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Abstract: Autonomous underwater vehicle (AUV) has many intelligent optical
system, which can collect underwater signal information to make the system deci-
sion. One of them is the intelligent vision system, and it can capture the images to
analyze. The performance of the particle image segmentation plays an important
role in the monitoring of underwater mineral resources. In order to improve the
underwater mineral image segmentation performance, some novel segmentation
algorithm architectures are proposed. In this paper, an improved mineral image
segmentation is proposed based on the modified U-Net. The pyramid upsampling
module and residual module are bring into the U-Net model, which are called
JPU-Net, JPMU-Net and ResU-Net. These models combined the power of the
residual block and the pyramid upsampling in the encoder part and in the decoder
part respectively. The proposed models are tested on the Electron Microscopy
images (EM) dataset and the underwater mineral image dataset. The experimental
results show that JPU-Net has superior performance on the EM dataset, and
JPMU-Net has a better segmentation result than existing convolutional neural net-
work on the underwater mineral image dataset.

Keywords: Autonomous underwater vehicle (AUV); image segmentation; deep
learning; underwater mineral image

1 Introduction

The ocean occupies 70% of the earth’s total area and is rich in mineral resources. The exploration and
effective mining of solid ore resources such as polymetallic sulfides, polymetallic nodules and cobalt nodules
in the deep-sea can effectively alleviate the current shortage of land resources. The development of deep-sea
mineral resources has become a new strategic goal for all countries. The traditional method based on
cableless grab sampling or multi-frequency detection cannot study the continuous distribution law of
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nodule mines in deep-sea mining areas due to insufficient sampling samples, and the mining area resource
evaluation accuracy is relatively low; the deep tow system is equipped with an underwater vision optical
device, which uses Non-contact photographic detection makes continuous visual sampling of minerals in
the mining area possible without destroying the seabed environment, and obtains a large number of rich
images of deep-sea minerals. Fig. 1 is the deep-sea mining system. They can be classified into two parts.
The first one is the shallow sea area, and the other one is the deep sea area. The former light which the
sensor captured is the sunshine, which can make the images generated by the underwater vision sensor
clear. The captured images in the second condition are different from the first because the light is artificial
light. However, so far, the research on the segmentation algorithm of these deep-sea mineral image
information is not sufficient and in-depth.

Deep Sea Mining System

Relay Warehouse
—-5000m _

Shallow Sea Area(with Sunshine) Deep Sea Area( with Artificial Light)

Figure 1: The deep-sea mining system. Which can be divided into two parts: shallow sea area with the
sunshine and the deep sea area with the artificial light

Image semantic segmentation algorithm has been widely used in real life. For example, in the medical
images processing area, the aneurysm tumor melanoma should be located for better excision, accurate
segmentation of heart and brain tissue can improve the reliability of the diagnosis of related diseases and
the treatment [1,2]. In the field of safety, the iris cannot be modified, so iris recognition can accurately
confirm the identity [3], the segmentation of the cold trap device in the nuclear reaction can confirm the
concentration of impurities and ensure the stable operation of the reactor [4]. In the field of surveillance,
specific objects should be segmented for pedestrian detection, traffic detection, and so on [5]. So, there
are many different challenges in the fields of computer vision and medical imaging [6—8].

With the development of smart collaborative technology [9], intelligent networks are becoming more
developed, more and more intelligent means to get underwater pictures. The illumination environment of
underwater minerals changes greatly, it has an adverse effect on segmentation. Meanwhile, the shapes of
mineral particles are varied, and the diameter of the particles is also different, varied shapes and sizes are
difficult for measuring accurately. And due to the uneven distribution of the underwater particles, the
foreground color of the underwater image is similar to the background color. Under natural conditions,
some particles were burial, the images reflect the phenomenon of particle adhesion. Reference [10] shows
that the higher accuracy of the underwater mineral image segmentation can accelerate the rapid
development of underwater mineral resources.
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The development of deep learning algorithms like convolutional neural networks or deep learning not
only affected typical tasks like object classification but are also efficient in other related tasks like object
detection, localization, tracking, or as in this case image segmentation. Since 2012, several deep
convolutional neural network models have been proposed such as AlexNet [11], VGG [12], GoogLeNet
[13], DenseNet [14] and CapsuleNet [15]. In most cases, for very large-scale datasets like ImageNet [11],
models are explored and evaluated using classification tasks, where the output of the classification tasks
is a single label or probability values. Alternatively, small architecturally variant models are used for
semantic image segmentation tasks. For example, variants of the encoder-decoder architecture like U-Net
[16] and fully-connected convolutional neural network (FCN) [17] provide state-of-the-art results for
image segmentation tasks in computer vision. Another variant of FCN was also proposed which is called
SegNet [18]. U-Net first extracts the features of the image, then restores the image resolution by
upsampling, and simultaneously connects to the same stage by skipping connection during the
upsampling process. The features of the encoder part are merged with the features of the decoder part, the
fusion makes the segmentation map more precise in detail, and the network structure has a good
performance on the grayscale Electron Microscopy images dataset (EM dataset).

Although U-Net performed well, due to the limitation in different segmentation tasks, a series of
improved networks based on U-Net were proposed. A V-Net network [19] was proposed and this method
extends the two-dimensional structure to three-dimensional, the three-dimensional image segmentation
was solved, end-to-end training on the prostate MRI volume, and learn to predict the entire volume. The
segmentation performed well on the PROMISE 2012 dataset. H-DenseUNet [20] was proposed to fuse
the on-chip representation and inter-slice features of liver tumor images through a mixed feature fusion
layer, and this scheme achieved excellent results in the liver tumor segmentation challenge. MDU-Net
[21] acquired better results than U-Net at MICCAI 2015 Gland segmentation task, the method proposed
three different multi-scale densely connected U-shaped structure encoders, decoders and jump
connections, the dense connection directly merged the high-level and low-level adjacent scale feature
maps and enhanced the propagation of current layer features. Isensee et al. [22] proposed a robust
adaptive network based on two-dimensional and three-dimensional ordinary U-shaped networks, namely
nnU-Net, which removes redundant parts of the network and pays more attention to the performance and
generalization of the constituent methods. In the case where the dataset is not manually adjusted, good
results are obtained in a plurality of medical image segmentation tasks. A hierarchical probability U-Net
segmentation network [23] was proposed, this method is based on conditional variational autoencoder
(cVAE) to high fidelity sample and reconstructs segments. Meanwhile, this structure provides the
flexibility of learning the distribution of cross-scale complex structures and has a good performance for
fuzzy medical image segmentation. Hasan et al. [24] modify the U-Net architecture named UNetPlus, by
introducing a pre-trained encoder and re-design the decoder part, by replacing the transposed convolution
operation with an upsampling operation based on nearest-neighbor (NN) interpolation.

Based on the vigorous performance of the U-Net, residual structure and pyramid structure, an improved
U-Net for the underwater mineral image segmentation task is proposed, and the main contributions can be
summarized as follows: Three new models JPU-Net, ResU-Net and JPMU-Net are proposed for EM dataset
segmentation. Experiments demonstrate the effectiveness of these three segmentation networks on EM
datasets and compare the best-performing model. Successfully migrated the improved model to the underwater
mineral image dataset, and the experimental comparison yielded the best performing model for the dataset.

2 Related Work

In recent years, a lot of models have been proposed that have proved that deeper networks are better for
recognition and segmentation tasks [12]. However, it is difficult to train very deep models because of the



1576 IASC, 2022, vol.32, no.3

vanishing gradient problem. This problem can be solved by executing modern activation functions such as
Rectified Linear Units (ReLU) or Exponential Linear Units (ELU) [13]. In addition, in order to solve the
problem that deeper networks are difficult to train, 2015, He et al. [25] proposed a residual learning
framework. This framework is a good solution to the problem of the inability to converge due to the
gradient explosion caused by the deepening of the network depth. Residual learning framework explicitly
reformulates the layers as learning residual functions with reference to the layer inputs, instead of learning
unreferenced functions. Therefore, using the residual structure can simplify the design of the network, more
layers can be designed to obtain more advanced semantic information. MultiResUNet [26] was presented
and this method added MultiRes block to the U-Net, the MultiRes block can augment U-Net with the
ability of multi-resolution analysis and formulate a compact analogous structure similar to Inception [13].
Alom et al. [27] added a recurrence convolution neural network and a recurrence residual structure based
on U-Net to form RU-Net and R2U-Net respectively, R2U-Net represents the characteristics of the
segmentation task by feature accumulation better, the residual structure in the R2U-Net can help design
deeper network. This achievement has better segmentation performance on the three reference datasets of
retinal image blood vessel segmentation, skin cancer segmentation and lung damage segmentation.

Before the spatial pyramid pooling, existing deep convolutional neural networks (CNNs) require a fixed-
size input image. Fixed-size is “artificial” and may reduce the recognition accuracy for images of arbitrary
size. To solve this problem, He et al. [28] proposed a new pooling strategy, “spatial pyramid pooling”, and
this new network structure can generate a fixed-length representation regardless of image size. Pyramid
pooling is also robust to object deformations. Therefore, it is widely used in the field of computer vision.

As for the underwater mineral image dataset, Reference [29] has proposed an improved U-Net, in the
decoder part, the features are fused by different scale up-sampled operations to obtain the final
segmentation map. For convenience, in this paper, the fusion structure is called the merge module and the
network is named MU-Net.

3 Network Architecture

The whole architecture is shown in Fig. 2. In general, the proposed semantic segmentation network
could be seen as an encoder-decoder structure. As discussed above, residual structure and joint pyramid
upsampling structure are added to the based model U-Net.

The model employing joint pyramid upsampling structure (JPU-Net) is (a). In the encoder part of U-Net,
the input image goes through five convolutional layers and four pooling layers. And in the decoder part of U-
Net, features go through four convolutional layers and four upsampling layers. An improved network adds a
joint pyramid upsampling structure to skip connection. And (b) shows the specific structure. Each block is a
fusion of different scale feature maps by upsampling. So, first merge the feature maps which upsampled from
different scales obtained from the last three convolution layers, and then use the merged features in the
decoder part for subsequent upsampling operations. Given an input image noted as X € R in the
encoder part, the feature obtained from each convolution layer recorded as X; € RS WH =12, ..., 5,
and the upsampling is bilinear inter polation. Mathematically, bilinear interpolation is a linear
interpolation extension of an interpolation function with two variables. The core idea is to perform linear
interpolation in two directions. Suppose the goal is to get the value of the unknown function f at the
point P=(x, y), and the values of the function f at point Qq; = (x1, ¥1), Q12 =(x1, ¥2), Q21 =(x2, ¥1) and
Q22 =(x2, ) is known. First linear interpolation in the x direction:

S(Ry) ~ f(021), Ri = (x, ») (h

Xy — X X — X1
f(On) +
X2 — X1 X2 — X1
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Figure 2: The whole network architecture. (a) is the whole encoder-decoder structure and expresses the
mode of adding modules. (b) is the joint pyramid upsampling module. (¢) is the residual module

Then linear interpolation in the y direction:

2=y Y=
SP) S (R) 2 (Re) 3)

So, we can get the wanted result f{x, y):
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The picture zoom j times by bilinear interpolation noted as src;, and the joint pyramid upsampling
module is defined as follows:

JP; = src16Xs + sres Xy + sreaXz + sreaXo %)
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P, = sregXs + sreaXy + srer Xs (6)
JP3 = srcyXs + srep Xy @)

This structure can magnify deep semantic information for better detail segmentation. The model
employing joint pyramid upsampling structure and merge module simultaneously named JPMU-Net. The
model employing residual structure is the ResU-Net. In the whole encoder-decoder structure, add residual
structure to each layer. The specific structure of each convolution layer is shown in (c). Each residual
module can be expressed as:

Xj+1 = X1 + F(xl, VV[) 3

where x4 is the output, x; is the input, F(x;, W) represents the convolution operation. Due to the addition of
the residual structure, the number of convolutions per layer is increased by one, that is, each layer undergoes
three or more 3 x 3 convolution operations. By means of shortcut connections, pass the input directly to the
output as the initial result.

4 Experimental Setup and Results
4.1 Dataset

In order to evaluate the performance of the model, verify it on a challenging benchmark: the gray-scale
Electron Microscopy images (EM dataset), and then apply it to the underwater mineral image dataset to find
the relatively suitable segmentation model.

EM dataset is comprised of consecutive ventral nerve cord gray-scale images from different drosophila
first instar larvae. The dataset contains 30 annotated images that can be used as the train dataset and
30 unannotated images as the test dataset, all images have a resolution of 512 x 512. Following the
setting of the EM dataset, annotate 49 mineral images taken from the underwater under different lighting
conditions, and randomly pick out 4 images with different visual effects to add to test dataset, the test
dataset has 34 different images, which all have a resolution of 4000 x 3000. Fig. 3 shows the examples of
the EM dataset and Fig. 4 shows the examples of the underwater mineral image dataset.

Figure 3: The examples of the EM dataset. The first line is the train image, and the second line is the
corresponding ground truth. The goal of the challenge is to transform a grayscale EM image into an
accurate boundary map
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Figure 4: The examples of the EM dataset. The first line is the train image, and the second line is
corresponding ground truth. The goal of the challenge is to transform a grayscale EM image into an
accurate boundary map

4.2 Implementation Details

The training strategies are as follows. Stochastic gradient descent (SGD) with batch size 1, optimizer
Adam, and learning rate le-4. The cross-entropy error at each pixel over the categories is applied as our
loss function. In addition, the annotated images are too few to train the networks, date augmentation
contains random horizontal flip, random rotation with range 10, random horizontal and vertical pan with
range 0.005, random shear and random zoom into a fixed size for training.

4.3 Results on EM Dataset

This paper employs the joint pyramid module, residual structure and merge module respectively at the
bottom of the U-Net for better scene understanding. To verify which module combined with U-Net have
better performance. We conduct experiments with different structure settings in Tab. 1.

Table 1: Segmentation result on EM dataset

BaseModel Jp Res M Final Loss Final Acc
U-Net 0.5252 0.7813
U-Net v 0.0187 0.9922
U-Net v 0.0196 0.9918
U-Net v 0.0284 0.9892
U-Net v v 0.0154 0.9937

Notes: JP: Joint pyramid upsampling module, Res: residual structure, M: Merge module, v': adding this module to the U-Net, that is to say, the first
line is U-Net, line 2-5 respectively represents JPU-Net, ResU-Net, MU-Net and JPMU-Net.

As shown in Tab. 1, all of these modules improve the performance remarkably. Compared with the base
model (U-Net), employing the joint pyramid upsampling module yields an accuracy result of 0.9922 and a
loss result of 0.0187, which brings 0.2109 improvements and 0.5065 loss reduction. Meanwhile, employing
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residual structure individually outperforms the baseline by 0.2105 on accuracy and 0.5056 on loss. When we
integrate the joint pyramid upsampling module and merge module together, the performance further
improves to accuracy 0.9937 and loss 0.0154. These results show the combination of joint pyramid
upsampling module and merge module with U-Net bring great benefit to segmentation for EM dataset.

When adding merge module on U-Net, the performance has a certain improvement. Meanwhile, the
model convergence faster. Figs. 5 and 6 show the accuracy and the loss comparison varies epoch. It can
be concluded that JPMU-Net performs best, JPU-Net is next and ResU-Net followed, which all
convergence faster than MU-Net.

1.00
— U-Net == MU-Net == ResU-Net == JPU-Net — JPMU-Net

—

accuracy
o
8

0.88

0]8141

I Ll 1
0 5 10 15 20 25 30 35 40 45 50

epoch

Figure 5: The accuracy comparison of these networks varies epoch

In the decoder part of the MU-Net network, the final segmentation result image is fused by different
scale-up-sampled features. But the upsampled features of the decoder part are obtained by upsampling
and convolution, in the part of the upsampling from low-level features, much semantic information has
been lost. So, although some semantic information lost by U-Net is compensated by adding the fusion
operation, it is not enough. JPU-Net network upsamples features of different scales in the encoder part
and then merge them together. In the encoder part, different scale features are obtained after multiple
convolution and pooling operations. First of all, we upsample the small-scale features to the size of this
convolution layer feature, and merge the features from convolution and upsampling, and then merge these
features to the same scale features of the decoder part. In this process, we repeatedly add low-level
semantic information to the decoder part, so that it can notice more details in the image segmentation.
Our ResU-Net network adds residual structure in each convolution layer, it can increase the number of
convolution layers, so more features are extracted. But the results of JPMU-Net are not as good as the
ideal, because when the network becomes more complicated, the training data does not increase, resulting
in over-segmentation. The visible segmentation results validate the effectiveness of our network again.
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Figure 6: The loss comparison of these networks varies epoch

Fig. 7 displays the portion random results of segmentation. We marked the contrasting area with red
boxes. Boundary detection is always challenging because many boundaries look fuzzy and ambiguous.
Furthermore, only boundaries between neurites should be detected, and those of intracellular organelles
like mitochondria and synaptic vesicles should be ignored [23], for example, the area inside the red boxes
is the mitochondria or synaptic vesicles inside the cell in the original picture, and it should not be segmented.

Figure 7: Visible results on EM dataset. The first line is input images, and lines 2~5 display the output of
each network
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As can be seen from Fig. 7, although the MU-Net segmentation result is better than U-Net, it also has
certain defects. In the segmentation details, the ResU-Net network and the JPU-Net network both have a less
obvious situation of over-segmentation compared with the MU-Net network. However, the output of the
JPMU-Net network is worse than the result of the MU-Net network. Therefore, from the visualization
results of segmentation, we can summarize that for the EM dataset, JPU-Net has the best performance.

To further verify the effectiveness of the network, we compare the results using specially normalized
versions of the Rand error and Variation of Information. Because of the robustness, we choose the yRand
scores as a reference, and we get the V" scores within Fiji using the open script [30].

2
VRand _ ZUpl] (9)
* oY spH (L—0) 25, 8
- 1(S;T
V;nJO — ( ? ) (10)

(1 — w)H(S) + «H(T)

Tab. 2 shows the average of all Rand scores and compare it with other teams. The result is the same as
the visible results. JPU-Net has the best performance, and ResU-Net is little worse than JPU-Net, but they are
both better than MU-Net. The JPMU-Net has the worst performance.

Table 2: Ranking on EM dataset segmentation [31], sorted by rand score thin

Method yRand Method yRand Method yRand
*human values* 0.998 ML 0.911 *threshold* 0.725
IDSIA 0.978 ECHO 0.905 nivik 0.785
BlackEagles 0.973 Seung Lab 0.144 MU-Net 0.916
IDSIA-SCI 0.979 CellProfiler 0.896 ResU-Net 0.919
SCI 0.968 IMMI 0.854 JPU-Net 0.927
TSC+PP 0.922 Bar-Ilan 0.773 JPMU-Net 0.891

4.4 Results on Underwater Mineral Image Dataset

Similarly, we apply these network structures to the underwater mineral image dataset. Tab. 3 shows the
quantification results of joint pyramid upsampling module, residual structure and merge module-based
U-Net. Thus further verify the validity of the network structure.

Table 3: Segmentation result on underwater mineral dataset

BaseModel JP Res M Final loss Final Acc
U-Net 0.0100 0.9957
U-Net 0.0081 0.9965
U-Net v 0.0087 0.9963
U-Net v 0.0092 0.9961
U-Net v v 0.0079 0.9966

Notes: JP: Joint pyramid upsampling module, Res: residual structure, M: Merge module, v': adding this module to the U-Net, that is to say, the first
line is U-Net, line 2-5 respectively represents JPU-Net, ResU-Net, MU-Net and JPMU-Net.
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As shown in Tab. 3, all of these modules improve the performance. Compared with the base model U-
Net, employing the joint pyramid upsampling module yields an accuracy result of 0.9965 and a loss result of
0.0081, which brings 0.0008 improvements and 0.0019 loss reduction. Meanwhile, employing residual
structure individually outperforms the baseline by 0.0006 on accuracy and 0.0013 on loss. When we
integrate the joint pyramid upsampling module and merge module together, the performance further
improves to accuracy 0.9966 and loss 0.0079. These results show the combination of joint pyramid
upsampling module and merge module with U-Net bring great benefit to segmentation for underwater
mineral image dataset.

When adding merge module on U-Net, the performance has a certain improvement. Meanwhile, the
model convergence faster. Figs. 8 and 9 show the accuracy and the loss comparison varies epoch. It can
be concluded that the initial accuracy of MU-Net is higher than JPU-Net and ResU-Net, but it is lower
than JPMU-Net. Meanwhile, the initial loss of JPMU-Net is the lowest. That is to say, for the underwater
mineral image dataset, the JPMU-Net convergence is faster than others.

1.00 Bl U-Net B MU-Net HE JPU-Net B JPMU-Net Wl ResU-Net

0.98]

0.96]

accuracy

0.94]

0.92]

epoch

Figure 8: The accuracy and loss comparison of these networks varies epoch

0.3

Bl U-Net
0.2 I MU-Net
Il JPU-Net

B JPMU-Net

loss

Bl ResU-Net
0.1

epoch

Figure 9: The accuracy and loss comparison of these networks varies epoch
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Similarly, then analyze the visualization results of the segmentation results. Fig. 10 displays the portion
of random segmentation maps. In order to analyze the segmentation results more clearly, we randomly crop
part of the results and compare the results with the hand-marked labels. The red box in the first line should
have segmented two underwater mineral particles, but only the segmentation map of JPMU-Net is suitable
with the label. This shows that employing the joint pyramid upsampling structure and merge module
simultaneously on the U-Net can extract more detailed features. Line 2 has more differences. In the two
red boxes, there are both 3 underwater mineral particles. The JPMU-Net only missed one, the MU-Net
and the JPU-Net are the same, this indicates the joining the joint pyramid upsampling module is
effective. But the result of ResU-Net missed half of the particles. In summary, on the underwater mineral
image dataset, the effect of MU-Net and JPU-Net is the same and both better than the ResU-Net, the
JPMU-Net performs best. It further shows that the network we proposed is valid.

Input image label MU-Net ResU-Net JPU-Net JPMU-Net

(al) (a2) (a3) (as5)
(b1) (b4)

Figure 10: Visible results on the underwater mineral image dataset, where (a),(b) represent two different
input images, the (al)—(a5) and (bl)—(b5) represent the corresponding segmentation results using five
different methods for the two images (a) and (b). Note that we have circled the areas that need to be
highlighted in red.

5 Conclusion

In this paper, three networks for the mineral image captured by the underwater vision sensor
segmentation are presented, JPU-Net, JPMU-Net and ResU-Net, which respectively employ joint pyramid
upsampling module, merge module and joint pyramid upsampling module simultaneously, and residual
module based on the U-Net. The joint pyramid upsampling module merges the feature maps of different
scales by upsampling in the encoder part, then adds to the skip connection. The residual module is a
residual block, and add the residual module to each convolution layer. The network achieves outstanding
performance consistently on the EM dataset and underwater mineral image dataset. In addition, it is
important to decrease the computational complexity and enhance the robustness of the model, which will
be studied in future work.
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