
A Dominating Set Routing Scheme for Adaptive Caching in Ad Hoc Network

Raed Alsaqour1, Ammar Al-hamadani2, Maha Abdelhaq3,* and Joud Almeheimidy3

1Department of Information Technology, College of Computing and Informatics, Saudi Electronic University, 93499, Riyadh, Saudi Arabia
2Optical Cable Maintenance Center, Ministry of Communications, Baghdad, Iraq

3Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman
University, 84428, Riyadh, Saudi Arabia

*Corresponding Author: Maha Abdelhaq. Email: maha.ukm@gmail.com
Received: 24 June 2021; Accepted: 02 September 2021

Abstract: Current efforts for providing an efficient dynamic source routing proto-
col (DSR) for use in multi-hop ad-hoc wireless are promising. This is since DSR
has a unique characteristic in that it uses source routing, instead of relying on the
routing table at each intermediate device. This study addresses the current chal-
lenges facing DSR protocol in terms of the dynamic changes of the route and
how to update such changes into the route cache of the DSR. The challenges typi-
cally persist when a sudden route break occurs resulting in a delay in updating the
new node location into the cache of the DSR protocol. For that, this study pro-
poses a novel algorithm to improve the cache updating of DSR protocol in the
ad-hoc network using dominating set-based routing (DBR). In DBR, the dominat-
ing nodes establish node update cache in accordance with the characteristics of the
new route. Network Simulator version 2 (NS2) was used to implement and eval-
uate the proposed algorithm. A comparison of certain performance metrics was
carried among the proposed DSR-DBR, DSR-route-cache, and DSR-original in
the transmission control protocol and user datagram protocol. The DSR-DBR per-
formance result showed a significant improvement in the average throughput,
average end-to-end delay, average discovery time and routing overhead.

Keywords: Dynamic source routing; ad-hocnetwork; routing; cache; dominating set

1 Introduction

Due of its relevance in essential applications such as battlefield communication and disaster assistance
without requiring a fixed or static setup, the rising interest in Mobile Ad-hoc Networks (MANETs) has had an
influence on academic research [1–3]. MANETs may be defined as a wireless network with a quickly
changing topology [4,5]. MANET can also be used independently. It has the potential to be linked to a
larger Internet network. Due to the rising popularity and relevance of laptops and Wi-Fi, MANETs
became well-known among academics in the 1990s [6].

DSR is a simple, efficient wireless protocol for the multi-loop setting of MANET’s nodes [7,8].
Additionally, DSR protocol features low overhead, and the caches of the route reduce the cost of route
discovery. Its scope of application is in multi-path routing and non-symmetrical transmit pattern [9]. DSR

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI:10.32604/iasc.2022.021127

Article

echT PressScience

mailto:maha.ukm@gmail.com
http://dx.doi.org/10.32604/iasc.2022.021127
http://dx.doi.org/10.32604/iasc.2022.021127

as a protocol is categorized as an on-demand protocol. It prioritizes finding a route to a destination when it is
presented with a packet looking to reach that destination. It features route maintenance procedures until that
destination becomes unreachable from every possible path in the network.

Cache staleness is regarded one of the difficulties in DSR protocol development [10,11]. Incomplete error
notification and inadequate cache size may lead to further issues with DSR. The ad hoc network has nodes
interacting with each other by means of a series of intermediary nodes that serve as routers. However,
because nodes are transmitting randomly, there will be changes in the network topology over time. The last
contributing factor was the changes in network topology, which caused inadequate routing protocol
performance. Concretely, the design of protocols like DSR is used as a medium for transmitting node till its
discovered route expires or is broken. The method therefore creates several communication issues owing to
the movement of network hosts and/or low signal strength. Furthermore, when the next hop learns of a
connection break, it will report a route error back to the originating node in order to start route discovery.
Because of this, route discovery processes in a major network flow may be costly. Wasting wireless
bandwidth as well as frequent route-finding packets are additional consequences of having low bandwidth.

One source that causes cache staleness is linked breakage for DSR protocol [12,13]. Thus, Efficient
algorithms are required to refresh network information in the cache. Once broken, a connection affects
the entire network. A prediction algorithm is usually used to kick-off a full maintenance process ahead of
time [14]. Therefore, this study is attempting to overcome the dynamic changes of the route and how to
update such changes into the route cache of the DSR. This was investigated from the sudden route
breaking and how the update of the new node location in the cache of the DSR protocol.

The remainder of this work is structured as follows: Section 2 presents the background and related work. In
Section 3, we present the algorithm for altering and modifying the route cache. In Section 4, we present the
implementation of dominating set-based routing in DSR protocol. Section 5 presents the simulation and
experiment Settings. Section 6 presents the research results and discussion, and Section 7 presents the conclusion
and future work.

2 Background and Related Work

The Internet Engineering Task Force (IETF) created a routing architecture for IP-based protocols on
MANETs, which is divided into two categories: table-driven protocols and on-demand protocols [15].
Each node in a MANET may serve two purposes: it can operate as a router for other nodes and it can be
routed to another node. In MNET, different routing protocols have been developed, including dynamic
source routing protocol (DSR), destination-sequenced distance-vector (DSDV) routing [16], and ad hoc
on-demand distance vector (AODV) [2,9].

Route discovery and route maintenance are the two major functions of the DSR protocol. When a
network source wants to send a packet to a certain destination, it broadcasts a request to find a route to
that destination. The source and destination node addresses, a unique sequence number, and an empty
route record are all included in the request packet. The intermediary nodes will then do a cache check. If
the cache doesn’t hold the ultimate destination address, the intermediary node will broadcast the request.
However, as the size of the network expanded, so did the route cache in the DSR protocol, slowing down
the route-finding process [17]. Furthermore, by recording a route in the cache that may break in the
future, the broken route obstructs the search process (route changes).

Several studies have looked into the issue of abrupt route changes. For example, in [18], the authors have
concentrated on specific drawbacks of DSR in terms of routing cache. These drawbacks are consisting of
three sub-problems stated as: incomplete notifying error, no expiry, and quick pollution. For this purpose,
the authors have proposed a Wider Error Notification approach which rely on a rapid and wide
propagation of Route Error (RERR) packet to speed up the transmission and expand the size the of
(RERR) packet. This can be represented by an update task conducted by the node for its route cache once
it receives a RERR packet includes the link failure information.

1588 IASC, 2022, vol.32, no.3

In [15], the authors have presented an adaptive link cache (ALC) scheme, which is a combination of
link cache and adaptive timeout policy. ALC aims to overcome the problem of stale routes in DSR cache
routing. This can be represented by an elimination process for the stale routes based on heuristics search
that aim to predict the lifetime of a link. Nonetheless, these heuristics search do not provide robust
estimation for the timeout of the link, this is due to the unpredictable changes that would be occurred in
the topology of the network.

In [19], the authors have presented an algorithm called distributed adaptive cache update (DACU),
which aims to accommodate an updating process for the DSR routing cache. DACU algorithm utilizes a
proactive cache update rather than the adaptive timeout approach in order to eliminate the stale routes. In
addition, DACU algorithm aims to gather information in terms of distributing the routing information
through the network. Since DACU algorithm is relying on a path cache thus, the routing information
about the state of the network for each node would not be effectively exploited. Furthermore, the cache
timeout is not being used.

In [20], a caching method was devised that allows nodes to quickly react to changes in the cache network. It
entails adding a new packet to the DSR cache and having the new packet visit each node in the network twice.
The topological data is gathered on the initial visit, and the neighbor finding method is activated. The new
packet resumes its visit to another node after storing this information into a compressed matrix. The node
updates and verifies the nodes’ link caches during the second visit of this packet.

The researchers in [21], suggested a novel method that uses the DSR routing cache to enhance the routing
between mobile nodes in order to decrease the result of mobility in link transmission, which might help to
overcome the link broken crisis. This technique updates the DSR’s route cache by using proactive cache
replace rather than an adaptive timeout mechanism in a link cache structure to delay a stale route in a session.

In [22], the authors have presented an ant colony approach in order to enhance the routing of DSR.
Basically, when a node sends a packet to another node, it firstly identifies the cache in terms of existing
routes. If there are no routes, the node will locally transmit a route request control packets in order to
figure out the routes. Like the biological ant behaviour where the ant that delivering the food aims to
drop a sign for other ants in order to determine the route, the request will be transmitted through the
network with all the information including length of route, size of packets and the crowd within the route.
Once the destination receives the request, it replies with the same information. In the case of multiple
destinations responses obtained, the ant colony approach will identify the best route and select it by the
sender node. However, if the number of nodes is increased, the ant colony approach will have difficulty
in identifying the best route regarding to the complex computations required.

3 DSR Route Caching Algorithm

The issue with cache route using the DSR protocol is the dependence on the cache route, when it has to
route the network’s packet [23]. This presents the greatest challenge of the size of cache route; usually, as the
route cache size will be already enlarged with plenty cache records holding the whole of the route. Therefore,
a source will first check the route cache when a node needs to send a packet to a destination one. This is for
finding the best route usable for sending packet to destination. The broken route is experienced because of
nodes speed, empty battery, and route order problem as well as out of transmission range. When the new
route attached to the route cache is used in indicating where a new route will append to the end of the
cache, the node selects the old route to send a possibly broken packet.

Our solution to this problem is the proposal of a new algorithm for altering and modifying the route
cache. This is the proposed solution aimed at solving broken off routes, route search times and cache size
problems. In addition, there will be a division into two sub-caches, the cache of DSR protocol. The first
cache part is referred to as “Master Route Cache”, and it is for saving all relevant source node

IASC, 2022, vol.32, no.3 1589

information, the numbers of hops, route status as well as the destination node. The second cache part is
referred to as “Route index”, and it is for saving all route indexes, not exempting route from source to
destination node. Algorithm 1 lists the pseudo code for DSR cache updating.

Algorithm 1: Pseudo code for update cache

broke link = false

While (broke link = false) {

cache status = check node cache ()

If (cache status = true) {

Take route for second part ()

}

Else {

Receives RREQ = false

While (receives RREQ = false) {

Send RREQ to neighbor node ()

Receives RREQ = intermediate node receives ()

If (receives RREQ = true) {

Reverse route()

Send RREP to source ()

While (route already = true) {

Take route for second part ()

}

else

Add new route to cache ()

If (has route to destination)

Add it’s to route ()

else

Put its retransmit RREQ ()

}

Faction Take route for second part () {

Take route ();

if (broken link = false)

End

else {

Send RREP ()

Source deactivate route (0)

}

}

}

1590 IASC, 2022, vol.32, no.3

As shown in Algorithm 1, the algorithm begins by initializing a stimulating environment, cache node
structure. If there is a packet requires sending by a node, then the algorithm will check for router status.
Such checking aims to determine the route activeness of node cache. thus, if there is an available one,
then this route will used for the transmission. Otherwise, a request will send to the neighbouring nodes.
In this manner, an intermediate node will receive the request and check its destination in terms of
availability whether it is available (then store such routes in the available routes) or it is not possible
(then sends the request to another neighbouring node). Once a neighbouring node is figuring out a
possible route, a reply will be sent to the source. Hence, the source will analyse the cache node of the
replay if such route has been already updated to a status (1) then the route of second part of the cache
will be used for the transmission. Otherwise, such route will add to the new route cache. A final
procedure by the algorithm will be represented as identifying a broken link, if there is no broken link
then the algorithm will be ended. Otherwise, a reply message will be sent to the source that will
deactivate the route to the status (0) and then the algorithm will be ended.

4 Implementation of DBR in DSR Protocol

In graph theory, for a graph G = (V, E), a dominant set is a subset D of V where every vertex not in D is
adjacent to at least one member of D. The domination number γ(G) is the number of vertices in a smallest
dominating set for G. For example, in the Petersen graph illustrated in Fig. 1, the set S = {1, 2, 9} is a
dominating set.

[24]. The current issues associated with identifying the dominant of nodes was resolved by using the
method of “HELLO” message.

The proposed DSR-DBR algorithm starts with initiating Node (A). Algorithm 2 lists the pseudo code for
DSR-DBR. As shown in Algorithm 2, The dominating set is found as the first step in the algorithm. The route
will then be determined depending on the destination and only through the dominating nodes. The associated
nodes in the dominating set will then be utilized to link all of the nodes in the network, making it simple to
reach the destination in a shorter amount of time. However, if a route failure happens, the associated
dominating node recognizes the issue and resolves it locally. If practicable, this can be accomplished by
allowing the node to reach the destination through other nodes. If not, it will send a router failure
message to the other dominant nodes. The adjacency matrix is formed in this step, with each node

Figure 1: Dominating set concept

IASC, 2022, vol.32, no.3 1591

determining its neighbor node by delivering the HELLO packet. The neighbouring list is transmitted to the
neighboring nodes when the neighbors have been determined, and each node produces the adjacency matrix.
It is expected that by using this matrix, identifying the dominant nodes and dominating set will take less time.

Algorithm 2: pseudo code for DSR-DBR.

If (B is a neighbor) {

add to neighbor list

send this list to its neighbors

}

If (A is a neighbor of B)

adjacency [A][B] = 1

else

adjacency [A][B] = 0

For each row in adjacency matrix {

Compute the row sum in adjacency matrix

Find the maximum connected node

Append this to “dominating set”

If any node is not connected to the nodes in the dominating set then

add this node to the dominating set

}

The suggested algorithm’s scenario is shown in Fig. 2. It begins by establishing the dominant set as <N3,
N6, N10>, with N1 as the source and N10 as the destination nodes. N10 is accessible from N1 via N3 and N6.
Each node seeks to identify the dominating node from the source node during the first route discovery
procedure. Even if the shortest path to the target exists, a node’s journey to the destination is always
through the dominant nodes. As a result, it offers a customizable option for locating an alternate path that
is considerably faster than the traditional method. If the N6-N8 connection fails, the node N6 can simply
establish the N6-N7 connection to the destination [25].

Figure 2: DSR-DBR mechanism

1592 IASC, 2022, vol.32, no.3

Based on this, it can be concluded that the proposed algorithm handles two main situations; building a
link verifier and a new cache that contains an index to the links, as well as to the original master cache. The
original master cache will save the information on the source and destination nodes. The second cache will
save the indices of the links and routes. A detailed flowchart of the algorithm is shown below in Fig. 3.

5 Simulation and Experiment Settings

5.1 Simulation Environment

To perform the simulation, the Network Simulator (version 2) has been used. The aim of this simulation
is analysis the DSR protocol for its efficiency in terms of (average throughput, average E2E delay, average
discovery time and routing overhead), this has been made by measuring these metrics in a different (node
speed and packet size and taking into caused evasion the remaining number of node and traffic
connection. The simulation parameters that have been used in this study are shown in Tab. 1.

Figure 3: DSR-DBR algorithm

IASC, 2022, vol.32, no.3 1593

5.2 Performance Metrics

5.2.1 Routing Overhead
Routing overhead refers to the ratio of the amount of routing-related control packet transmissions to that

of data transmissions. The number of control packets transmitted in the (ith) application traffic is represented
by (cpki), while the number of data packets transmitted in the (ith) application traffic is represented by (pkti).
The average routing overhead of application traffic (n), indicated by (RO), is calculated as follows:

RO ð%Þ ¼ 1

n

Xn

i ¼ 1

cpki

pkti
� 100% (1)

5.2.2 Average End-to-End Delay
This metric refers to the average time the source-to-the destination of a packet requires. Using (di) to

represent destination node has accumulated total delay of packets, ðpktdiÞ represents the total number of
packets that the destination node has received. The average application traffic end-to-end delay (n),
denoted as (E2E), is calculated as follows:

E2E ðmsÞ ¼ 1

n

Xn

i ¼ 1

di

pktdi
(2)

5.2.3 Throughput
This metric refers to the total data amount (bi) received by the destination divided by the time (ti) before

the destination gets the final packet. The resulting output denotes the number of bits transferred each second.
The throughput of the application traffic ðnÞ, is obtained as:

Throughput ðbytes=sÞ ¼ 1

n

Xn

i ¼ 1

bi

ti
(3)

5.2.4 Route Discovery Time
This metric is the time duration from the source node to the destination when a Route Request (RREQ)

packet is assembled until the Route Reply (RREP) packet is received. The RDT is obtained as:

Table 1: Simulation parameters

Description Value Unit

No. of node 30 node

Network area size 800 × 800 m²

Node speed 0, 2, 4, 6, 8 m/s

Node transmission range 30 meter

Data packet size 512,1024, 1536, 2048, 2560 bytes

Network layer protocol DSR protocol -

Mobility model Random waypoint -

Transport layer protocol TCP/UDP -

1594 IASC, 2022, vol.32, no.3

RDT ðmsÞ ¼ 1

n

Xn

i ¼ 1

RREQti� RREPti

No:of Pkt
(1)

6 Results and Discussions

This section explains the results from running the NS2 on metrics such as throughput, end-to-end
latency, routing overhead, and route discovery time. Results were evaluated using both the TCP and UDP
protocols. For DSR-DBR, two prior studies were compared: DSR-ROUTE-CACHE [21] and the original
DSR. Using the three approaches, we ran the comparison with relation to the speed of the nodes. This is
to offer a wider look at the suggested approach to deal with transferred data in varying nodes’ speed.

Fig. 4a, showed the average throughput result for the three techniques in TCP with regards to the node
speed. From the comparison result, it can be summated that the proposed solution offered a relatively better
average throughput in TCP. These results were found to be better than the throughput results of DSR-
ROUTE-CACHE and DSR-ORIGINAL respectively. Fig. 4b, showed the average throughput value for
these techniques in UDP. The result revealed that the proposed DSR-DBR outperformed other techniques
which were found to consume 46419.34 bytes when the speed is 0 ms and 46416.51 bytes when speed is
8 ms. However, DSR-ORIGINAL was found to be the lowest in providing a reliable throughput with
bytes consumption ranged between 43644.4–43697.25 followed by DSR-ROUTE-CACHE, which offered
relatively better result with throughput ranged between 45126.09–45019.1.

It can be noted that protocol stability was steady in the proposed DSR-DBR in UDPmore than TCP. This
can be reasoned to that TCP usually utilizes window-based congestion control which it requires an additive
increase in the network flow. It is also assumed that the proposed scheme managed the speed of each node by
distributing it in an interval way. In addition, the average throughput vs. node speed in the proposed scheme is
better when there is less aggregation of nodes. This is because the balance of nodes here plays a key role in
routing protocol performance as compared to other schemes for both TCP and UDP in terms of node speed
for delivering packets per second.

The E2E delay for the three techniques was also compared in both TCP and UDP with regards to the
gradual increase in network speed. Fig. 5a, shows the average E2E delay in TCP which revealed a

Figure 4: Average throughput versus node speed, (a) TCP, (b) UDP

IASC, 2022, vol.32, no.3 1595

relatively less delay when using the proposed DSR-DBR with a period ranged between 8.30051 ms -
8.24124 ms. This result is somehow better than the delay of DSR-ROUTE-CACHE which resulted in a
delay ranged between 8.39081–8.32975 followed by DSR-ORIGINAL (8.46643–8.40919).

The same is true in UDP in which the result of the average E2E delay was in its lowest value when using
DSR-DBR with delay value ranged between 0.580528 ms - 0.579981 ms see Fig. 5b. This was followed by
DSR-ROUTE-CACHE (0.588892–0.587797). From these results, it can be concluded that DSR-DBR was
able to manage data transfer with minimal delay as compared to other techniques. This can be reasoned
to the state of these techniques in route discovery which may takes longer in DSR-ORIGINAL and DSR-
ROUTE-CACHE, which results in more delay for TCP and UDP packets. It can be also said that the
proposed scheme’s average packet delay decreases when the number of nodes increase which may be
caused by buffering resulted during the process of route discovery latency, queuing at the interface queue
in both TCP and UDP. Therefore, the proposed scheme provides less delay for a packet to reach the
destination by balancing the delays, in the source and each intermediate host, caused by other events.

The routing overhears also tested on the three techniques in TCP and UDP with regards to the gradual
increase in network speed. The result is shown in Fig. 6a, revealed that the routing overhead in TCP was in its
lowest state when using the proposed DSR-DBR, which was found to consume 60.0016% when the speed is
set to 0 ms and 60.00235% when the speed is set to 8 ms. The routing overhead, however, was higher in
DSR-ROUTE-CACHE with consumption ranged between 60.0018–60.0024 followed by DSR-
ORIGINAL (60.0021–60.00245).

Furthermore, the routing overhead in UDP with regards to the network speed was also examined see
Fig. 6b. The result showed a steady routing overhead consumption for the three techniques when network
speed is increased gradually. However, the result was at its best when using the proposed DSR-DBR with
routing overhead consumption of 60.0023%-60.00406%, followed by DSR-ROUTE-CACHE (60.0028–
60.00415) and DSR-ORIGINAL (60.0031–60.00425). It is also believed in this study that the suggested
method efficiently controls node transfers by automatically lowering the routing packet overhead of DSR,
allowing it to precisely track the routes currently in use. However, other schemes seem to experience a
progressive frequency of route breaking in which the routing overhead to discover new routes also increase.

The RDT results for both protocols with regards to the network speed were examined using the three
techniques. Fig. 7a, showed the RDT result for TCP in seconds in which it can be clearly observed that

Figure 5: Average E2E delay versus node speed, (a) TCP, (b) UDP

1596 IASC, 2022, vol.32, no.3

the proposed DSR-DBR provided stable transfer rate followed by DSR-ROUTE-CACHE and DSR-
ORIGINAL, respectively. This was further observed from the result of average RDT in ms shown in
Fig. 7b. From the figure, it can be concluded that DSR-DBR provided the lowest RDT with a value range
from 5.6839066 ms when the speed is 0 ms and 7.7629749 ms when the speed is 8 ms. However, DSR-
ORIGINAL was found to consume higher RDT with value ranged between 7.8971926 ms -9.3455145 ms
while DSR-ROUTE-CACHE was found to offer relatively better RDT (7.3009532–8.579142). On the
other hand, the proposed scheme is found to provide a comparative RDT average as compared to other
schemes where route replies from less strong links. This, as a result, increases the chance of having some
packets that may not have any routes to be maintained. In TCP, the proposed scheme provides the
required control of velocity when movement increases. This, as a result, led the routes to experience
shorter time and more route discoveries as compared to the other two schemes.

Figure 6: Routing overhead versus node speed, (a) TCP, (b) UDP

Figure 7: RDT versus node speed, (a) RDT-TCP, (b) average RDT-TCP

IASC, 2022, vol.32, no.3 1597

Fig. 8a, showed the RDT in UDP, which revealed a consistent result when using the proposed DSR-DBR
followed by DSR-ROUTE-CACHE and DSR-ORIGINAL. On the other hand, the average RDT in ms was
also calculated for the three techniques. The result Fig. 8b, showed that the RDT for DSR-DBR (0.5671702
ms-0.5442459 ms) outperformed the RDT for DSR-ROUTE-CACHE (0.593485–0.5773177) and DSR-
ORIGINAL (0.610298–0.6029591) respectively. In UDP, is can be said that the proposed scheme
provided a sufficient way of handling the incoming and outgoing packets once it has been first
discovered. Meanwhile, the proposed scheme is believed to offer the suitable basis for processing each
node in the network especially when the route error message reaches the initiator. In contrast to other
schemes, the initiator deletes all routes identified as broken from its route cache, making the proposed
scheme more compatible than others based on the results presented below.

Meanwhile, the network metrics in terms of the average throughput, E2E delay, routing overhead, and
RDT verses the packet speed in TCP and UDP were examined. Fig. 9a, shows the average throughput value
for the three techniques with regards to the packet speed in TCP. The obtained result clearly shows how the
proposed technique DSR-DBR performed better than other techniques. For example, DSR-DBR resulted in a
throughput value of 49496.03 bytes when the packet speed was 512 sec and 101723.96 bytes when the
packet speed was 2560 sec. based on this, it can be concluded that the proposed method outperformed
DSR-ROUTING-CACHE (48115.86–99260.03) and DSR-ORIGINAL (43665.75–96676.02) respectively.

As for the UDP, the result shown in Fig. 9b, revealed that DSR-DBR provided a stable average
throughput value, which was ranged from 46428.61 bytes - 46554.3 bytes as compared to DSR-
ROUTING-CACHE (45068.62–45119.32) and DSR-ORIGINAL (43665.72–43872.35). From this, it can
be summated that the proposed technique offered a better throughput result when gradually increases the
packet speed in UDP. The result proved the compatibility of the proposed scheme against others by
increasing the chances of discovering broken links, which result in significant throughput improvement in
both TCP and UDP. In addition, the proposed scheme is believed to experience fewer rates of link
changes and the throughput for all nodes.

Fig. 10a, shows the average end-to-end delay results of the three techniques in TCP with regards to the
packet speed. The obtained result clearly indicates that the proposed DSR-DBR provided the minimal delay
which started at 8.03743 ms and ended at 23.0015 ms. This result as compared to DSR-ROUTING-CACHE
(8.26899–24.1569) and DSR-ORIGINAL (8.43966–24.8058) is somehow promising. In addition, Fig. 10b,

Figure 8: RDT versus node speed, (a) RDT-UDP, (b) average RDT-UDP

1598 IASC, 2022, vol.32, no.3

showed the average end-to-end delay result in UDP in which the proposed technique provided much constant
and steady delay when increasing the packet size from 512 sec (0.562737) to 2560 sec (1.80873) as
compared to the DSR-DBR (0.583483–1.84563) and DSR-ORIGINAL (0.599576–1.8669). On the other
hand, the proposed scheme offered significantly less delays as compared to other schemes. This is
because it was able to manage buffering during route discovery and queuing in both TCP and UDP,
whereas the processed packets were evaluated based on their delivery ratio caused by data packet
buffering during route discovery and queuing. Therefore, it becomes evident that the proposed scheme
reduced the delay for processing packets that can be explained by the low velocities and the adverse
effect on the routing load and packet delivery ratio where route discovery mechanism can allow multiple
paths to be returned when needed.

Figure 9: Average throughput versus packet size, (a) TCP, (b) UDP

Figure 10: Average E2E delay versus packet size, (a) TCP, (b) UDP

IASC, 2022, vol.32, no.3 1599

Fig. 11a, shows the routing overhear in TCP for the three techniques with regards to the packet speed.
The result showed significant differences among the three techniques in which the routing overhear were in
its minimal value when using the proposed DSR-DBR with overhead consumption starting with 60.0017%
and ending with 60.0048% as compared to DSR-ROUTING-CACHE (60.0021–60.0061) and DSR-
ORIGINAL (60.0026–60.0068). This indicates that DSR-ORIGINAL consumed higher routing overhead
when gradually increasing the packet speed, followed by the DSR-ROUTING-CACHE and DSR-DBR
respectively.

As for UDP, Fig. 11b, showed the routing overhead result for the three techniques with regards to the
packet speed. The result revealed remarkable differences in routing overhead when using the proposed
DSR-DBR (60.0027–60.0051) which offered minimal overhead consumption as compared to DSR-
ROUTING-CACHE (60.0033–60.0056) and DSR-ORIGINAL (60.0037–60.0064) respectively. From
these results, it can be concluded that the proposed DSR-DBR offered a better way of managing the
consumption of routing overhead in both TCP and UDP especially when the packet speed increases
gradually. It is also assumed that the proposed scheme allowed packets to locate the associated links by
constructing or mapping routes to destinations, as they are required. This was achieved by sending
packets to the neighbor closest to the packet’s ultimate destination in both TCP and UDP. Such process is
assumed to significantly enhance the routing overhead with regard to the speed of packet. Hence, the
proposed scheme allows packets to learn more routes by adding it to the constant knowledge of the
network topology. This is also believed to result in a more reliable routes and less routing overhead due
to better maintain routes when send packet increase.

Finally, the RDT results shown in Fig. 12a, for the three techniques revealed substantial outcome for the
proposed DSR-DBR against DSR-ROUTING-CACHE and DSR-ORIGINAL. This was deeply looked at by
calculating the average RDT in TCP with regards to the packet speed. The result in Fig. 12b, showed that
outstanding result for the proposed DSR-DBR with average RDT starting at 5.3770275 ms when packet
speed is 512 msec and 12.3842825 when packet speed is 12.3842825. This is significantly better than
DSR-ROUTING-CACHE (6.283864–16.9438303) and DSR-ORIGINAL (8.7415884–20.7670072).
Furthermore, the proposed scheme facilitates the process of balancing node’s necessary information by
simplifying the forwarding data packets for other nodes. This is believed to improve the lifetime of routes
if unused beyond its limit as it is usually done in other schemes. Meanwhile, the proposed scheme is also

Figure 11: RO versus packet size, (a) TCP, (b) UDP

1600 IASC, 2022, vol.32, no.3

assumed to handle all possible error messaged from buffering route discovery latency and queuing in TCP. In
addition, the proposed scheme simplified the detection of nodes that are less effective in the source route.

As for the UDP, it can be observed from Fig. 13a, that the proposed DSR-DBR offered minimal RDT
required for different packet speeds. The result in Fig. 13b, clarified this further in which it showed that the
average RDT for DSR-DBR (0.5482818–0.8752383) has a minimal value when comparing it to DSR-
ROUTING-CACHE (0.5849467–0.9407948) and DSR-ORIGINAL (0.6369976–0.9919272) respectively.
The proposed scheme is believed to provide the essential elements for the node to acquire a new route to
the destination which as a result reduced the delay in time especially when waiting for new routes to be
determined. In addition, it is assumed that the proposed scheme makes the route discovery time shorter
that is an overhead of discovering new routes.

Figure 12: RDT versus packet size, (a) RDT-TCP, (b) average RDT-TCP

Figure 13: RDT versus packet size, (a) RDT-UDP, (b) average RDT-UDP

IASC, 2022, vol.32, no.3 1601

7 Conclusion and Future Research

This study investigated the potential of DSR-DBR in providing a better DSR performance to be utilized
in multi-hop wireless ad-hoc. The key issued related to the MANETwere addressed from the perspective of
network performance with regards to the node speed and packet size. NS2 was used to develop and test the
proposed DSR-DBR against other techniques like DSR-ROUTING-CACHE and DSR-ORIGINAL. Four
performance metrics were used, these are average throughput, an E2E delay, routing overhead, and route
discovery time. The comparison result was obtained with regards to node speed and packet size in TCP
and UDP. The obtained results revealed that the proposed DSR-DBR to offer higher average throughput
result, less E2E delay, less routing overhead, and less route discovery time, compared to both DSR-
ROUTING-CACHE and DSR-ORIGINAL respectively.

Despite the effectiveness of the proposed DSR-DBR solution, some limitations need to be mentioned
here. The first limitation includes examining certain network metrics without considering the packets
dropped by each protocol in which it is because the researcher did not measure data and control packets
in order to estimate the fall of packets. In addition, this study was limited to node speed and packet size
that can be further adjusted to estimate the performance properly.

Based on the mentioned limitation, future works can be further extended to provide an in-depth
understanding of the DSR-DBR potential by examining its performance using different metrics compared
to other techniques. In addition, future study can also validate the proposed solution in other protocols
like video on demand (VOD) and interactive TV (iTV). Meanwhile, future works can also consider the
use of the heterogeneous network in which the sources can be distributed based on the characteristics of
the protocols.

Acknowledgement: This research was funded by the Deanship of Scientific Research at Princess Nourah
bint Abdulrahman University through the Fast-track Research Funding Program.

Funding Statement: This research was funded by the Deanship of Scientific Research at Princess Nourah
bint Abdulrahman University through the Fast-track Research Funding Program.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] N. A. Husieen, O. B. Ghazali, S. Hassan and M. M. Kadhum, “Route cache update mechanisms in DSR protocol:

a survey,” in Int. Conf. on Information and Network Technology, Singapore, pp. 136–41, 2011.

[2] E. M. Royer and C. K. Toh, “A review of current routing protocols for ad hoc mobile wireless networks,” IEEE
Personal Communications, vol. 6, no. 2, pp. 46–55, 1999.

[3] D. -E.-Naya, M. H. Zafar and M. Basheri, “Adaptive expanding ring search based per hop behavior rendition of
routing in MANETs,” Computers, Materials & Continua, vol. 67, no. 1, pp. 1137–1152, 2021.

[4] C. Kumar, G. Kumar and P. Rani, “Efficient-dynamic source routing (E-dSR),” in Communications and
Information Technologies (ISCIT), 2012 Int. Symposium on, Gold Coast, QLD, Australia, pp. 319–324, 2012.

[5] J. D. Brown, M. Salmanian and T. J. Willink, “Analysis and performance of topology inference in mobile ad hoc
networks,” in Int. Conf. on Ad Hoc Networks, Paris, France, pp. 70–86, 2020.

[6] M. Sivaram, D. Yuvaraj, A. S. Mohammed, V. Manikandan, V. Porkodi et al., “Improved enhanced dbtma with
contention-aware admission control to improve the network performance in manets,” Computers, Materials &
Continua, vol. 60, no. 2, pp. 435–454, 2019.

[7] S. Menaka and M. Jayanthi, “Effective stale routes management using preemptive routing in DSR,” World
Applied Sciences Journal, vol. 22, no. 11, pp. 1554–1560, 2013.

1602 IASC, 2022, vol.32, no.3

[8] S. A. Almazok and B. Bilgehan, “A novel dynamic source routing (DSR) protocol based on minimum execution
time scheduling and moth flame optimization (MET-mFO),” EURASIP Journal on Wireless Communications and
Networking, vol. 2020, no. 1, pp. 1–26, 2020.

[9] J. Chen, Y. Tang, D. Fu and H. Chang, “On the improving strategies upon the route cache of DSR in MANETs,” in
Int. Conf. on Ubiquitous Intelligence and Computing, Xi’an, China, pp. 445–458, 2010.

[10] S. Ali, A. Ahmed and M. Raza, “Towards better routing protocols for IoT,” in 2019 2nd Int. Conf. on Computing,
Mathematics and Engineering Technologies (iCoMET), Sindh, Pakistan, pp. 1–5, 2019.

[11] N. Ahmad, S. Sethi and M. Ahmed, “Cache-aware query-broadcast to improve QoS of routing protocols in
MANETs,” Wireless Personal Communications, vol. 113, no. 1, pp. 481–498, 2020.

[12] Q. Liang, T. Lin, F. Wu, F. Zhang and W. Xiong, “A dynamic source routing protocol based on path reliability and
link monitoring repair,” Plos One, vol. 16, no. 5, pp. e0251548, 2021.

[13] H. Alani, M. Abdelhaq and R. Alsaqour, “Dynamic routing discovery scheme for high mobility in mobile ad hoc
wireless networks,” International Journal of Electrical and Computer Engineering, vol. 10, no. 4, pp. 3702–3714,
2020.

[14] S. R. Malwe, N. Taneja and G. Biswas, “Enhancement of DSR and AODV protocols using link availability
prediction,” Wireless Personal Communications, vol. 97, no. 3, pp. 4451–4466, 2017.

[15] W. Lou and Y. Fang, “Predictive caching strategy for on-demand routing protocols in wireless ad hoc networks,”
Wireless Networks, vol. 8, no. 6, pp. 671–679, 2002.

[16] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc wireless networks,” in Mobile Computing,
T. Imielinski and H. F. Korth (Eds.), Boston, MA: Springer, US, pp. 153–181, 1996.

[17] V. Mandhare, V. Thool and R. Manthalkar, “A novel approach to improve quality of service in MANET using
cache update scheme for on-demand protocol,” International Journal of Communication Networks and
Distributed Systems, vol. 18, no. 3–4, pp. 353–370, 2017.

[18] M. K. Marina and S. R. Das, “Performance of route caching strategies in dynamic source routing,” in Proc. 21st
Int. Conf. on Distributed Computing Systems Workshops, Arizona, USA, pp. 425–432, 2001.

[19] X. Yu and Z. Kedem, “A distributed adaptive cache update algorithm for the dynamic source routing protocol,” in
Proc. IEEE 24th Annual Joint Conf. of the IEEE Computer and Communications Societies, Florida, USA,
pp. 730–739, 2005.

[20] D. Marandin, “Improvement of link cache performance in dynamic source routing (DSR) protocol by using active
packets,” in Int. Conf. on Next Generation Wired/Wireless Networking, St. Petersburg, Russia, pp. 367–378, 2007.

[21] A. A. Ayoob, N. Sulaiman, M. N. Mohammed and G. M. Abdulsahib, “Reduction the effect of mobility in link
transmitting using efficient DSR route cache for MANETs,” Journal of Advances in Computer Networks, vol. 2,
no. 4, pp. 254–260, 2014.

[22] S. Chatterjee and S. Das, “Ant colony optimization based enhanced dynamic source routing algorithm for mobile
Ad-hoc network,” Information Sciences, vol. 295, pp. 67–90, 2015.

[23] C. Pu, S. Lim, J. Chae and B. Jung, “Active detection in mitigating routing misbehavior for MANETs,” Wireless
Networks, vol. 25, no. 4, pp. 1669–1683, 2019.

[24] T. Pino, S. Choudhury and F. Al-Turjman, “Dominating set algorithms for wireless sensor networks survivability,”
IEEE Access, vol. 6, pp. 17527–17532, 2018.

[25] K. Preetha and A. Unnikrishnan, “Improving the routing performance of mobile ad hoc networks using
domination set,” Procedia Computer Science, vol. 46, pp. 1209–1215, 2015.

IASC, 2022, vol.32, no.3 1603

	A Dominating Set Routing Scheme for Adaptive Caching in Ad Hoc Network
	Introduction
	Background and Related Work
	DSR Route Caching Algorithm
	Implementation of DBR in DSR Protocol
	Simulation and Experiment Settings
	Results and Discussions
	Conclusion and Future Research
	flink8
	References

