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Abstract: Cognitive Radio (CR) aims to achieve efficient utilization of scarcely
available radio spectrum. Spectrum sensing in CR is a basic process for identify-
ing the existence or absence of primary users. In spectrum sensing, CR users suf-
fer from deep fading effects and it requires additional sensing time to identify the
primary user. To overcome these challenges, we frame Spectrum Prediction-Chan-
nel Allocation (SP-CA) algorithm which consists of three phases. First, clustering
mechanisms to select the spectrum coordinator. Second, Eigenvalue based detec-
tion method to expand the sensing accuracy of the secondary user. Third, Baye-
sian inference approach to reduce the performance degradation of the secondary
user. The Eigenvalue based detection method is compared with Energy detection
method in terms of varying false alarm rates and samples. The Eigenvalue detec-
tion method achieves better performance than Energy detection method. The
Simulation results show that our approach gives better performance in terms of
reducing sensing time and increasing sensing accuracy.

Keywords: Cognitive radio; spectrum sensing; spectrum prediction; Eigenvalue
based detection; clustering algorithms

1 Introduction

Nowadays, the abundant growth of wireless applications requires radio spectrum resources. The
spectrum resources are very limited due to the fixed spectrum assignment policy. This spectrum scarcity
can be solved by the CRN. CR is an eminent approach for spectrum prediction and spectrum allocation.
It allows the secondary user to predict the idle spectrum and access it without disturbing the primary user
stated as dynamic spectrum access. Thus, the secondary users in CRN continuously sense the channels to
identify the spectrum holes, this process known as spectrum sensing. Spectrum sensing is an incredible
component for measuring the spectral content and tries to avoid interference with the primary user.
Several techniques have been proposed [1] for obtaining the best spectrum sensing performance such as
Energy Detection (ED), Matched Filter Detection (MD), and Eigenvalue based detection. Eigenvalue
based detection is created on the covariance matrix of the received signal and then observed for the
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presence of the primary user signal. To evaluate the performance of Eigen value based spectrum sensing, we
consider Maximum to Minimum Eigen value based detection (MME). This detection technique is more
effective when compared to the energy detection technique. Due to the channel fading, the detection of
primary user signals with the individual sensing is not reliable. So cooperative spectrum sensing has been
suggested for overcoming the problem of individual sensing [2].

The cooperative spectrum sensing can be broadly categorized into centralized and distributed schemes.
For the centralized scheme, the central unit is responsible for collecting the sensing results from each
secondary user. The centralized authority is equipped with cognitive capabilities that identify the idle
spectrum band and allocates it to the secondary users in accordance with a pre-defined policy. It acts as a
coordinator and the remaining secondary users act as members. The selection of the coordinator is done
by using various clustering algorithms. The three main advantages of clustering in CR networks are
scalability, stability and supporting cooperative tasks. For example, channel sensing and channel access
are the essential functions of CR operations. The connectivity and the cooperativeness of CR users based
on the improvement of the k-means algorithm is discussed in [3]. As clustering provides cooperative
communication between secondary users. The information sharing between the coordinator and its
members are spectrum sensing results, SNR (Signal to Noise Ratio) level and the present status of the
secondary user. This type of network architecture is a suitable choice for effective dynamic spectrum
management [4]. At the same time, the centralized architecture overcomes the challenges of the single
node spectrum sensing, and also improves the detection performance and energy consumption.

Considering the challenges in spectrum sensing as well as to improve the spectrum utilization spectrum
prediction has been proposed. Spectrum prediction is a key mechanism that aims to avoid the performance
degradation of secondary users which consist of channel status prediction, primary user activity prediction
and transmission rate prediction. In this article, the Bayes method is utilized to predict the spectrum and the
channel is allocated to the secondary user.

2 Related Works

K-means algorithm is used to improve the connectivity and cooperativeness of cognitive radio nodes [5].
The main idea of this paper is to perform pre-processying task based on clustering. They showed the effect of
k-means clustering in terms of exchange messages and execution time. Reyes et al. [6] proposed a method for
spectrum sensing based on the autocorrelation of the received samples. They observe the probability of
detection and false alarm at different signal-to-noise ratio. This method is compared with the value of the
autocorrelation at the first lag and also based on the power of the signal. Two sensing algorithms are
suggested in [7], first, the ratio of maximum eigenvalue to minimum eigen value and the ratio is average
eigenvalue to minimum eigen value. Random matrix theory is used to calculate the ratio from the
maximum eigenvalue to the minimum eigenvalue as the test to identify the presence of primary users in
[8] based on signal detection in the Rician fading channel. Patil et al. [9] presented a comprehensive
survey of evolutionary achievements of eigenvalue based spectrum sensing algorithm. To decrease
sensing time, a multi-taper two stage spectrum sensing is used. Eigenvalue based detection for
multiantenna cognitive radio system has been proposed in [10] to reduce noise uncertainty and achieve
high detection probability. They transfer the weighting issue of eigenvalue to the energy based detection
and originate the theoretical expressions of detection threshold. Charan et al. [11] have projected the
optimum number of samples for given SNR and also presented the theoretical analysis and numerical
formula for optimum samples. Random matrix theory is used in [12] to compute the Eigen ratio and
threshold for the detection method depending on sample covariance matrix of received signal. Zeng et al.
[13] have proposed a new method based on the statistical covariance on autocorrelation of the received
signal. They used the sample covariance matrix of maximum eigenvalue as the test statistic. Jacob et al.
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[14] have proposed a simple approach to predict the presence of primary users with the help of Bayesian
theorem. The performance of Bayes approach is compared with exponential weighted moving average
based approach to predict the status of spectrum occupancy. Marquez et al. [15] have developed a
channel availability predictive model to take the advantages of dynamic spectrum opportunity.
Additionally, Naïve Bayes algorithm has been used to predict the presence of primary user in each
available frequency band. The formulation of realistic control has been used [16] to give the guarantee
protection for primary user. They proposed suboptimal scheme to achieve better spectrum utilization at
lower complexity and has been constructed based on dynamic interference graph. The doctoral
dissertation [17] has presented the spectrum sharing in CRN with security constraints. Particle swarm
optimization algorithm is proposed in [18] to assign the channel in CRN. The repair process is used to
improve the spectrum usage in CRN and remove the conflicts between secondary user. The existing
literatures are referred to identify the presence of primary user by using different sensing methods. In this
work, we proposed clustering algorithms to form the spectrum coordinator then the spectrum coordinator
identifies the primary user with Eigenvalue based detection method. Finally, Bayesian approach is
proposed to predict the spectrum. This will improve the performance of the secondary user.

The major contributions of the work as follows:

� Forming the spectrum coordinator with different types of clustering algorithms.

� Sensing the spectrum through Eigenvalue based detection method.

� Predicting spectrum by Bayesian inference method.

3 CRN Model Description

The CRN architecture has two components, namely primary network and secondary network. The
primary network is a licensed network where the primary users has right to access this network. The
secondary network does not have any license in a specific band. But it can access the licensed band
without interfering primary users [17]. A simple cognitive radio network model is considered in Fig. 1.
It is clear that, the same frequency band is shared between the primary user and the secondary user.

In this model, a denotes the channel power gain of the interference link between PUTx and SUTx,
whereas b represents the channel power gain of the communication link between SUTx and SURx. Here
the PUTx cause interference with SUTx but not with SURx because it is far away from PUTx. This model
is assumed as single secondary user link. When more number of secondary users are present in a network
the communication is difficult related to spectrum access. In a multiuser environment, all users must
share the common resource effectively. Fig. 2 illustrates the multiuser environment.

Figure 1: Single user sensing

Figure 2: Multi user sensing
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where a1; a2; and a3 are the channel power gain of interference links and b1;b2; and b3 are the
communication links. Here multiple secondary users are sharing the same frequency band with PUTx.
The spectrum sharing is classified into dynamic spectrum sharing and cooperative spectrum sharing. The
challenges in dynamic spectrum sharing are, the interference between PU/SU and within secondary
users. But in cooperative spectrum sensing, the interference between secondary users are reduced. Fig. 3
illustrates the cooperative spectrum sensing model.

Each secondary user is responsible for sensing the spectrum and identifying the free spaces of the
spectrum. Now the Spectrum Coordinator (SC) collects all the sensed information from the secondary
users and maintains the sensing history. Then SC sends the sensing history to Fusion Center (FC) and
proceeds the process of predicting the primary user arrival in the channel. The end result of the spectrum
access is directed to SC. Final result is shared between multiple secondary users.

4 Algorithm for Proposed Model

Figure 3: Cooperative spectrum sensing

Algorithm 1: SP-CA (Spectrum Prediction-Channel Allocation)

Begin

Step 1. Formation of spectrum coordinator

For 8 secondary users nð1 . . . nÞ
Apply K-means clustering algorithm

j ¼ Pk
j¼1

Pki
i¼1

ni � yj
�� ��

ni � yj
�� ��-Euclidean distance between

ni and yj

ki is the number of secondary users in ithcluster

k represents the number of clusters

Apply K-medoids clustering algorithm

Assign k users as a medoid

mn-medoid; on-object

Calculate dissimilarity jmn � onj
(Continued)
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4.1 K-Means Algorithm

An unsupervised learning algorithm named k-means is an iterative algorithm that tries to classify the
dataset into a k number of clusters. Let N ¼ fn1; n2; n3; . . . ; nng be the set of secondary users and
Y ¼ fy1; y2; y3; . . . ; ykg be the clusters. First randomly select k cluster centers. Then calculate the distance

using ED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 � n1Þ2 þ ðy2 � y1Þ2

q
. Assign the secondary user to the cluster center whose distance is

minimum. Repeat this process until clusters do not move anymore.

Algorithm 1 (continued)

Calculate cost c ¼ P
mn

P
onsmn

jmn � onj
Swap m and o, minimum cost

until no change in medoid

Apply mean-shift clustering algorithm

Assign k users as centroid

Assign each user to closest centroid

Direction–maximum users

Do the iteration-till each user in cluster

End for

Compare three algorithms

Step 2. Spectrum prediction

For 8 channels Lð1…lÞ
Apply Eigenvalue based detection method

Maintain history of sensed data

Bayes interference algorithm

Find idle time t for 8 channels

End for

Step 3. Channel selection

SC ! FC

Take final decision

FC ! SC

For 8 secondary users nð1…nÞ
Distribute sensing information

Allocate channel to users based SNR

End for

End
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4.2 K-Medoids Algorithm

K-medoids clustering is related to the k-means algorithm. Randomly select k users from the given n
secondary users as a medoid. A medoid defined as the point in the cluster whose dissimilarities with all
other users are minimum. The dissimilarity of medoid ðmnÞ and object ðonÞ is calculated mn � onj j and
the cost of medoid is calculated as c ¼ P

mn

P
onemn

mn � onj j. While the cost is decreasing, each medoid m

and each object o is swapped and the cost is recomputed. The swap has to be done only when the total
cost is less than the previous cost otherwise detaches the swap.

4.3 Mean Shift Algorithm

The mean shift clustering is a centroid based algorithm that tries to find a center point of data points.
It iteratively moves toward the centroid on each step until convergence. Given a set of k users, the
algorithm iteratively assigns each user towards the closest cluster centroid. The continuous shift of the
centroid is determined by where most of the data points are gathered. In every iteration each data point
will move to closer to the cluster centroid. The main advantage of the mean shift clustering is it
automatically discovers the clusters instead of selecting the number of clusters.

4.4 Eigenvalue Based Detection

Dynamic detection and effective use of an idle spectrum is termed as cognitive radio technology.
The basic functions of CR are namely spectrum sensing, spectrum sharing, spectrum mobility, and
spectrum decision. By using these four functions, CR users can employ the idle spectrum for their
communications. Spectrum sensing is done by the Eigenvalue based detection method, it follows the
concept of the covariance matrix of the received signal. The decision of spectrum sensing is defined
between two states: the primary user is present or absent. The covariance of the received signal samples
is to decide the same. The received signal is defined as

Ho : xðnÞ ¼ gðnÞ (1)

H1 : xðnÞ ¼ sðnÞ þ gðnÞ (2)

where xðnÞ is received signal samples, sðnÞ are the primary user signal, gðnÞ is the noise and the argument n is
the nth sample. The vectors x and s are defined in [6]

xðnÞ ¼ ½xðnÞxðn� 1Þ…xð1Þ�T (3)

sðnÞ ¼ ½sðnÞsðn� 1Þ…sð1Þ�T (4)

The statistical covariance matrices of the vectors xðnÞ and sðnÞ are in [7]

Rx ¼ E½xðnÞxTðnÞ� (5)

Rs ¼ E½sðnÞsTðnÞ� (6)

The matrix can be expressed as

Rx ¼ Rs þ r2gI (7)

Suppose if the signal is absent, then Rs it is zero and Rx has non-diagonal elements. The assumption has
led to defining the ratio between the sum of all elements Rx : T1 ¼

P
n

P
m rnmj j and sum of all diagonal

elements T2 ¼
P

n rnnj j, The assumption of primary user absence is referred to as T1
T2
¼ 1 and the presence

of a primary user is referred to as T1
T2
� 1. But sensing errors occur due to additive noise and limited
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observations. If the idle channel is predicted as busy that is referred to as false alarm. Missed detection refers
to when the busy channel is detected as idle. The probability of missed detection (Pmd) and the probability of
false alarm (Pfa) is defined as

Pfa ¼ probfDecide H1=H0g (8)

Pmd ¼ probfDecide H0=H1g (9)

In this method, CR users face non-negligible time delay in sensing and low efficiency in spectrum
sharing. To overcome these problems prediction based techniques are used.

4.5 Spectrum Prediction

Spectrum prediction is a distinct approach to save the sensing time. In this work, the prediction of the
spectrum is done by Bayesian inference approach. The prediction requisite is expressed as a Bayesian
problem to find the solution through the Bayesian approach. The novelty of this method is that it utilizes
the conditional probability of busy or idle previous states to predict the probability of the next idle state.

Bayes theorem is defined in [15] PðM=BÞ ¼ PðB=MÞPðMÞ
PðBÞ

PðM=BÞ = is the posterior probability of class s

PðB=MÞ = is the previous probability of class s

PðMÞ = is the predictor probability of given class s

PðBÞ = is the predictor probability

In this approach, first prior knowledge is combined with observed data then the posterior probability is
assigned to a class based on its prior probability and its likelihood of a given training data. The posterior
probability is calculated with different number of hypothesis then the highest hypothesis with probability
is selected. This is called a maximum of a posterior hypothesis.

Let assume P ¼ fp1; p2; p3; p4; p5g primary users are accessing the licensed spectrum. The secondary
users N ¼ fn1; n2; . . . ; n30g are trying to access the licensed spectrum without interfering the primary
users. Here, the centralized architecture is focused for spectrum sensing. So the head of the secondary
users is selected by using k-means, k-medoids and mean shift clustering algorithms. The head is referred
as spectrum coordinator which communicates the sensing information between FC and secondary users.
The assigned spectrum coordinators are k ¼ fk1; k2g.

For example, a channel is divided into 60 time slots. The presence and absence of the primary user is
specified in binary states. Each secondary user sense the channel effectively and maintain the sensing
history as

T ¼ f01011100011011010101g
We take the sensing history for 20 time slots. The secondary user sends this history to spectrum

coordinator and it forwards to fusion center. Now the FC predicts the presence of primary user in future
time slots.

First, we assign T as the total number of time slots,M be the number busy slots and N is number of idle
slots. Assign B which is the number of times for both previous and current busy slots and I is the number of
times for both previous and current idle slots.

Probability of a busy slot is defined as

M = 11
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I = 9

T = 20

PðMÞ ¼ PðM=TÞ ¼ 0:55 (10)

Probability of idle slot is defined as

PðNÞ ¼ PðN=TÞ ¼ 0:45 (11)

Probability of future busy state for the given present busy state is

PðM=BÞ ¼ PðB=MÞPðMÞ
PðBÞ

¼ 0:3636 � 0:55
0:3999

¼ 0:5

(12)

where PðM=BÞ refers the probability of busy slots after observing B. PðBÞ is calculate as like
PðBÞ ¼ PðB=MÞPðMÞ þ PðB=NÞPðNÞ (13)

= (0.3636 * 0.55) + (0.444 * 0.45)

= 0.3999

Probability of idle slots for both previous and current idle slots is referred as

PðN=IÞ ¼ PðI=NÞPðNÞ
PðIÞ

¼ 0:222 � 0:45
0:1999

¼ 0:499

(14)

where PðN=IÞ denotes the probability idle states after observing I . PðIÞ is considered as

PðIÞ ¼ PðI=MÞPðMÞ þ PðI=NÞPðNÞ (15)

= (0.1818 * 0.55) + (0.222 * 0.45)

= 0.1999

Probability of idle slots for current state is busy and future state is idle is stated as

PðN=MÞ ¼ PðM=NÞ � PðMÞ
PðNÞ (16)

= 0.66

The above-said approach supports to predict the probability of future time slots that is calculated from
the sensing history done by the FC. For this channel, the 20th slot is busy but the possibility of idle for 21st

slot is 66%. The same process is followed for all channels. The final decision is forwards to the spectrum
coordinator. The predicted probability of single channel is explained in Tab. 1.

5 Performance Evaluation

In this section, the performance of CRN is discussed with respect to channel sensing and channel
allocation. For all simulation purposes, we have used MATLAB environment. The simulation parameters
for spectrum sensing are shown in Tab. 2. Simulation results are taken by using BPSK modulated random
primary signal. Self-sufficient and identically scattered noise samples with Gaussian distribution are used.
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The two SNR ranges are considered in this paper. The first range is referred from [8], they used Rician
fading channel for samples 100000. The same range and samples are specified in this paper for Nakagami
fading channel and analyse the performance of the detection of the primary user. In paper [11], the author
utilizes the second SNR range for Nakagami fading channel but the samples are 200 to 2000. At the
same time, we anticipate the second SNR range for observing the probability of detection of primary user
in high SNR.

Initially, we assumed that 100 secondary users are continuously monitor the spectrum for data
transmission. The spectrum coordinator is selected by using k-means, k-medoids and mean shift
clustering algorithms. Fig. 4 Depict the experimental result of k-means algorithm. Here we selected
3 spectrum coordinators out of 100 secondary users based on the distance. The spectrum coordinators are
shown in black color.

Fig. 5 represents the performance of k-medoids algorithm. Determining cluster assignments and cluster
centers are both done in an efficient and vectorised way. For this clustering, it requires only distance matrix
and number of clusters.

The execution of mean shift clustering is shown in Fig. 6. It is hierarchical in nature, which constructs
hierarchy of clusters step by step. Starting on all data points, calculate the mean for which lies inside the
window. And move to the window based on the location of the mean. Repeat this process until it reaches
convergence.

Table 1: Probability of prediction

Description Slots Prob. (%)

Total number of slots 20

Number of busy slots 11 55

Number of idle slots 9 45

Probability of future busy state for the given present busy state 4 50

Probability of idle slots for both previous and current idle slots 2 49

Probability of idle slots for current state is busy and future state is idle 6 66

Table 2: Simulation parameters

S. No. Parameter Values

1 Number of samples 10000–100000

2 Prob. of detection 0.1 to 1

3 Prob. of false alarm 0.01 to 0.1

4 SNR range −20 to 3 & −25 to −16

5 Detection technique Eigenvalue

6 Modulation technique BPSK

7 Software MATLAB

8 Channel Nakagami fading channel
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Figure 4: K-means clustering

Figure 5: K-medoids clustering
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Figure 6: Mean shift clustering
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The comparison of the above three algorithms is illustrated in Tab. 3. In this table, the secondary users
vary from 50 to 350. The k-means algorithm provides better performance than other two algorithms. When
the changes are made in the number of secondary users k-means algorithm takes minimum time for assigning
spectrum coordinator than k-medoids and mean shift algorithms. But mean shift algorithm automatically
assigns the clusters whereas k-means assigns the number of clusters in prior.

While using independent and identically distributed signal, the energy detection technique is optimal for
detection. But it is not optimal for detecting correlated signal. So this paper focuses on eigenvalue based
spectrum sensing. It is based on the eigenvalues of the covariance matrix of the received signal. It is
shown that the ratio of the maximum eigenvalue to the minimum eigenvalue can be used to detect the
presence of the signal.

First, the sample covariance matrix is calculated from the received signal. Then the ratio is determined
between the maximum Eigen value to minimum Eigen value. The ratio is then compared with the threshold
value to determine whether the signal exists or not. Fig. 7 shows the power spectrum in 1 to 100 bandwidth.
Fig. 8 illustrates the presence of primary user signal in 1 to 1000 bandwidth. Here we identified three primary
users in the entire bandwidth.

Table 3: Comparison of clustering algorithms

Secondary users Algorithms

K-means (s) K-medoids (s) Mean shift (s)

50 SU 0.1772 4.3473 0.8690

100 SU 0.1762 5.007 0.9083

150 SU 0.1858 9.9785 0.9764

200 SU 0.1791 26.286 0.9636

250 SU 0.19385 29.313 0.9851

300 SU 0.2534 31.263 1.0267
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Figure 7: Power spectrum in bandwidth 1–100 Hz
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Fig. 9 depict the comparative Receiver Operating Characteristic (ROC) curve of ED & MME with Pd
Verses SNR at different value of samples (10000 & 50000) respectively. It is clear that Pd is higher for
MME when compared to ED with various SNR levels from −25 to −16. The probability of detection for
MME is 0.6780 but in (b) the probability of detection is 0.9970. It is showed that, when the number of
samples is increase the detection is also increased.

Numerical evaluation of comparison of ED and MME is given in Tab. 4. Here we analyze the
performance of detection probability in various false alarm rate for 10000 samples. The MME achieves
better detection probability than ED. From the above ROC, it is proved that MME achieves good
performance at higher number of samples. The changes in false alarm does not affect in the probability of
detection of primary user.

Fig. 10 give a picture of a ROC curve between ED and MME with Pd vs. SNR. The samples used at this
point are (10000 & 50000) but the SNR ratio is −20:3. It is substantiated that, the Pd values of MME succeeds
improving performance than ED after changing the SNR ratio level. The performance of Pd for MME is
achieved at −18 dB in Rician fading channel for 100000 samples [8]. But in Nakagami fading channel,
the Pd is achieved at −16 dB.
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Figure 8: Power spectrum over entire bandwidth
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Figure 9: ROC for probability of detection vs. SNR (a) Number of samples N = 10000 (b) Number of
samples N = 50000
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The comparison of numerical analysis of ED and MME is shown in Tab. 5. Here we change the SNR
level as −20:3, Pfa = 0.1, 0.2, 0.8 and samples = 10000. The MME achieves better detection probability than
ED at −11 dB itself. The comparison of various false alarm rate is calculated. It is clear that, the changes in
false alarm does not affect the probability of detection.

Naive Bayes is a classification algorithm; it is easy to implement when the input values are described in a
binary form. In this classification, our hypothesis (s) may be the class to assign for a new data (x). The
probability of calculating each hypothesis are simplified to calculate the values of each attribute value
Pðx1; x2; x3=sÞ. The assumption is, the target value is conditionally independent and it is calculated like as
Pðx1=sÞ � Pðx2=sÞ � Pðx3=sÞ and so on.

Table 4: Numerical analysis of ROC curve where SNR = −25:−16 & samples = 10000

SNR (dB) Prob. false alarm = 0.1 Prob. false alarm = 0.2

ED MME ED MME

−25 0.1510 0.1445 0.1556 0.1515

−24 0.1720 0.1656 0.1750 0.162

−23 0.1855 0.1855 0.1820 0.1910

−22 0.2025 0.1945 0.1960 0.2215

−21 0.2205 0.2365 0.2250 0.2595

−20 0.2465 0.2825 0.2575 0.2875

−19 0.2910 0.3450 0.2585 0.3585

−18 0.360 0.4685 0.3620 0.4370

−17 0.4215 0.5360 0.4540 0.5565

−16 0.5520 0.6780 0.5670 0.6920
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Figure 10: ROC for probability of detection vs. SNR (a) Number of samples N = 10000 (b) Number of
samples N = 50000

After calculating the posterior probability for a number of different hypothesis, the maximum probable
hypothesis is selected using

MAPðsÞ ¼ maxðPðx=sÞ � PðsÞÞ
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First, we execute the Bayesian approach for sample datasets and finds the accuracy of training and
validation. Fig. 11 refers to the accuracy of the probability of Bayes classification algorithm during
training and validation for varying alpha value. It is perceived that; the direction of training is same as the
validation. But the training peaks are slightly higher than the validation.

Table 5: Numerical analysis of ROC curve where SNR = −20:3 & Samples = 10000

SNR (dB) Prob. false alarm = 0.1 Prob. false alarm = 0.2 Prob. false alarm = 0.8

ED MME ED MME ED MME

−20 0.2580 0.2850 0.2570 0.2835 0.2530 0.2820

−19 0.3095 0.3550 0.2825 0.3665 0.3105 0.3465

−18 0.3630 0.4355 0.3635 0.4210 0.3695 0.4385

−17 0.4320 0.5413 0.4360 0.5455 0.4355 0.5495

−16 0.5445 0.6760 0.5235 0.6880 0.5475 0.6995

−15 0.6590 0.8155 0.6490 0.7885 0.6675 0.8155

−14 0.7930 0.9260 0.8 0.9195 0.8010 0.9200

−13 0.9585 0.9830 0.9360 0.9820 0.9275 0.9840

−12 0.9790 0.9955 0.9790 0.9975 0.9780 0.9985

−11 0.9985 1 0.9980 1 0.9975 1

−10 1 1 1 1 1 1

−9 1 1 1 1 1 1

−8 1 1 1 1 1 1

Training accuracy Validation accuracy

0.99738 0.99569

0.982 0.97662

0.9743 0.96862

0.96676 0.96554

0.9643 0.96185

0.96184 0.96

0.9603 0.95938

0.95861 0.95815

0.95738 0.95569

0.95615 0.95446
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Prediction accuracy = 95.191%

Elapsed time is 3.396683 s.

Fig. 12 describes the comparison between actual probability and predicted probability of signal
prediction. The actual probability is referring to traditional sensing of a channel. Due to channel
switching and interference with primary user it achieves low probability. But the prediction is done in
efficient way and it achieves 95% accuracy in 3 s. This procedure is repetitive for 25 times for one
channel and it follows for all channels. The predicted channel is allocated to the secondary user through
the spectrum coordinator.

6 Conclusion

An effective, centralized cooperative method is used to improve the spectrum utilization and to solve the
spectrum scarcity problem. Eigen value based detection method is applied to reduce the sensing time and
improves the detection performance. Bayes inference approach is utilized to predict the channel quality
based on inferred channel idle duration and spectrum, sensing accuracy. The channel is selected based on
the channel quality and allocated to the secondary user. The ED and MME are compared in terms of
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Figure 12: Signal prediction
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Figure 11: Bayes classification
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various SNR levels and number of samples. The simulation results show that the MME gives better
performance than ED method. In future, the mobility of secondary user and activity of primary user to be
considered and compared with other existing algorithms.
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