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Abstract: To solve single and multi-objective optimization problems, evolution-
ary algorithms have been created. We use the non-dominated sorting genetic algo-
rithm (NSGA-II) to find the Pareto front in a two-objective portfolio query, and its
extended variant NSGA-III to find the Pareto front in a three-objective portfolio
problem, in this article. Furthermore, in both portfolio problems, we quantify the
Karush-Kuhn-Tucker Proximity Measure (KKTPM) for each generation to deter-
mine how far we are from the effective front and to provide knowledge about the
Pareto optimal solution. In the portfolio problem, looking for the optimal set of
stock or assets that maximizes the mean return and minimizes the risk factor.
In our numerical results, we used the NSGA-II for the portfolio problem with
two objective functions and find the Pareto front. After that, we use Karush-
Kuhn-Tucker Proximity Measure and find that the minimum KKT error metric
goes to zero with the first few generations, which means at least one solution con-
verges to the efficient front within a few generations. The other portfolio problem
consists of three objective functions used NSGA-III to find the Pareto front and
we use Karush-Kuhn-Tucker Proximity Measure and find that The minimum
KKT error metric goes to zero with the first few generations, which means at least
one solution converges to the efficient front within a few generations. Also, the
maximum KKTPM metric values don’t show any convergence until the last
generation. Finally, NSGA-II is effective only for two objective functions, and
NSGA-III is effective only for three objective functions.
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1 Introduction

Genetic algorithms (GA) have been widely employed as optimization and search methods in a variety of
problem domains [1,2], including industry [3], architecture [4], and research, over the past ten years [5,6].
Their strong applicability, global outlook, and ease of usage are the key explanations for their high
success rate.

Genetic algorithms are the most common algorithms for solving many real-life applications. These
algorithms are inspired by natural selection. Genetic algorithms are population search algorithms, which
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introduced the idea of survival of the best fitness function. Most of these algorithms incorporate the genetic
operation to obtain the new chromosome (solution). The basic genetic operations are selection, crossover,
and mutation [7].

In the past, the portfolio optimization problem was designed to find the configuration of assets that
generated the maximum expected return which was the main criterion. However, this design changed in
1952, a new variable with the expected return was introduced by Harry Markowitz that called the risk of
each portfolio. Thereafter, analysts began to incorporate a risk-return trade-off in their models [8]. Harry
Markowitz doesn’t consider the real-world challenges as cardinality constraints, lower and upper bounds,
substantial stock size, class constraint, round-lots constraint, computational power and time, pre-
assignment constraint, and local-minima avoidance.

In this article, we solve the portfolio problem [9] using two genetic algorithms, NSGA-II and NSGA-III.
The competing parameters in the portfolio dilemma are optimizing anticipated return and mitigating risk, also
known as the Markowitz, mean-variance model [10].

1.1 Aim of the Study

This study aims to find the Pareto front for portfolio problems with two and three objective functions
using the methods NSGA-II and NSGA-III which are simpler and easy to apply. Those methods can
address portfolio optimization problems without simplification and with decent results in a fair amount of
time, and it has a lot of practical applications. we obtained solutions for the portfolio models using
NSGA-II and NSGA-III same as theoretical solutions.

1.2 Novelty and Contributions

The main contributions of this paper are as follows:

� A genetic algorithm can be used to find the Pareto front for portfolio optimization problems which are
the same as those found in other approaches.

� A genetic algorithm can handle the portfolio optimization problems without simplification and with
decent results in a fair amount of time.

� The two cases studied were presented to prove the applicability of the genetic algorithm.

� The framework of NSGA-II and NSGA-III are elaborated in algorithms 1 and algorithm 2.

1.3 Study Structure

In the following part of the article, we first give a literature review of NSGA-II, NSGA-III, and portfolio
optimization problems in the second section. After that, we explain the concept of the NSGA-II method. The
NSGA-III is discussed in the fourth section. The Karush-Kuhn-Tucker proximity measure (KKTPM) is
analyzed in section five for multi-objective optimization problems [11,12]. In section six, evolutionary
algorithms are used to solve a portfolio dilemma. Finally, in section seven, we bring the article to a close.

2 Literature Review

2.1 NSGA-II

There are many studies in NSGA-II. Deb et al. [13] have proposed NSGA-II which improves the
iterative convergence rate while ensures population diversity by employing the fast non-dominated
sorting approach. Kodali et al. [14] used NSGA-II to solve a problem that involves two objectives, four
constraints, and ten decision variables of the grinding machining operation. Wang et al. [15] have used
improved NSGA-II to solve multi-objective optimization of turbomachinery.
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2.2 NSGA-III

There are some studies in NSGA-III. Deb and Jian [16] have proposed the first algorithm of NSGA-III to
solve multi-objective optimization problems. Mkaouer et al. [17] are used NSGA-III to solve many-objective
software remodularization. Zhu et al. [18] were studied an improved NSGA-III algorithm for feature
selection used in intrusion detection. Yi et al. [19] were studied the behavior of crossover operators in
NSGA-III for large-scale optimization problems.

2.3 Portfolio Problem

Markowitz [20] was proposed the portfolio problem, that it is looking for the expected mean-return is
maximized (profit), and the risk is minimized. The factor in measuring risk is the variance of the portfolio
return; the smaller the variance lower will be the risk. Michaud [21] has found that mean-variance theory
has some limitations because asset volatility is required for constructing the model, and determining an
asset’s future volatility is challenging in practice. Momentum investment is a well-known quantitative
investment strategy. Hong and Stein [22] show that this strategy, the momentum effect is used to reveal
the price stickiness of stocks over a certain period; this information is then used to predict price trends
and make investment decisions.

3 NSGA-II or Elitist Non-Dominated Sorting GA

The NSGA-II protocols [23] is the most used EMO procedure for finding multiple Pareto-optimal
solutions in a multi-objective optimization problem, and it has the following features:

It employs three principles: 1. an apparent diversity-preserving mechanism; 2. an elitist principle; and 3.
non-dominated alternatives are stressed.

Consider a community of size N , with parent and offspring populations Pt and Qt. Making Rt ¼ Pt [ Qt

by combining offspring and parent populations in the first process. Rt should be non-dominated sorted to
distinguish various fronts Fi; i ¼ 1; 2; . . . ; etc. Set a new population Ptþ1 ¼ [ and a counter i ¼ 1
before Ptþ1j j þ Fij j < N is reached. Ptþ1 ¼ Ptþ1 [ Fi and i ¼ iþ 1 are the steps to take. Then use the
crowding-sort Fi; <Cð Þ protocol to get the most distributed N � Ptþ1j jð Þ solutions by sorting the
crowding distance values in the sort from Fi to Ptþ1. To build an offspring population Qtþ1 from Ptþ1,
use the crowded tournament array, crossover, and mutation operators.

Now we demonstrate a crowded tournament collection operator. The crowded comparison operator
<Cð Þ performs a comparison between two solutions and returns the tournament's winning answer. It is
assumed that every solution i has two characteristics. The community has a local crowding distance dið Þ
and a non-domination rating ri.

Definition: If all of the above assumptions are true, the crowded tournament selection operator [24]
compares two solutions (solution i and another solution j), and solution i wins the tournament. If ri < rj,
it implies the solution i has a higher ranking. If ri ¼ rj and di > dj, the solutions are of equal level, but
solution i has a shorter crowding distance than solution j.

Crowding gap; To find the estimation density of solutions around a given solution i in the community,
one takes the average distance between the two solutions on each side of solution i through each of the
objectives. This di serves as the cuboid's estimated diameter, which is calculated by using the cuboid's
nearest neighbors as vertices, a process known as crowding time. For each point in the set F, calculate
the crowding distance as follows (crowding type Fi; <Cð Þ: First and foremost, First, set di ¼ 0 for each i
in the set. l ¼ Fj j equals the number of solutions in F. Find the ordered indices vector Im ¼sortðfm; >Þ
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for each objective functionm ¼ 1; 2; . . . ;M , or sort in the collection in the worst order of fm. dIm1 ¼ dIml ¼ 1
or assign a significant gap to the boundary solutions for m ¼ 1; 2; . . . ;M, and all other solutions j ¼ 2 to
l � 1ð Þ, assign:

dImj ¼ dImj þ
f

Imjþ1ð Þ
m � f

Imj�1ð Þ
m

f maxm � f minm

(1)

The lowest and highest objective function values are denoted by I1 and Il, respectively. Algorithm 1, for
generation t of NSGA-II procedure [25].

Algorithm 1: NSGA-II

Input: Problem Size, Population size, P mutation, P crossover
Output: Children

1. Population  Initialize Population (Population size, Problem Size)
2. Evaluate against objective functions (Population)
3. Fast Nondominated Sort (Population)
4. Selected  Select parents by rank (Population, Population size)
5. Children  Crossover and mutation (Selected, P crossover, P mutation)
6. While (Stop Condition())
7. Evaluate against objective functions (Children)
8. Union  Merge (Population, Children)
9. Fronts  Fast Nondominated Sort(Union)

10. Parents [
11. FrontL  [
12. For ( Fronti 2 Fronts)
13. Crowding distance assignment (Fronti)
14. If ( Size (Parents)+ Size (Fronti) > Population size )
15. FrontL  i
16. Break()
17. Else
18. Parents Merge (Parents, Fronti)
19. End
20. End
21. If (Size (Parents)< Population size )
22. FrontL  Sort by rank and distance()
23. For (P1 to PPopulation size � Size FrontL)
24. Parents Pi
25. End
26. End
27. Selected Select parents by rank and distance (Parents, Population size)
28. Population Children
29. Children Crossover and mutation (Selected, P crossover, P mutation)
30. End
31. Return (Children).
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4 An Evolutionary Many-objective Optimization Algorithm Using Reference Point Based Non-
Dominated Sorting Approach (NSGA-III)

NSGA-III begins [26] with a random population of N members and a series of widely spaced
M-dimensional reference points H distributed over a unit hyper-plane with standard vector ones covering
the entire RM

þ field. The hyper-plane (HP) is set up in such a way that it intersects all of the objective

axes at the same time. The technique of Das and Dennis [27] is used to position H ¼ M þ p� 1
p

� �
reference points on the HP with pþ 1ð Þ points through any boundary. They choose the population size N
to be the smallest multiplied by four greater than H , with the assumption that one population member
would be obtained for all reference points.

The following procedures are carried out at descent t. Following the precept of non-dominated sorting,
all of the population Pt is sorted into different non-domination levels, close to how it is done in NSGA-II. The
children's population Qt is generated by using standard mutation and recombination operators on the Pt

population. Since only one population member is expected to be examined for any reference point, each
selection procedure in NSGA-III is unnecessary, as every selection operator would allow competition to
be established between different reference points. After that, a combined population Rt ¼ Pt [ Qt is
formed. Then, starting from the first non-dominated front, points are selected for Ptþ1 one by one until no
entire solutions from a full front can be used. This restriction is also common in the NSGA-II. Assume
that there is a final front that can't be fully selected as FL. Only a few solutions from FL that choose to be
selected from Ptþ1 use a niche-preserving operator, which we'll look at later. To begin, any population
unit of Ptþ1 and FL is normalized using the current population distribution, resulting in similar values for
all reference points and objective vectors. The shortest perpendicular distance ðdðÞÞ of each population
unit with a reference line generated by connecting a supplied reference point with the origin is then used
to correlate each component of Ptþ1 and FL with a specific reference point. Then, using reference points
in Ptþ1, a cautious (NS) niching technique is used to pick certain FL components that are associated with
the minimum. The (NS) niching strategy ensures that a population factor is selected for each of the
provided reference points [28]. A population variable that is compared with an unrepresented comparison
or an under-represented point is quickly outperformed. With a constant tension to ensure non-dominated
individuals, all phase is predicted to produce one population variable that correlates with any supplied
reference point near the (POF) Pareto-optimal front, assuming that the genetic difference operators
(mutation and recombination) will deliver specific solutions. Algorithm 2 summarizes the algorithm,
which uses widely spaced comparison points to ensure a well-distributed series of trade-off points at the
end. Algorithm 2, Generation t of NSGA-III procedure:

Algorithm 2: NSGA-III Approach

Input: H structured reference points Zs or supplied aspiration points Za, parent population Pt.
Output: Ptþ1.

1. St ¼ [; i ¼ 1:
2. Qt ¼Recombination and Mutation Pt:
3. Rt ¼ Pt [ Qt:
4. F1; F2; F3; . . .ð Þ ¼ Non-dominated sort Rt.
5. Repeat.
6. St ¼ St [ Fi and i ¼ iþ 1:
7. Until Stj j � N :

(Continued)
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5 Karush-Kuhn-Tucker Proximity Measure (KKTPM) for Multi-Objective Optimization

For a n-variable, M -objective optimization problem with J inequality constraints:

min
Xð Þ

f1 Xð Þ; f2 Xð Þ; . . . ; fM Xð Þf g;

Subject to gj Xð Þ � 0; j ¼ 1; 2; . . . ; J ; (2)

the Karush-Kuhn-Tucker optimality [29] conditions for Eq. (2) are given as follows:

XM
m¼1

umrfm X k
� �þXJ

j¼1
ujrgj X k

� � ¼ 0; (3)

gj X
k

� � � 0; j ¼ 1; 2; . . . ; J ; (4)

ujgj X
k

� � � 0; j ¼ 1; 2; . . . ; J ; (5)

uj � 0; j ¼ 1; 2; . . . ; J ; (6)

um � 0; m ¼ 1; 2; . . . ;M ; and u 6¼ 0: (7)

The um multipliers are not negative, but at least one of them cannot be empty. For the j-th inequality
constraint, the parameter uj is called Lagrange multiplier, and it is not even negative. A KKT point is a
solution X k that meets all of the above criteria. The inequality constraints gJþ2i�1 Xð Þ ¼ x Lð Þ

i � xi � 0 and
gJþ2i Xð Þ ¼ xi � x Uð Þ

i � 0 can be used to break inconstant the form x Lð Þ
i � xi � x Uð Þ

i . There are some
J þ 2n inequality limits for the previous issue of whether there are whole n pairs with particular
inconstant boundaries.

The authentic analysis generated an output scalarization feature (ASF) for a given repeated (solution) X k

[29]. A matter of optimization:

Algorithm 2 (continued)

8. The last front to be include Fl ¼ Fi:
9. If Stj j ¼ N then.

10. Ptþ1 ¼ St; break.
11. Else.
12. Ptþ1 ¼ [l�1j¼1Fj:
13. Points to be chosen from Fl : K ¼ N � Ptþ1j j:
14. Normalize objectives and create a reference set Zr: Normalize f n; St; Zr;Zs;Zað Þ:
15. Associate each member s of St with a reference point: p sð Þ; d sð Þ½ � ¼Associate St;Zrð Þ; p sð Þ ¼closest

reference point, d ¼ distance between s and p sð Þ:
16. Compute niche count of reference point j 2 Zr : qj ¼

P
s2St=Fl

p sð Þ ¼ jð Þ ?1 : 0ð Þ:
17. Choose K members one at a time from Fl to construct Ptþ1 : Niching K; qj;p; d;Z

r;Fl;Ptþ1
� �

:
18. End if.

min
Xð Þ

ASF X ; Z; Wð Þ ¼ maxMm¼1
fm Xð Þ � zm

wm

� �
;

Subject to gj Xð Þ � 0; j ¼ 1; 2; . . . ; J : (8)
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The reference point Z 2 RM was believed as a utopian point and the weight vector W 2 RM is computed
for X k as views:

wi ¼
fi X k
� �� ziPM

m¼1 fm X kð Þ � zmð Þ2
� �1=2

: (9)

Thereafter, the KKTPM calculation process advanced for single-objective optimization problems to the
ASF showed previously. So that the ASF formulation produce the objective function not differentiable, a
smooth transformation of the ASF (a performance scalarization function) problem was made firstly by
inserting slack variables xnþ1 and reconstructing the initial problem as views:

min F X ; xnþ1ð Þ ¼ xnþ1;

Subject to
fi Xð Þ � zi

wk
i

� xnþ1 � 0; i ¼ 1; 2; . . . ;M (10)

gj Xð Þ � 0; j ¼ 1; 2; . . . ; J :

At this moment, the KKTPM optimization problem for the previous single-objective problem for
y ¼ X ; xnþ1ð Þ can be written as follows:

min
ek ; xnþ1; uð Þ

ek þ
XJ

j¼1 uMþj gj X k
� �� �2

;

Subject to

����rF yð Þ þ
XMþJ

j¼1 ujrGj yð Þ
����
2

� ek ;

XMþJ
j¼1 ujGj yð Þ � �ek ; (11)

fj Xð Þ � zj
wk
j

� xnþ1 � 0; j ¼ 1; 2; . . . ;M ;

uj � 0; j ¼ 1; 2; . . . ;M þ J :

The added term in the objective function permits a penalty correlated with the violation of the
complementary slackness condition. The restrictions Gj yð Þ are given below:

Gj yð Þ ¼ fj Xð Þ � zj
wk
j

� xnþ1 � 0; j ¼ 1; 2; . . . ;M ; (12)

GMþj yð Þ ¼ gj Xð Þ � 0; j ¼ 1; 2; . . . ; J : (13)

The optimal objective value e�k to the above problem corresponds to the exact KKTPM. It is observed
that for feasible solutions e�k � 1, hence the exact KKTPM was defined as follows:

Exact KKTPM

X k
� � ¼ e�k ; feasible X k ;

1þPJ
j¼1 gj X

k
� �2

; otherwise:

(
(14)
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6 Results Section

In this section, we will solve a portfolio problem in special cases using NSGA-II in the first model and
NSGA-III in the second model. After that, we will show figures for each model. But, one must know the main
portfolio problem. The portfolio is a set of assets or securities (x1; x2; . . . ; xn) chosen to minimize the risk
and maximize the expected return. The risk is measure by the variance. The problem can be written as
following [30]:

max
Xn
i

rixi ;

min
Xn
i;j

xjxirij;

Subject to
Xn
i

xi ¼ 1;

xi � 0:

To illustrate the mechanism of the evolutionary algorithms and KKT proximity measure using an
evolutionary multi-objective (EMO) algorithm, we thought of three and two-objective Portfolio problems.
NSGA-II is used to solve two objective problems, while NSGA-III is used to solve three objective
problems. We use the SBX recombination operator [31,32] with pc ¼ 0:9 and gc ¼ 30 in every
problem, as well as the polynomial mutation operator [33,34] with pm ¼ 1=n (where n is the number of
variables) and gm ¼ 20 in every problem. In discussions about personal models, other criteria are listed.

6.1 Model-I for Portfolio Problem

Consider the three-security problems with expected returns vector and covariance matrix [35] given by:

r1; r2; r3ð Þ ¼ 0:062; 0:146; 0:128ð Þ and
r21 r12 r13
r12 r22 r23
r13 r23 r23

2
4

3
5 ¼ 0:0146 0:0187 0:0145

0:0187 0:0854 0:0104
0:0145 0:0104 0:0289

2
4

3
5:

Let X ¼ x1; x2; x3ð ÞT , where x1; x2; x3 are the proportions of an asset invested in the following model-I
and model-II. So model-I is [19,20]

max Er Xð Þ ¼ 0:062x1 þ 0:146x2 þ 0:128x3

min Vr Xð Þ ¼ 0:0146x21 þ 0:0854x22 þ 0:0289x23 þ 2 0:0187x1x2 þ 0:0145x1x3 þ 0:0104x2x3ð Þ
subject to x1 þ x2 þ x3 ¼ 1;

x1; x2; x3 � 0:

Fig. 1 shows the non-dominated points for model-I. In this figure, NSGA-II runs 200 generations with
100 population sizes. The obtained solutions exactly equal the previously exact obtained solutions. One
advantage of applying genetic algorithms is that we obtain many solutions in a single run. Also, Fig. 2
represents the relation between generation number and KKT proximity measure. As shown from the
figures, the KKT metric reduces with increasing the number of generations.
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6.2 Model-Il for Portfolio Problem [31]:

max En Xð Þ ¼ � x1 log x1 þ x2 log x2 þ x3 log x3ð Þ
max Er Xð Þ ¼ 0:062x1 þ 0:146x2 þ 0:128x3

min Vr Xð Þ ¼ 0:0146x21 þ 0:0854x22 þ 0:0289x23 þ 2 0:0187x1x2 þ 0:0145x1x3 þ 0:0104x2x3ð Þ
subject to x1 þ x2 þ x3 ¼ 1;

x1; x2; x3 � 0:

Fig. 3 shows the non-dominated points for model-II obtained by the NSGA-III algorithm. In this figure,
NSGA-III runs 300 generations with 100 population sizes. The obtained solutions for this model by the
proposed algorithm equal previously published results for this model. In Fig. 4, the relation between
generation number and the KKT proximity measure is introduced. As shown from the figures, the KKT
metric reduces with increasing the number of generations.

Figure 1: Pareto optimal points for model- I objective functions

Figure 2: KKT Proximity measure vs. generation number for Model-I using NSGA-II
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The minimum KKT error metric goes to zero with the first few generations, which means at least one
solution converges to the efficient front within a few generations. Also, the maximum KKTPM metric
values don’t show any convergence until the last generation.

7 Conclusion

The solutions found in genetic algorithms are the same as those found in other approaches, and they are
as effective. The genetic algorithm, on the other hand, is simpler and easier to apply. A genetic algorithm can
address portfolio optimization problems without simplification and with decent results in a fair amount of
time, and it has a lot of practical applications. NSGA-II and NSGA-III are used to address portfolio
problems in models I and II. We measure the smallest, first quartile, median, third quartile, and highest
KKTPM values as a function of generation, and the figure shows that KKTPM values decrease with
generation. The obtained solutions for the portfolio models using the genetic algorithms same as
theoretical solutions. NSGA-II is effective only for two objective functions, and NSGA-III is effective
only for three objective functions. NSGA-II can be solving real-life optimization problems with two
objective functions, and NSGA-III can be solving real-life optimization problems with three objective

Figure 3: Pareto optimal points for model- II objective functions

Figure 4: KKT Proximity measure vs. generation number for Model-II using NSGA-III
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functions. In the future direction of this work, we will extend the proposed algorithms with more real-life
applications with many objective functions.
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