

BLSTM.

The proposed models have been trained using 70% of the input data and tested using the remaining 30%.
A comparison of the accuracy performance among the five models is demonstrated in Tabs. 1–4. The
resultant full-length DNA sequence is specified in Tabs. 1 and 2. Tabs. 3 and 4 are obtained according to
500 bp-length sequences. Figs. 5 and 6 show a comparison of the F1 score performance among the five
models. According to the previous results, the W-CNN features of BLSTM (model 4) have the best
accuracy among all the other models, especially on the genus and family levels. Additionally, the FCGR
mapping is more suitable for encoding. Nevertheless, the proposed classical CNN based on RP consumes
less running time.

Table 1: Comparison between accuracy scores for models (1, 2, 3, and 4) at k = 6 for the full length

Classifier Phylum Class Order Family Genus

CNN based on RP 1 0.9990 0.9910 0.9830 0.9744

HOG features based on RNN witd BLSTM 1 1 0.9583 0.9400 0.9325

Max-CNN features based on RNN witd BLSTM 1 1 0.9920 0.9850 0.9735

RP-CNN features based on RNN witd BLSTM 1 1 0.9920 0.9885 0.9835

W-CNN features based on RNN witd BLSTM 1 1 0.9920 0.9965 0.9950

Table 2: Comparison between accuracy scores for models (1, 2, 3, and 4) using one-hot coding for the full
length

Classifier Phylum Class Order Family Genus

CNN based on RP 0.9955 0.9955 0.9340 0.8875 0.8765

HOG features based on RNN witd BLSTM 0.9950 0.9750 0.9320 0.8800 0.8765

Max-CNN features based on RNN witd BLSTM 0.9950 0.9945 0.9450 0.9050 0.8975

RP-CNN features based on RNN witd BLSTM 0.9975 0.9955 0.9455 0.9125 0.9025

W-CNN features based on RNN witd B

\LSTM 0.9975 0.9950 0.9500 0.9220 0.9100

IASC, 2022, vol.32, no.3 1887



Table 3: Comparison between accuracy scores for models (1, 2, 3, and 4) at k = 6 for 500 bp-length sequences

Classifier Phylum Class Order Family Genus

CNN based on RP 0.9960 0.9950 0.9322 0.8356 0.8100

HOG features based on RNN with BLSTM 0.9960 0.9960 0.9183 0.8340 0.7985

Max-CNN features based on RNN with BLSTM 0.9960 0.9960 0.9200 0.8365 0.8145

RP-CNN features based on RNN with BLSTM 0.9980 0.9940 0.9365 0.8405 0.8245

W-CNN features based on RNN with BLSTM 0.9980 0.9950 0.9450 0.8500 0.8295

Table 4: Comparison between accuracy scores for models (1, 2, 3, and 4) using one-hot coding for 500 bp-
length sequences

Classifier Phylum Class Order Family Genus

CNN based on RP 0.9850 0.9755 0.9040 0.7175 0.7045

HOG features based on RNN with BLSTM 0.9700 0.9750 0.8920 0.7000 0.6920

Max-CNN features based on RNN with BLSTM 0.9850 0.9745 0.9050 0.7400 0.7265

RP-CNN features based on RNN with BLSTM 0.9875 0.9755 0.9155 0.7525 0.7375

W-CNN features based on RNN with BLSTM 0.9880 0.9755 0.9205 0.7625 0.7420
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Figure 5: Comparison between F1 scores for models (1, 2, 3, and 4) at the genus level for the full length.
(a) At k = 6, (b) Using one-hot coding 6
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6 Conclusions

A hybrid approach has been proposed for bacterial classification to achieve taxonomic-rank
improvement with efficient encoding. This approach consists of multi-layer CNN followed by wavelet
transform that is used to give the input to the BLSTM classifier. Multi-layer CNN is used for extracting
features due to its powerful representation ability compared with that of the hand-crafted features.
Wavelet transform is supposed to reduce the dimensionality problem associated with the multi-layer CNN
and add more features to it. According to the obtained results, the accuracy and F1score in the hybrid
module are the best compared to those of other models, but it has a longer processing time compared
with other models. Besides, the FCGR images are more suitable than other mappings.
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