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Abstract: The research work presents a collision prediction method of mobile
robots. The authors of the work use so-called, virtual cocoons to evaluate the col-
lision criteria of two robots. The idea, mathematical representation of the calcula-
tions and experimental simulations are presented in the paper work. A virtual
model of the industrial process with moving mobile robots was created. Obstacle
avoidance was not solved here. The authors of the article were working on colli-
sion avoidance problem solving between moving robots. Theoretical approach
presents mathematical calculations and dependences of path angles of mobile
robots. Experimental simulations, using the software Centaurus CPN, based on
colored Petri nets, has shown, that the possible conflict can be predicted in
advance using calculations of the angle of movement of two possibly colliding
cocoons. Authors of the paper presents and explains experimental simulations,
where robots are moving in different path angles, which intersects each other. Pro-
posed collision avoidance algorithm solves collision avoidance task using several
possibilities. Software Centaurus CPN gives possibility to stop simulation of man-
ufacturing process in the place where it finds possible collision between two
cocoons. In order to check correctness of proposed collision prediction and avoid-
ance algorithm, further simulation is done step by step, while situation is solved.
Simulated manufacturing process is continued till new possible collision is
obtained.

Keywords: Robots control; prediction of conflicts; multi-robot system; protective
sheath “cocoon”; robot motion control

1 Introduction

Multi-robot path planning and motion coordination addresses the problem of how teams of autonomous
mobile robots can share the same workspace while avoiding interference with each other and/or while
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achieving group motion objectives. Nearly all applications of multiple autonomous mobile robots must
address this issue of motion coordination, either explicitly or implicitly. Multi-robot path planning [1–3]
and teaming have been extensively studied since the 1980s [4–6].

In modern industry, robots or robotic systems are integrated alongside traditional control systems to
increase the quality and efficiency of production. Especially considering the challenges of Industry 4.0,
where the application of robots is one of the most actual [7]. Most of the robots are stationary and have
dedicated fixed working places. Improvement of industrial manufacturing increasingly evolves an
application of mobile robots, which transfer products from one part of the production to the next for
further processing. Mobile robot teams share the same workspace when performing tasks, so it is
important to plan the path of multirobots and coordinate their movements to avoid interference with each
other and achieve the goals of group movement [1,8]. Such robots are usually controlled by a supervision
control system that communicates with each mobile robot on the field [9–11]. Collision avoidance is one
of the most important tasks in the manufacture with mobile robots. Effective usage of mobile robots
requires many functionalities such as localization, map building, planning, and collision avoidance. The
authors of the work proposed to use a supervision system, which should execute the mentioned tasks.
How-ever, the authors of this work restrict themselves to one task, i.e., solving a collision avoidance task
between moving robots.

Usually, the supervision system calculates the motion trajectories of mobile robots to carry out the
required work tasks and provide information to each robot separately [6,11–13]. The motion trajectory of
one mobile robot is designed to avoid a potential collision with static obstacles (columns, walls,
partitions) when the environment is known. These types of collisions are addressed through vector marks
[14,15], which determine the shortest possible path of the robot trajectories. Dynamic obstacles, which
can vary in size and location, can appear when more than one robot is used in the same known
environment. Therefore, new approaches are needed to solve the collision prediction task [3,16–18].
Certain predefined rules of the robot motion must be created and applied to avoid collisions. There are
many options for that, i.e., it is possible to steer around the obstacle, pause or stop the motion, or even
execute the task.

The systems, which can predict a possible collision, are necessary for the successful functioning of the
manufacturing process. The conflict situations of mobile robots can be avoided using the rules [14], but there
are many other methods, which refer to the advanced prediction of the possible robot collision [19–22]. The
authors of the work [11] estimate so-called conflict-free proportions based on the measured velocity and
orientation axes. The Fuzzy method was applied to underwater robots [16], where the VFF (Virtual Force
Field) method for the navigation of underwater robots was applied. The authors of the work [5] have
proposed an in-line motion planning algorithm, which effectively solves possible collision problems.
These solutions are facilitating certain supervision systems that can perform virtual-time simulation and
make decisions in advance to prevent possible collisions. Work [23] describes robot path planning in
confined spaces and solves the problem of communication loss. The authors of the work [24] present
their solution for a swarm of the robot, which is based on Ant colony algorithm. In this case, all robots
seek one goal.

From the mentioned articles, it is obvious that there are many tested algorithms for mobile robots’ path
planning in a known or unknown environment. The usage of a supervisory system allows researchers to solve
information distribution and communication problems. Small parts and ideas of these researches were
merged while solving the mobile robot’s path planning and collision avoidance problem in the simulated
manufacturing process. The main differences from the mentioned works of many researchers are:
simulations are done in a known environment with a swarm of robots, which are seeking their own goals;
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no additional equipment in manufacturing for the robot’s navigation is necessary; collision avoidance is
analyzed when two robots collide.

The possible collision of two moving robots can be simulated in advance using a supervision-based
control system, and the motion trajectories of those robots can be changed accordingly. The authors
of the paper have designed a special virtual environment, based on colored Petri nets, called
“CentaurusCPN”, which consists of various robot navigation, possible collision estimation, and
forecasting tools. The mobile robots in the virtual environment are modeled as close as possible to real
robots. Virtual robots have all physical properties, needed to simulate real-world situations. Each mobile
robot in a simulated system has its number, the system generates the priority of the task.

The concept of virtual cocoons is used in the publication to evaluate the collision criteria of two robots.
The motion of the mobile robots is controlled by the supervision system, which autonomously envelops each
robot in an individual virtual cocoon.

2 Cocoon Collision Rules for Conflict Prevention

A centralized method of mobile robots’ conflict prediction is proposed. Flexible manufacturing is
chosen as an analyzed system, where mobile robots execute tasks given by the central control system
services industrial process. In this case, solving mobile robot navigation problems can be transferred to a
supervisory system. The supervisor-based system is solving mobile robots’ navigation problems and
searches for the shortest path using colored Petri nets [14,15] in a virtual environment. All parties of the
virtual system are functioning asynchronously. Usage of colored Petri nets enables, in a virtual
environment, to solve part of mobile robot navigation problems. As a result, the final coordinates of
movement to the target point in the shortest path are established, but the conflict situations with dynamic
obstacles are not solved in this paper.

For the detection of possible conflicts, the authors suggest using knowledge of the principles of finding
obstacles in the darkroom. The collision between two mobile robots is fixed only then, when the robots touch
one other, as shown in part a of Fig. 1. There are two possibilities to react to this situation in this case. Such a
situation is modeled in a virtual environment. The authors of the article offer to put the tegument or security
zone for the mobile robot. Then there is the possibility to forecast possible collisions. If two teguments,
which are named as cocoons, touch one another, it can be said that mobile robot goes closer to each
other, as shown in part b of Fig. 1. If the supervisory system knows the directions of mobile robots’
movement, there are all possibilities to forecast possible collisions. It is possible to conclude exactly
when the conflict between mobile robots will occur or not if cocoons collide.

The virtual environment gives the possibility to predict and analyze the movement of the mobile robots,
so their actions can be forecasted in advanced time. The problem of collision is solved much faster in a virtual

Figure 1: Examples of collisions between two mobile robots: without cocoon (a) and with cocoons (b)
mathematical representation of the condition of a robot passing without collision
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environment than in the real world; therefore, using specified methods and defined rules, the conflict is solved
even when real robots are standing in starting positions. After modeling, coordinates of the path are sent to
real mobile robots, which can move using this information without collision with each other. There is no
guarantee that mobile robots will move exactly according to the given coordinates and they will not
change due to the asymmetry of the wheels or other reasons. In this case, the supervisory system must
know the coordinates of the mobile robot in real-time, and if they deviate from the given, it must correct
the movement paths according to the changed coordinates.

jb0 � a0j. 2
ffiffiffi
2

p � Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosða� bÞp ¼ 2R

cos
a� b
2

� � (1)

where b0 and a0-distances between robot center and paths intersection, R – robot radius, α, and β-robot
movement path direction angles.

When cocoons collide, there can be situations when robots will collide or will not collide, as shown in
Fig. 2.

Situation (a) in Fig. 2. Robot A is further from the path’s intersection point; robot B is closer to it when
their cocoons contact each other. In a virtual environment, the authors show the next positions of each mobile
robot, starting from this point of time (positions 1 .. 4, when robots move at the same speed). Robot B moves
earlier through the intersection of the paths and the robots do not collide, although cocoons collide.

Situation (b) in Fig. 2. Robot B is further from the path’s intersection point; the robot A is closer to it
when their cocoons contact each other. In a virtual environment, the authors show the next positions of each
mobile robot, starting from this point of time (positions 1 .. 4, when robots move at the same speed). Robot A
moves earlier through the intersection of the paths and robots do not collide, although cocoons collide.

In situation c of Fig. 2 robot B is further from the path’s intersection point, the robot A is closer to it when
their cocoons contact each other. In a virtual environment, it is shown the next positions of each mobile robot,
starting from this point of time (positions 1 .. 4, when the robots move at the same speed). The robots collide.
The distances between robots and the paths intersection point are not sufficient, because condition (1) is not
fulfilled.

Fig. 2 shows that the usage of cocoons enables to forecast of possible collisions, but in one case there is
no need to take any action. In the other case, there is a need to take some actions to avoid a collision.
The question is, what are the likely conditions of mobile robots’ collision if two cocoons collide?

Figure 2: Possible situations after the collision of the cocoons, when the directions of the movement and
path intersection point are in the same place. Robots do not collide in situations (a) and (b), and the
robots collide in situation (c). The collision of the robot depends on the angles of the cocoons collision
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Fig. 2 shows the different path angles of the robot when connecting their paths and centers of the robots
into one line. When paying attention to these angles, it’s possible to notice that there is an angle difference
between collided cocoons even if the robots collide or not. Therefore, using these angles there is the
possibility to predict when a real collision between robots will be when cocoons collide. Angles are
measured from the vector of robot movement direction against clockwise until the line between centers of
the mobile robots. After converting the angles, the situation shown in Fig. 3, is obtained.

In such a way, two moving robots in a known environment potentially collide. The potential conflict
between them depends on the movement routes crossing the angle α–β and the distance to the path’s
intersection point [14]. Fig. 2 shows two potential conflicts: the first one, when the first robot is closer to
the point of intersection of routes; the second one when the first robot is further from the point of
intersection of routes. Suppose that each robot “fits” into the circle with radius R, the size of the cocoon
is kR, where k is a multiplier of the cocoon, as shown in Fig. 3. According to this, a robot, which is
closer to the intersection of routes, should have priority to cross the intersection.

Bypassing robots without conflict clause [4] derived equations describing the distances to the robot
cocoon intersection point preconflict situation. Expressions (2) and (3) refer to the preconflict situation. If
the conflict can be predicted by the distance to the inter-section of routes, it can be assumed that the
conflict can be predicted by cocoons intersection angles γ, δ. It consists of the angles between the robot
moving direction and the point of intersection (Fig. 3).

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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For the calculation of γ, δ angles, the trigonometric semi-perimeter p (4) and the angles of a triangle
formula are used, over them expressing the angles. Expressions (5) and (6) are obtained.

Figure 3: The first robot is closer to the point of intersection of routes

p ¼ p
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2
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d ¼ 2 � arctg
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Since the collision in Fig. 1 part c, draws a triangle, a high change angle of a triangle occurs. It occurs
when a robot, whose abscissa is equal to “a” and moving by the abscissa axis passes through the point
intersection of tracks. The collision, which is shown in Fig. 2 also draws a triangle-like area, where a
high change in the angle of a triangle occurs when a Robot 2 is placed at the intersection of routes and
b = 0. Therefore, the high change in the angle of the triangle occurs when a = 0 or b = 0. At what angle α-
β will be an exchange of a triangle can be calculated by (7) equation.ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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After making the appropriate changes, between the final angle the intersection of routes expression (9) is
obtained.

a� b ¼ 2 � arctg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk þ 2Þ

p� �
(9)

From the expression (9) authors notice, that the angles of a triangle suddenly changes, and the triangle
disappears at that moment. This situation is outlined that it depends only on k. Sudden change in angle limit
dependence on the size of the cocoon. A preconflict situation is planned to solve according to the values of
the triangle angles. In this case, the triangle disappears and other conditions of the establishment will be used.

Eqs. (2) and (3) are converted to a coordinate system. Model, which views the preconflict situations of
the robots, is modeled. This model, according to Eqs. (5) and (6), gives meaning to these angles. Angles
of the cocoon collision are measured de-pending on the direction of the movement, according to the
clockwise. The values of the angles can vary from 0° to 360° and the obtained results are not real angles of
the triangle. This is shown in the modeling results in Fig. 4.

Figure 4: Dependence of the marginal triangle angle, when cocoons collide, on the paths intersection angle
when the cocoon size is 2R
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Cocoons intersection angle is converted to triangle angles and the obtained result is shown in Fig. 5.

This Fig. 5 illustrates the calculated triangle angles, in the state of co-coon contact before robot collision
and the paths intersection angle α–β, varying from 0° to 360°. During modeling, the size of the cocoon radius
is two times bigger than the robots’ radius. Distance equations used in calculations, were obtained according
to the condition of robot conflict detection (1), described in the second chapter. Obtained values of the angles
can be treated as limits, which could indicate angle limits, where real robot collisions could be possible.

The transformed angles are calculated after a sudden change of angle of the triangle, using Eq. (9). When
the cocoon diameter is twice bigger, that robot diameter, the graph, shown in Fig. 5, is obtained.

From Fig. 5 the dependencies when robot I has priority to robot II, are got. If the angle is converted, the
robot, which is in the field of I, has priority over the other, whose angle in the field is in II. If the angles are
identical and the value is on line III, robots have equal rights and priority; therefore, there should be other
criteria.

It is possible to predict a real collision between the robots by the difference of trans-formed robots’
cocoons angles. The angle value can be determined from Fig. 4, and the mathematical expression
presented in (10).

LA ¼ 180� � 2 � arctg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk þ 2Þ

p� �
(10)

This expression shows, that the limit angle LAvaries with the coefficient k. Graphical dependence of the
limit angle between k is shown in Fig. 6.

Fig. 6 shows dependence: when the cocoon size is increasing, LA value decreases. It leads to the
following conclusion: if the diameter of the robot cocoon is increasing, the number of robot conflicts,
compared to the number of detected cases of cocoon conflicts, will be low. It is appropriate to choose the
right size cocoon.

I

II

I

II

II

I

II

I

III

III

Figure 5: Limit values of the mobile robot cocoons collision of transformed angles to triangle angles,
depending on the angle of the moving mobile robot trajectories
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3 A Conflict Resolution Dependence on the Contact Angle of Cocoons

To detect a possible collision of two moving robots, it is necessary to know the internal peer angle of the
triangle, whose vertices consist of three points, i.e., the centers of robots and the intersection point of routes
when the cocoons are contacting.

Let’s analyze the situation of two moving robots (Fig. 7). Let’s suppose, that the value of γ belongs to
robot R1 and δ belongs to R2 robot. According to these angles, the direction of the conflict approach can be
set. If the value of robot angle γ and δ is more than 180°, the obstacles are approaching from the right. If a
value of robot angle γ and δ is less than 180°, obstacles are approaching from the left. If the robot angle γ and
δ are equal to 180°, then the obstacle is approaching from the opposite side.

According to the cocoons contact angles of the conflict probability condition, as can be seen from
expression (10), LA depends on the size of the coefficient k. The potential situation for conflict depends
on the diameter of the cocoon. However, it should be noted, that this condition is suitable, when both
robots are moving toward the intersection of the movement vector and when the robot, whose angle is
smaller, is moving away from the point of routes vector intersection. When (10) condition is not fulfilled,
there are two conditions for potential collision:

� (γ > δ) and (γ + δ > 90°) and R2 approach to the point of intersection of the movement vector and
R1 moving away (example in Fig. 6);

� (γ < δ) and (γ + δ > 90°) and R2 moving away from the point of intersection of the movement vector
and R1 approaching.

jc� dj � LA (11)

Figure 6: Dependence of limit angle LA on cocoon size (angle difference area I when robot conflict is
predicted, angle difference area II when no conflict is expected)

Figure 7: One state of the possible robot cocoons touching states when robots will face each other
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There are several possibilities to resolve the conflicts between robots: stopping one of the conflicting
robots, one or both conflicting robots has to change the trajectory or change its speed. The solution, when
one of the robots stops, is limited. Depending on the cocoon size, the distance to the robot’s point of
conflict may be too small to stop one of the robots to solve the conflict. The suspension is not available,
when the robot movement vector angle difference in absolute size falls into the range (180°− LA<=…
<=180°+ LA) or under Fig. 4, LL<=…<=LH. In this case, a possible solution would only change the path.

4 Algorithm of Collision Avoidance and Experiments

Software “CentaurusCPN” is enabled to solve mobile robot path planning tasks [15]. The calculated
path is the shortest according to its length in the current situation, but collisions between robots are not
taken into account in work [15]. Authors had to modify the structure of dynamic region description when
“cocoons” were started to apply.

An image of the created model for experimental testing of the algorithm is shown in Fig. 8. Fig. 8 shows
a production workshop serviced by 17 mobile robots, where from the starting position “1” the robots are
directed to the work piece warehouses “2”. Robot transports work pieces according to the free space of
the production machine “3” and type of the required part. After manufacturing tasks are executed, the
free robot takes the product from “3” and delivers them to the warehouse “4” or to the place of delivery “5”.

The central control system selects the free robot, which is the closest to the original target for the next
task, assigning it execution tasks and coordinates. It has been observed that the functioning of a system that
uses a supervisory system to solve common or global tasks is much more rational, especially when it comes
to systems where navigation and conflict situations are resolved in a known environment.

Fig. 9 shows fragment, servicing for cocoons collisions of the model, i.e., program interrupts are
executed in this case. Usually in “CentaurusCPN” and colored Petri nets transition (742 position) can use
only the values of incoming tokes from the branches and generate new tokens according to the current

Figure 8: CENTAURUSCPN model depicting the production workshop with tracks. 1-Robot service,
starting position from sleep position; 2-work piece warehouse; 3-production machine tools; 4-warehouse
of finished parts; 5-product collection point for removal; 6-robots paths
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situation. If the interrupt is organized, then a transition becomes a place for generating the special token. The
token is generated when two cocoons collide. The transition has an inspection expression with the special
function DynCnflct( ), which generates the parameters of collided cocoons. When two cocoons collide or
touch each other, the function generates a “TRUE” value. This function is used for activation of the
transition and serves for further execution of the functions.

Function DynCnflct( ) generates a function Conflicting, which provides information about conflicting
parts:

“REG2”, 5.76672E + 0000, “REG1”, 6.15942E + 0000, 1.50148E + 0001, 8.34228E + 0001, 2.74889E
+ 0000, 1.49000E + 0001, 8.49000E + 0001

Here: (Name of 1-st robot region), (the angle between the vector of the direction of movement of this
region and the vector towards the center of the chord of the intersection of the cocoons), (Name of 2-nd
robot region), (the angle between the vector of the direction of movement of this region and the vector
towards the center of the chord of the intersection of the cocoons), (abscissa of intersection chord mid),
(ordinate of intersection chord mid), (angle of intersection of the traces), (abscissa of point of intersected
traces), (ordinate of point of intersected traces).

Using the results of the Conflicting function, the following steps, as shown in Fig. 10, are performed.
Block diagram shows the procedure, where “I” shows the beginning of a procedure called “Conflict
Resolution”, from which the steps of identifying and resolving all conflicts between them begin. These
actions begin with the DynCnflct( ) function, which activates the transition in Petri nets when a cocoon
collision is detected.

Figure 9: Interrupt model in “CentaurusCPN”. 743-position, 742 and 707-transitions. 742 transition
generates interrupt parameters when two cocoons collide

Figure 10: Functional block diagram of the procedure “conflict resolution”
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Step II extracts the cocoon conflict information from the system using the Conflicting ( ) function. In step
III, using the previously obtained information, the procedure of con-verting angles into triangular angles is
performed by activating the function “angles ( )”. After this procedure, the information obtained in step “IV”,
steps “II” and “III” is transmit-ted to the “Conflict ( )” block of the conflict event check between real robots,
which results in “YES” or “NO”. A score of “NO” indicates a negative likelihood of conflict, and the “con-
flict resolution” procedure ends with a jump to step VII, a “YES” to a future conflict, and then the next step,
step V, to type, prioritize, and select the required actions for the conflict to solve. In step VI, the conflict
resolution commands are executed according to the conflict type number, after which the “conflict
resolution” procedure is completed in step VII.

When two cocoons collide, the function DynCnflct( ) is not stopped until the cocoons separate from each
other. To avoid it, a new function BanCnflct( ) is used. This function eliminates recapturing of the same
conflicts, using the names of robot regions.

When the cocoons break up, they are reestablished in a state of a possible new conflict between them. If
the situation makes it necessary to place the model in such a state that conflicts need to be rerecorded, the
ClrCnflcts ( ) function has been created by clearing the conflicts of the required robot cocoon with all
previously prohibited conflicts.

These additional functions are included in the list of standard software features. All these mentioned
functions are used to capture the contact between the cocoons, but it does not check whether the actual
collision of the cocoons will result in a robot collision.

For the convenience of modeling, when dealing with situations with a cocoon, changes have also been
made in the software windows: cocoons can be shown or hidden, collisions can be monitored by robots with
cocoons or robots without cocoons.

Conditions and algorithms mentioned above are realized in CentaurusCPN by modeling mobile robots’
movement. During experiments, speed of the robots was not changing, the dimensions of the robots with
cocoons were the same, there were no noises and other technical problems or disturbances. Experimental
testing was done when 2 cocoons collided. The conflict situations were solved between 2 collided robots.
Software CentaurusCPN allows communication with mobile robots, but real situation testing was not
done. Results of the simulations are shown in Figs. 11–14. These simulations illustrate virtual robot
movement in the known environment, indicating their positions in seconds.

Figure 11: Experimental situation 1

Figure 12: Experimental situation 2
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Experimental situation no. 1 (Fig. 11) shows an example where paths of two mobile robots intersect at
45° and the right robot is closer to the paths intersection point, and it has priority. The situation is observed
step by step, starting from 5.8 s; after the cocoon collision at 7.8 s, the right robot has priority; at 9.8 s left
robot stops to give a path to the right robot; at 11.8 s both robots continue their movement according to the
planned path and at 13.8 s the conflict situation is over when both robots proceed their tasks and recede from
the intersection point.

Experimental situation no. 2 (Fig. 12) shows an example, where the paths of mobile robots intersect at
90°, the robot located on the right side is closer to the paths intersection point and it has priority. The situation
is observed step by step, starting from 7 s; after cocoon collides at 9 s, due to the right robot priority, the robot
moving across the ordinate axis stops to pass the robot, moving from the right side; when the robot, that has
priority, passes at 11 s began to move; at 13 s collision situation is solved, both robots proceed their tasks and
recede from the intersection point.

Experimental situation no. 3 (Fig. 13) shows an example, when the paths of two mobile robots intersect
at 157.5°, the robot moving from the top is closer to the path’s intersection point and it has priority. In this
case, if any robot will be stopped, the conflict situation will not be solved. The situation is observed step by
step, starting from 7.4 s; cocoons collide at 9.4 s; due to the priority of the robot going from the top, the robot
at the bottom has to move to the safe right side and give the path at 11.4 s; at 13.4 s robot, going to the top,
returns to his previous path and at 15.4 s proceeds his tasks.

Experimental situation no. 4 (Fig. 14) shows an example, where two robots move parallel to close to
each other. Robot going to the top has priority. The situation is observed step by step, starting from 9 s;
after the cocoons collide at 11 s, due to the priority of the robot, going to the top, another robot moves to
its right side at 13 s; at 15 s it returns to its’ path and at 17 s the conflict situation is over a fixed
situation, when both robots proceed their tasks.

Figure 13: Experimental situation 3

Figure 14: Experimental situation 4
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5 Conclusions

The authors of the article propose to put a shell or protective zone (cocoon) for each robot in a virtual
environment, which makes it possible to predict a near-collision state. If two such shells (cocoons) come into
contact, it is clear that the mobile robots are approaching each other. Mathematical expressions have been
established for this situation, which al-lows determining the difference between the locations of the robots
at the intersection of the tracks, whether the real robots will collide or not.

It has been found that collision prediction can be made based on cocoon collision angles. Angle limits
have been set for when robots will collide when they do not. The limit values for these angles depend on the
size of the cocoon and decrease as the size of the cocoon increases.

Using the values of cocoon angles, the most appropriate way of stopping, exiting, or complex (both
robots take action) future conflict between them is calculated.

Simulation examples demonstrate the logic of cocoon functioning. Part of the conflicts of mobile robots
that do not cause cocoon collisions is ignored, the other part predicts collisions when predicting mobile robot
collisions: one of the robots is stopped to avoid a collision, otherwise, one of the mobile robots leaves its trace
and returns only when the path will be free.
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