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Abstract: In real-time contents, such as games and interactive simulators, it is
very important to reduce the amount of simulation computation of 3D deformable
objects. Although position-based dynamics has been proposed to reduce the
amount of computation, the number of nodes for the tetrahedral model to repre-
sent a volumetric deformable object has to be increased, which makes the
real-time simulation difficult. Therefore, this paper proposes an Internal shape
preserving constraint(ISPC) generation algorithm integrated into the position-
based dynamics to represent the physical properties of the 3D volumetric deform-
able object, while reducing the number of nodes filling the interior of the object.
The proposed algorithm not only provides motion behavior similar to the tetrahe-
dral model by using a surface model, but also enables real-time simulation by
reducing the number of nodes constituting the 3D virtual object. It showed high
FPS with reduced computation time compared to the tetrahedral model, and the
volume maintenance and physical properties of model were expressed similarly
to the tetrahedral model.

Keywords: Position-based dynamics; physically-based simulation; unity3D;
simulation; volumetric deformable modeling

1 Introduction

Objects in the real world have various physical properties, thus various physically-based simulation
methods have been researched to generate by computer realistic virtual objects with the properties of
these objects. Since the motion expression of a virtual object plays an important role in visually
improving the sense of reality, a real-time physically-based simulation technique is required in various
fields, such as entertainment, education, and medical applications.

In recent years, research on applying the simulation of a model with deformable physical properties to
medical simulation and education have been actively applied [1,2]. In general, a deformable object used to
present as the inertial properties interconnected between vertices through a mass–spring connection. In the
deformable object, each vertex is subject to the laws of mechanics, and can be transformed through collision
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and interaction with other objects. The inter-connection between two vertices can be generalized as a
constraint formed by a three-dimensional spring consisting of tension, torsion, and flexion. The
simulation method of a deformable object can be classified by a method of directly calculating a force, a
velocity-based method, and a position-based method. The position of each vertex of the virtual object is
updated at all stages of the dynamics simulation based on Euler's method [3,4].

The virtual object model used in this paper was modeled with the surface model composed of only
properties of the surface of the object, and the tetrahedral model composed of some tetrahedra for the
whole object. The tetrahedral model basically proceeds using the Delaunay triangulation to generate the
tetrahedra for a virtual object [5]. Using a tool such as TetGen [6], which generates a tetrahedron with
the Delaunay triangulation algorithm implemented, a tetrahedron can be created in the surface model.
Tools such as TetGen [6], which generate virtual objects composed of tetrahedra, use the Delaunay
triangulation algorithm to create virtual objects composed of tetrahedra from the surface model. Various
physical properties can be expressed by applying specific constraints of the simulation that can be
transformed through the generated tetrahedral model. However, not all surface models can be generated
as tetrahedral models through the TetGen tool, and there is a possibility that errors will occur,
depending on the shape of the mesh, or input parameters. In conclusion, it is possible to generate a
tetrahedral model through the TetGen tool after the surface model is fully implemented. In general, it is
difficult for those who are not familiar with modeling tools, such as the 3D software Max and Maya, to
readily generate the tetrahedral models. In addition, although users successfully generate the tetrahedral
model, the real-time simulation becomes more difficult using these complex models, due to an increase
in the amount of computational cost.

This paper proposes a limited solution to two problems (difficulty of creating the tetrahedral model and
heavy computational cost) mentioned above that may occur in modeling and real-time simulation. With this
method, we discovered two possibilities.

1. Enables volumetric model simulation through surface models (Unclosed mesh or many holes) that
are likely to cause problems with tetrahedral model creation.

2. When the model generated using our algorithm is compared to tetrahedral model, faster real-time
simulation is passible.

We developed a deformable object simulation using a Position-based dynamic (PBD) method among
various methods using Unity3D. The PBD method is fast and stable, and allows easy control of
the dynamic simulation. Therefore, PBD is widely used in real-time interactive applications. The
algorithm used in this paper applies Newton's law of inertia used in the PBD. Before executing
the PBD solver, the pre-processing step is performed to maintain the original shape as much as
possible, and then the stored data is transferred to the GPU-based PBD solver to execute the
calculation through parallel processing. When the computational process is completed, the updated
positions and velocity data are transferred to the CPU. During the execution time of simulation, the
PBD solver operation and the process of transferring data to the CPU were performed in the update
function for every frame, excluding the preprocessing process in the Unity3D start function. While
the Jacobian method is easy to implement in GPU, it can cause serious stability problems [7], so the
nonlinear Gauss-Seidel equation was used to solve the dynamic equation of the PBD system. The
proposed method utilizes parallel processing through computation using the GPU shader provided by
Unity3D, to provide better computation speed while maintaining simulation accuracy [8,9]. In
addition, the vertex information of the surface model can be utilized without additional costs, and a
similar physical property model is implemented, while reducing the amount of computation compared
to the tetrahedral model.
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2 Related Works

2.1 Physically-Based Simulation Methods

Physically-based simulation methods are currently widely used in various applications for dynamic
simulation. The Mass–Spring System (MSS) was used for face modeling and human body simulation
[10,11]. However, when deformation occurs, it is difficult to present the volume of the object, and it is
very difficult to adjust the stiffness parameter according to the characteristics of the virtual object model.
For this reason, the deformation accuracy of the MSS is low, and this system can readily be unstable
[12]. Although the Finite Element Method (FEM) provides relatively higher precision than other
methods, it generally requires heavy computational cost. FEM has been applied to simulation of the liver,
and to an ophthalmic surgery simulator [13–15]. In the case of a simulation with complex object
deformation, low computational performance becomes a disadvantage that cannot be ignored. Therefore,
the fast, stable, and controllable PBD has been widely used in real-time interactive applications.

The PBD has been proposed as a new paradigm for simulating dynamic systems, such as deformable
objects [3], and is still the most widely used method for physically-based simulation with MSS. Unlike
previous dynamic simulation approaches that are based on force or some successful impulse/velocity-
based approaches, PBD manipulates the position of the virtual object directly. This provides various
advantages, such as preventing the overshooting problem in the explicit integration system, and being
able to handle collision constraints more easily [2]. The PBD has been applied to simulate models with
various properties, such as cloth, deformable objects, rigid bodies, and fluids [16,17].

In order to perform volumetric model simulation for the existing PBD, simulations were performed by
setting conditions such as strain constraint and volume constraint in the Tetrahedral model. However, in this
study, a preprocessing operation that creates an internal link was added to the existing PBD framework in
order to proceed with the simulation using a model with only a triangle surface, not a tetrahedron.

2.2 VR/AR Simulation

AR/VR-related researches are also on the rise, due to the remarkable improvement of hardware and
software technologies in recent years. Research and the commercialization of AR/VR contents have been
conducted in various fields, such as medical, defense, education, and the game industry, and various
research efforts are being conducted to improve the sense of immersion [18,19]. In the case of PBD,
deformable objects are constantly being researched for the application of VR and AR, and various
solutions have been derived to enable real-time simulation through GPU parallel processing. In particular,
in recent years, PBD has been grafted into the medical and educational fields; it has become possible to
provide immersive simulation contents, and it is being used in various fields [12,20].

3 The Proposed Internal Shape Preserving Constraint for Deformable Object Simulation

3.1 Full Algorithm Overview

Algorithm 1 shows the pseudo code of the proposed simulation algorithm in this paper, which is based
on the algorithm of PBD [3]. The proposed method represents a deformable object with N vertices and M
constraints. Vertex i = (1, ⋅ ⋅ ⋅ , N) has velocity V = (V1, ⋅ ⋅ ⋅ , Vn), position X = (X1, ⋅ ⋅ ⋅ , Xn), and mass
m = (m1, ⋅ ⋅ ⋅ , mn). Input data includes position Xi of vertex i = (1, ⋅ ⋅ ⋅ , N), velocity Vi, mass mi, external
force vector f, time step Δt, and all constraint set of the model, etc. The output data that are finally output
after performing calculation through compute shader that supports writing GPU parallel code on the
computer are the updated position Xi and velocity Vi. In steps (1)–(3), the velocity V = (V1, ⋅ ⋅ ⋅ , Vn) and
position X = (X1, ⋅ ⋅ ⋅ , Xn) are initialized, and wi is set up with 1/mi. Afterwards, the proposed algorithm
stores the data of the vertex to be connected to create the Internal Shape Preserving Constraint (ISPC) to
preserve the shape of the virtual object. In addition, after setting constraints in the offline phase
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(C# code), computation is performed through GPU parallel processing of the computer shader. GPU
computation is shown in lines (7)–(20). In line (8), the new velocity is calculated using the external force
and the current velocity. The velocity is controlled through a damping method in line (9). The velocity
and current position of the vertex are utilized to calculate the next position of vertex Pi on line (10) by
the Euler step. In line (11), collision constraints created in the current time step to solve the collision
between virtual objects are created. Iterative solver lines (12)–(14) estimate the position of vertex to
satisfy the applied constraints. The calculation in this step is performed as many times as the iteration
times each constraint is specified through the Gauss–Seidel equation. In lines (16) and (17), the position
of the vertex is moved to an optimized position, and the velocity is updated accordingly. Since this
algorithm estimates the position firstly using current state information, and then calculates the velocity
and position by applying Pi in the integration steps, which are shown in lines (16) and (17), this system
can provide a stable simulation.

In this paper, we applied the constraints set that includes distance constraint, bending constraint, and
internal shape-preserving constraint on the 3D model in the PBD simulation. The proposed method
applies distance constraints to the surface of the virtual 3D object and the inside of the object to perform
with fast computation, compared to the existing tetrahedral model, while preserving the shape of the 3D

Algorithm 1: PBD with internal shape preserving constraint
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object during simulation. Fig. 1 shows the distance, bending, and internal shape-preserving constraints
applied in the simple model by the proposed method.

Eqs. (1)–(3) show the proposed distance constraint and internal shape-preserving constraint for PBD
simulation. The distance constraint formula of Eqs. (1)–(3) is used to set the length constraint of each
edge of the triangle mesh constituting the surface of the surface model. Also, in the case of the internal
shape- preserving constraint, the original shape of the model can be maintained by setting the limit of the
length of the internal link.

DP1 ¼ w1

w1 þ w2
ðP1 � P2 � dÞ P1 � P2

jP1 � P2j (1)

DP2 ¼ w2

w1 þ w2
ðP1 � P2 � dÞ P1 � P2

jP1 � P2j (2)

CdistanceðjP1 � P2jÞ � d (3)

where, P1 and P2 are two nodes constituting the constraint, and d is the original distance between the two nodes, which
should be maintained during the simulation. Fig. 1 shows an example of distance constraint between nodes P1, P2, and
P3. To maintain the constraint, ΔPi is weighted according to wi = 1/mi.

Figure 1: The simple model with the distance, bending, and internal shape-preserving constraint
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Eq. (4) sets the degree of bending of two adjacent triangles to find the original angle between the mesh
triangles interacting with the surface to maintain the original shape. Eq. (4) shows the bending constraint that
sets the angle of the adjacent triangle.

CbendðP1; P2; P3; P4Þ ¼ arccos
ðP2 � P1Þ � ðP3 � P1Þ
jðP2 � P1Þ � ðP3 � P1Þj �

ðP2 � P1Þ � ðP4 � P1Þ
jðP2 � P1Þ � ðP4 � P1Þj � ’0 (4)

where, φ0 is the angle of the initial triangle with respect to the adjacent triangles (P1, P3, P2) and (P1, P2, P4).
The stiffness parameter kbend refers to the bending stiffness to maintain the angle between two triangles.
Bending constraint can be applied regardless of the edge length of the mesh, because it uses the formula
to find the initial angle and the deformation angle, even if the edge length of the deformable object is
changed. Through these properties, the elastic stiffness and bending resistance can be set, and users can
express models with different physical properties.

The virtual 3D object modeled with the proposed algorithm is compared with the same 3D object
modeled with the existing strain constraint method [21]. The strain constraint method uses the same PBD,
but a single constraint is identified for each mesh element by applying a distance constraint to each edge
of the triangle mesh element. Therefore, the strain constraint method is appropriate for the tetrahedral
model. Eqs. (5) and (6) show the strain constraints that are applied for the tetrahedron:

P ¼ ½P1 � P0 P2 � P0 P3 � P0� (5)

Q ¼ ½q1 � q0 q2 � q0 q3 � q0� (6)

When the projected position (P0, P1, P2, P3) and the initial position (q0, q1, q2, q3) before the simulation of
tetrahedron are given, the current position and the initial position are given a new coordinate system with P0
and q0 as the origin. The deformation gradient F is defined by the continuum mechanics formulation with
3 × 3 matrices P andQ. Using this deformation gradient F, the Green's strain tenor G can be calculated by Eq. (9):

F ¼ PQ�1 (7)

S ¼ FTF (8)

G ¼ S � I (9)

Finally, Eqs. (10) and (11) are the stretch constraints and shear constraints applied to the tetrahedron
as strain constraints. Here, si is a parameter for controlling the initial deformation of the current
tetrahedral element.

CstrechðP0; P1; P2; P3Þ ¼ Sij � si; i; j 2 f0; 1; 2g and i ¼ j (10)

CshearðP0; P1; P2; P3Þ ¼ Sij; i; j 2 f0; 1; 2g and i 6¼ j (11)

3.2 Overview of Proposed ISPC Generation Algorithm

Algorithm 2 is an algorithm that generates the proposed ISPC in this paper. In Algorithm 1, the ISPC
generation algorithm is simply indicated in lines (4)–(6). The ISPC generation algorithm proceeds in the
preprocessing stage of PBD simulation, and is implemented through some functions that are provided by
the Unity3D engine. Figs. 2–4 show the implementation process of the proposed ISPC generation algorithm.
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Algorithm 2: ISPC generation algorithm

Figure 2: Finding a triangle opposite the vertex

Figure 3: Selecting the closest vertex between the hit point and the 3 vertices (P1, P2, P3)
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Lines (1)–(9) of Algorithm 2 are the process of finding a triangle facing the reference vertex located in
the opposite direction of the triangle using Unity3D's Raycast function. This Raycast function can check
whether the ray has collided with the mesh surface or not. In order to find the opposite mesh through
Raycast, we reversed the direction of the surface normal of mesh, and then a ray is emitted from one
node constituting the virtual 3D object in the opposite direction to find the mesh colliding with the ray.
Lines (1)–(3) in Algorithm 2 are the process of changing the normal direction of triangles. Fig. 2 shows
the process of lines (4)–(9) of the algorithm. After creating a reverse mesh by reversing all of the
normal directions, Raycast is conducted to find the triangle mesh on the opposite side. At all vertices
ⅈ = (1,⋅⋅⋅,N), the proposed algorithm finds the collided triangle mesh with the hit position coordinates.

Fig. 3 shows the process of setting up start vertexi and end vertexi by finding the closest vertex from
start vertexi for ISPC. Lines (10)-(13) of Algorithm 2 find the hit point through which the ray emitted from
start vertexi passed to the triangle, which are formed by the three vertices P1, P2, P3, and then selects the
nearest vertex between the hit point and P1, P2, P3. In line (11), the distance between the three vertices is
calculated based on the hit point of the ray, in order to connect start vertexi and end vertexi as a ISPC
after finding a triangle located in the opposite direction of normal, and in line (12), the index of the
nearest vertex and the index of the vertex that is the starting point of the ray are stored in an array for
ISPC information. Lines (14)–(18) of Algorithm 2 are the process of removing duplicated ISPC
information. The newly created ISPC information stored in an array, are more likely to be duplicated,
because the position of the triangle in the opposite direction of the normal and the nearest vertex are
similar in a symmetrical 3D model. Therefore, to eliminate the overlap of ISPC information, the
start vertexi index and end vertexi index of all ISPC can only be stored once.

4 Experiment

4.1 Experimental Settings and Implementation Details

Tab. 1 shows the computer specifications used in the proposed method for the experimental test. This
experimental test was conducted by classifying the frame per second (FPS) and behavior comparison
between the tetrahedral and ISPC models, and whether it is possible to create the ISPC model from the
surface model. To verify the performance of the ISPC model, the experimental test was conducted using
two models, which are the proposed ISPC model, and the tetrahedral model. When it was not possible to
create the 3D tetrahedral model from the 3D surface model, we performed the experimental test to
compare the surface model with the ISPC model. The tetrahedral model was generated through the open
source TetGen program, and all experimental tests were conducted in Unity3D. For the constraint applied
3D tetrahedral model, the strain constraint, distance constraint, and bending constraint were applied to
represent the properties of 3D deformable virtual objects. Tab. 2 shows the detailed information of the 3D
object models that were used in this experimental test.

Figure 4: The surface model of the stanford dragon that contains some holes
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Table 1: Experimental environment

Components Names and versions

CPU IntelR Core™ i7-7700

Mainboard ASUSTeK H110 M-K

BIOS America megatrends 4210

RAM 31 GB

VGA NVIDIA geForce GTX 1080 Ti
VRMA 11127 MB

Windows Microsoft windows 10 Pro

Unity version Unity 2019.12f1

Monitor Dell U2312HM
1,080 × 1,920 [32 bit] [60 Hz]

Table 2: Experimental model information

Bunny model

ISPC model Tetrahedral model

Vertices 3,008 Vertices 9,629

Edges Surface 5,976 Tetrahedra 37,528

Inside 1,011

Gravity −9.8 Gravity −9.8

Armadillo model

ISPC model Tetrahedral model

Vertices 6,362 Vertices 17,481

Edges Surface 12,720 Tetrahedra 67,700

Inside 6,321

Gravity −9.8 Gravity −9.8

Dragon model (hole and intersection)

ISPC model Surface model

Vertices 2,998 Vertices 2,998

Edges Surface 6,000 Edges Surface 6,000

Inside 2,947 Inside

Gravity −9.8 Gravity −9.8
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In the case of the Bunny and Armadillo models, since the surface models were completely modeled, it
was easy to create the tetrahedral model using TetGen. The Dragon model is provided by Stanford
University, and we reduced the number of mesh elements using the 3ds Max for real-time simulation.
This Dragon model contains many holes in the surface mesh, so when the tetrahedral model is created
through the TetGen program, various errors appear. In the case of the incomplete surface model in which
the mesh is not closed, such as the Dragon Model in Fig. 4, an error occurred when we were trying to
generate the tetrahedral model by TetGen. However, the proposed ISPC algorithm provided similar object
behavior to the tetrahedral model in the Unity3D environment, even in the case of a surface object with
no closed mesh or a large hole.

4.2 Result of Experimental Tests

In this paper, the experimental test was stopped when 15 elapsed based on the function to measure
simulation time. The output data was set to accumulate every 1 s in order to reduce the error of the data
through the experimental test. Fifteen times of experimental tests were performed, and the average of
10 experimental tests was used, excluding outliers, such as the maximum and minimum values. The
graphs in Figs. 6 and 8 show the change of average FPS for the collision experimental test, in which the
virtual objects of the tetrahedral model and the proposed ISPC model are falling from a certain height to
the ground. The graphs in Fig. 10 show the change of average FPS for the same test as the ISPC model
and surface model. The average FPS is obtained after adding up all the FPS values at each time of the
10 experimental tests, except for outliers. The code for calculating FPS is as follows:

Deltatime ¼ ðtime:deltaTime� DeltatimeÞ � 0:1 f (12)

FPS ¼ Delta time=1:0 f (13)

Unity3D Update function is called every frame to execute the corresponding code. In this code, Time.
deltaTime means the execution time per frame. The x-axis of the graph is the result of outputting FPS at 1 s
intervals, and the y-axis is the average of the results of the FPS changing per second.

4.2.1 Experimental Test for the Bunny Model
For the Bunny model, the ISPC and tetrahedral models were applied, and the results were compared. For

experimental tests, the constraint parameters of the ISPC model, such as distance, bending, and internal
shape-preservation, were adjusted to be similar to the behavior of the tetrahedral model. Tab. 3 shows the
information of the models used for this experimental test, and Fig. 5 compares the behavior of these
models. In this experimental test using the Bunny model, we can confirm similar behavior between the
tetrahedral and the ISPC model by adjusting the stiffness of constraints.

The result of comparing the FPS showed that the FPS of the ISPC model was about 115% faster than the
FPS of the tetrahedral model, as shown in Fig. 6. The average FPS of the ISPC model was 47.30, while the
average FPS of the tetrahedral model was 21.96.

4.2.2 Experimental Test for the Armadillo Model
For the Armadillo model, the ISPC and tetrahedral models were applied, and the results were compared

as well. For experimental tests, the constraint parameters of the ISPC Model, such as distance, bending, and
internal shape-preservation, were adjusted to be similar to the behavior of the tetrahedral model, as for the
Bunny model. Tab. 4 shows the information of the models used for this Armadillo model test, while Fig. 7
compares the behavior of these models.
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Similar to the Bunny model, the FPS of the ISPC model was about 285% faster than the FPS of the
tetrahedral model, as shown in Fig. 8. The average FPS of the ISPC model was 29.09, and the average
FPS of the tetrahedral model was 7.54 for the Armadillo model.

Table 3: Tetrahedral and ISPC model information for the bunny model

ISPC model Tetrahedral model

# of vertices 3,008 9,629

# of constraints 8,927 37,528

Distance stiffness Surface Compression 1.0

Stretch 2.0

Inside Compression 0.03

Stretch 0.1

Bending stiffness 2.0 2.0

Strain stiffness 4.0

Figure 5: The experimental test of ground collision for the Bunny model (left: Tetrahedral model using
black color; right: ISPC model using blue color)

Figure 6: The FPS comparison for the bunny model between the ISPC and tetrahedral models
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4.2.3 Experimental Test for the Dragon Model
The experimental test with the Dragon model, which includes some holes in the model, was conducted.

In the case of the surface model, no matter how high the stiffness value of the constraint is in setting up, when
the interactions, such as gravity or collision, are applied to 3D virtual objects, the shape of the original model

Figure 7: The experimental test of ground collision for the armadillo model (left: Tetrahedral model using
black color; right: ISPC model using blue color)

Table 4: Tetrahedral and ISPC model information for the armadillo model

ISPC model Tetrahedral model

# of vertices 6,362 17,481

# of constraints 19,041 67,700

Distance stiffness Surface Compression 3.0 Compression 3.0

Stretch 3.0 Stretch 3.0

Inside Compression 0.05

Stretch 0.1

Bending stiffness 2.0 2.0

Strain stiffness 4.0

Figure 8: The FPS comparison for the armadillo model between the ISPC and tetrahedral models
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cannot be maintained. However, the proposed ISPC algorithm maintained the original shape of the object
well, even under the collision situation, and it was confirmed that the behavior of the ISPC object
simulation was similar to that of the tetrahedral model. Tab. 5 and Fig. 9 show the experimental test
information and motion comparison of the Dragon model.

Fig. 10 shows the results of FPS comparison through the Dragon model for the surface model and the
proposed ISPC model. As a result of comparing the FPS of the proposed ISPC model, the FPS of the surface
model was about 5% higher, but it was confirmed that the difference in FPS was significantly smaller than
that of the tetrahedral model, while maintaining the volume well.

4.2.4 Experimental Test for Volume Preservation
Finally, to confirm the change in volume when pressure is applied to the ISPC and tetrahedral models,

the experimental test of pressing two objects with a transparent glass plate was conducted. As a result of
experimental test, it was confirmed that the proposed ISPC model as shown in Fig. 11 easily returns to
the original shape as the result of the tetrahedral model by ISPC applied to the inside of the virtual
object. In Fig. 11, the first row shows the front view results of the experimental test, while the second
row shows the top view results.

4.2.5 Limitations of This Model
This model can generate a volumetric model similar to the tetrahedral model and can simulate it.

However, since it creates a link inside the surface model and proceeds, it has a disadvantage in that it is

Table 5: Tetrahedral and ISPC model information for the dragon model

ISPC model Surface model

# of vertices 2,998 2,998

# of constraints 8,998 2,998

Distance stiffness Face Compression 3.0 Compression 3.0

Stretch 3.0 Stretch 3.0

Inside Compression 3.0

Stretch 3.0

Bending stiffness 2.0 2.0

Figure 9: The experimental test of ground collision for the dragon model (left: ISPC model using purple
color; right: Surface model using black color)
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vulnerable to accurate physics simulation compared to the tetrahedral model. Also, there is a disadvantage in
that it is difficult to proceed with cutting simulation.

5 Conclusion

In this paper, in order to overcome the problem of generating the tetrahedral model from the surface
model that might occur when trying to simulate a tetrahedral model using Unity3D, and the problem of
real-time computation because it consists of many vertices, we proposed the ISPC algorithm to simply
simulate the 3D virtual objects, applying the distance constraints to the inside of 3D objects. The
tetrahedral model has the problem that generation errors easily occur depending on the completeness of
the surface mesh and input parameter values. Therefore, users who are unfamiliar with the 3D modeling
program may have difficulty in creating the simulation contents. In addition, when simulation through the

Figure 11: Appearance of objects when heavy pressure is applied (left: Tetrahedral model using black color;
right: Surface model using blue color)

Figure 10: The FPS comparison for the dragon model between the ISPC and surface models
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tetrahedral model is possible, there is the disadvantage that real-time simulation cannot be performed on
Unity3D, due to the heavy computational cost. To solve these problems, we applied the proposed ISPC
algorithm, and obtained similar behavior to the result of the deformable object simulation for the
tetrahedral model by adjusting the stiffness of constraints. Various physical properties, such as softness
and rigidity, could be expressed with the proposed method. Also, the computational cost that could be
represented using FPS was about 100% or more better than that of the tetrahedra model. Therefore, the
proposed method can be a solution for the production of games or real-time simulation contents based
on Unity3D.

The proposed ISPC algorithm can be effectively applied for interactive situations, such as collision and
pressure, but in the case of precise simulation and cutting simulation, it has the disadvantage of being difficult
to apply, which is mainly dealt with in the current simulation contents. In the future, we will provide the
supplement of shortcomings of the ISPC model, and conduct the research on a new algorithm that can
perform cutting simulation and volume preservation using constraints.
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