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Abstract: Identifying and classifying Deoxyribonucleic Acid (DNA) sequences
and their functions have been considered as the main challenges in bioinformatics.
Advances in machine learning and Deep Learning (DL) techniques are expected
to improve DNA sequence classification. Since the DNA sequence classification
depends on analyzing textual data, Bidirectional Long Short-Term Memory
(BLSTM) algorithms are suitable for tackling this task. Generally, classifiers
depend on the patterns to be processed and the pre-processing method. This paper
is concerned with a new proposed classification framework based on Frequency
Chaos Game Representation (FCGR) followed by Discrete Wavelet Transform
(DWT) and BLSTM. Firstly, DNA strings are transformed into numerical
matrices by FCGR. Then, the DWT is used instead of the pooling layer as a tool
of data compression. The benefit of using the DWT is two-fold. It preserves the
useful information only that enables the following BLSTM training, effectively.
Besides, DWT adds more important details to the encoded sequences due to find-
ing effective features in the DNA fragments. Finally, the BLSTM model is trained
to classify the DNA sequences. Evaluation metrics such as F1 score and accuracy
show that the proposed framework outperforms the state-of-the-art algorithms.
Hence, it can be used in DNA classification applications.
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1 Introduction

Deoxyribonucleic Acid (DNA) is the most important chemical compound in living cells, bacteria, and
some viruses [1]. It is composed of a long sequence of nucleotides that is long, but finite with four characters
{A, C, T, G}, only. The DNA classification increases the understanding of the relationships between different
species, and helps to explain how these relationships evolved over the years. It also improves the
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understanding of how the whole life system kingdom works [2]. When sequencing a new genome, its
function and structure are among the most critical questions. Each new DNA sequence is compared to
those in well-known databases via a similarity function [3]. Therefore, genome function and structure can
either be inferred from the highest similarity values with well-known sequences, or they can be classified
into known sequence groups by using machine learning or DL techniques [4,5]. Recently, several
architectures have been developed based on DL for DNA sequence classification [6,7].

The DNA sequences are considered as textual data. Hence, sequence classification depends on analyzing
this textual data. Consequently, Recurrent Neural Networks (RNNs) are suitable candidates to tackle this
issue [8]. The RNNs are usually selected to represent sequential and contextual information through the
patterns as in speech recognition, natural language processing, and sentiment analysis [8,9]. The primary
purpose of RNNs is learning the long-term dependency, but in practice, it is challenging to keep
information for a long time. The simplified version of an RNN, as shown in Fig. 1, has an internal status
ht, which is a summary of the sequence seen before at (t − 1), and is used in conjunction with the new
input xt as follows:

ht ¼ r ðWhxt þ Uhht�1 þ bhÞ (1)

yt ¼ rðWyht þ byÞ (2)

where Wh; and Uh are the input weight matrix and the internal state weight matrix, respectively. Wy is the
weight matrix from the internal state, and bh; by are bias vectors. The standard RNNs have a basic problem
called vanishing gradient. The range of contextual information is quite limited. The Long Short-Term
Memory (LSTM) or BLSTM model is introduced to address this issue. An LSTM network uses special
hidden gates (input, output, forget) to assess the hidden node data flow status, which lets the RNN to
know background knowledge from past times. After training, the LSTM cells can perform classification
[10]. The mathematical model of the LSTM architecture (see Fig. 2) is presented by Eqs. (3)–(8).

it ¼ sðwixt þ Riht�1 þ biÞ (3)

ft ¼ rðwf xt þ Rf ht�1 þ bf Þ (4)

ct ¼ tanhðwtgxt þ Rght�1 þ bgÞ (5)

ot ¼ rðwoxt þ Roht�1 þ boÞ (6)

The output for the current unit is calculated as follows:

ct ¼ ft � ct�1 þ it � gt (7)

ht ¼ ot � tanhð ctÞ (8)

where xt is the input, ht−1 is the previous cell output, ct−1 is the previous cell memory, ht is the current cell
output, ct is the current cell memory, w, R are the input and recurrent weights, b is the bias, � denotes the
multiplication process of vectors and σ is the sigmoid activation function.

The above equations can be simply written in the form of Eq. (9).

it
ft
ot

0
@

1
A ¼ rw

xt
ht�1

� �
þ b (9)

The BLSTM allows learning from a long-range context in both paths. This means that the BLSTM
is used for learning from the past and future contextual information in two paths with two sub-layers
for the current label. These layers capture information from forward and backward hidden
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sequences h
!
; and h

 
, respectively, and then this information is integrated to calculate the output sequence y

as shown in Fig. 3. Hence,

ht
!¼ rðwx~hxt þ w~h~h

~ht�1 þ b~h Þ (10)

ht
 ¼ rðwx

 
hxt þ w h  h

 
ht�1 þ b hÞ (11)

yt ¼ w~hy
~ht þ w h y

 
ht þ by (12)

A more detailed discussion about the bidirectional concept and its relevant subjects is given in [11].

The DNA sequences obtained for bacteria need to be in a format that is valid for classification. This
means that they need to be pre-processed into vectors using methods to understand them. Meanwhile,
data imbalance leads to the frequent overfitting of classifiers. The inappropriate data pre-processing can
directly lead to a numeric bias and signal loss. We shall try to use a BLSTM network as the choice
for DL. Besides, we shall select the best way for pre-processing of sequences. We may use different
sequence pre-processing tools, such as one-hot coding and FCGR followed by DWT, to enhance the
accuracy and facilitate the training process of DL architectures. Experiments reveal that the choice of

Figure 1: Architecture of an RNN [12]

Figure 2: LSTM unit [12]
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suitable pre-processing stages with the BLSTM classifier has a significant impact on the accuracy. The DWT
is able to reduce the size of high-dimensional data and add more details. Hence, the visual representation
approaches have been used to reduce the amount of data without compromising the integrity of the actual
reads, and therefore the accurate prediction is guaranteed. Besides, FCGR is a suitable numerical
representation for DNA sequence classification.

Moreover, the experiments showed that the BLSTM with FCGR followed by DWT can achieve higher
accuracy than those of the state-of-the-art methods [4,9,12]. The main objective of this work is to present
BLSTM-based methods for classifying DNA sequences and to study the impact of different data pre-
processing methods on the final accuracy of classification. This objective may be expressed in terms of
few targets:

a) Ensuring that FCGRmethods (image representation) can generate more details of DNA sequences not
revealed in the text representation as in hot-coding.

b) Introducing a long-term relationship of DNA sequences through BLSTM architectures that depend on
the past and future contextual information in two directions with two sub-layers for the current label.

c) Investigating the effect of DWT on the accuracy of the created models.

The rest of this paper is organised as follows. Sections 2, 3, and 4 present the related work, the common
stages of data pre-processing over the training dataset, and details of the dataset used. Section 5 offers the
experimental design. In Section 6, we present the results and discussions. Finally, the concluding remarks
and future work are provided in Section 7.

2 Related Work

Rizzo et al. [11] presented a DNA sequence classification technique depending on CNNs with spectral
representation of DNA sequences. Each DNA sequence is initially analysed using a k-mers sliding window
of some length that shifts one character to the right each iteration. This process generates sequence
substrings, which are called k-mers, which means subsequences of size k. This method does not consider
the position of k-mers in the original sequence. The results revealed that the CNN approach based on
spectral representation provides very similar good results between 95% and 99% for all taxonomic levels.
Giosue Lo Bosco and Mattia Antonino Di Gangi [9] proposed an LSTM model and a CNN model based
on character-level one-hot coding for bacterial classification. The sequences are encoded by one-hot
coding followed by word embedding to obtain a continuous vector representation of each subsequence.

Figure 3: Architecture of a BLSTM model
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The main feature of this method is the consideration of the positions of k-mers in the original sequence,
which is the main difference between this model and the previous one in [11]. After that, a subsampling
method based on max-pooling is used to embed the original high-dimensional data into a low-
dimensional space. Finally, the CNN model or LSTM model is selected for the classification stage. In the
LSTM model, the classification is implemented without delivering a priori information. The analysis
shows the dominance of CNNs in the four simplest classification tasks, although the efficiency degrades
poorly for the last one, where the LSTM performs better.

Moreover, Rizzo et al. [4] suggested a novel algorithm that depends on CNNs with FCGR. The FCGR is
utilized to convert the original DNA sequence to an image before feeding it to the CNN model. This method
is considered as an expansion of k-mers spectral representation, and it was reported to be efficient. Several
research works have been devoted to the utilization of BLSTM with bioinformatics. In [12], the authors
employed the BLSTM and the CNN to capture long-term dependencies between sequence motifs in
DNA. This combination is called DeepSite. In addition, the BLSTM is used in several applications,
where the authors in [13] presented WaveNets that are autoregressive and that combine causal filters with
dilated convolutions to allow their receptive fields to grow the pipeline of word segmentation and
character recognition stages.

3 Data Pre-Processing

The character-based description of the DNA sequences is readable and understandable for humans [14],
but it is an issue for machines, particularly in numeric machine learning. There are several stages of data pre-
processing such as mapping, data reduction, and data transformation. They do not require a conventional
order, but the only condition is at the establishment using the raw dataset and at the end using the
prepared training and testing set. Data reduction for mining of high-dimensional data, as in the case of
genomics, may be computationally expensive. When dealing with this type of data, it is vital to find ways
to create a more compact data representation than the raw data to enhance the model performance. Data
reduction techniques are used to condense the data without compromising the actual reads integrity.
However, several approaches provide data pre-processing to tackle the problem of high-dimensional data.
In this paper, two data pre-processing approaches are applied: numerical representation of DNA
sequences and data reduction, where DNA sequences are encoded, and then data reduction is applied.

3.1 Numerical Representation of DNA Sequences

Choosing one of the numerical representation techniques to be used in association with ML depends on
the application. In genomic classification, k-mers representation methods such as one hot coding and FCGR
are usually used for encoding DNA sequences, and they are reported to be efficient. These methods split each
DNA sequence into several subsequences. The length of each subsequence equals k. The one-hot coding is
based on the text representations intended to maintain each character position in the DNA sequence. In this
method, the DNA nucleotides are mapped as binary vectors with A = (1 0 0 0), G = (0 1 0 0), C = (0 0 1 0),
and T = (0 0 0 1). This coding was used for DNA classification to obtain high classification rates with RNNs.
With FCGR method, a matrix containing the frequency of the k-mers obtained from the DNA sequences can
be generated [4]. The FCGR changes patterns into pictures to be highlighted. This method mainly divides
the CGR square into sub-squares of side 2−k to yield the number of different k-mers. The CGR localizes
the nucleotides of DNA sequences to the unit square. Each nucleotide is located at the edges, and it
has the following axes:

lAð0; 0Þ; lCð0; 1Þ; lTð1; 0Þ; lGð1; 1Þ (13)
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To construct the CGR matrix, let a sequenceM consist of N nucleotides,M={M1,M2, ..…,MN}. The first
point X0 is typically located at the centre of the square. Then, the next point Xn+1 is repeatedly located
halfway between the previous mapped point Xn and the segment joining the vertex corresponding to the
read letter Mn+1. Coordinates of successive points are provided by:

Xnþ1 ¼ 1

2
ðXn þ lMnþ1Þ (14)

This mapping is considered numerical and graphical mapping. The representation techniques may change
from method to method, but we can expect to find that the image representation techniques may generate
much more information than the text representation. In the previous work of the authors of [15], FCGR
was used for data representation with k-mers = 6, and it was reported to be efficient. The details of FCGR
are explained in [15].

3.2 Data Reduction Using DWT

It has been found that the data sequence varies with time in most cases, but in few instances, data may
differ with space position points. The difference in the location of nucleotide bases can be treated as a signal
in time series. Currently, Digital Signal Processing (DSP) plays an essential role in this field. However, the
problem of organising and visualising these large datasets is still a serious issue. There is a growing interest in
the utilization of wavelet transform to analyse biological sequences and molecular biology-related signals. In
[16], discrete transforms such as Discrete Fourier Transform (DFT) and DWT have been widely used to
predict protein-coding regions and analyze DNA sequences. The authors of [16] described a feature
selection method based on wavelet analysis and a genetic algorithm. The DWT is the most common
algorithm applied to compress and extract features in DSP [17]. The reason for applying DWT emerges
from its broad and practical use for feature extraction, decorrelation, ordering, and dimensionality
reduction purposes in the fields of speech and image processing.

Wavelet transform is still an effective tool for analyzing and processing of signals, especially for the case
of non-stationary signals such as bio-signals [16,17]. It plays an important role in solving the problems of
time and frequency resolutions. Wavelet processing can be often used to compress or de-noise a signal
without an appreciable degradation. The sequence is analyzed at different frequency bands with different
resolutions by decomposing the signal into a coarse approximation and a detail information using low-
pass and high-pass filters. As shown in Fig. 4, the discrete signal X of length M is first passed through a
high-pass filter H1, and a low-pass filter H0. In the outputs of the filters, we set all odd samples to zero.
The approximation coefficients are extracted by convolving X with the low-pass filter, and the detail
coefficients are obtained with the high-pass filter. Both filters are followed by dyadic decimation. For the
low-pass branch, if the filter length is equal to 2L, the output signal will have a length of M + 2L − 1,
and then the approximation coefficients will have a length of M�1

2 þ L. Similarly, for the high-pass
branch, the detail coefficients are of length M�1

2 þ L:

Figure 4: Structure of sub-band coding
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The 1-D wavelet transform can be extended to a two-dimensional (2-D) wavelet transform. In the 2-D
transform, we apply a 1-D transform on all input signal columns, and then repeat it on all rows. In 2D-DWT,
the image X at level j is decomposed into four components: an approximation at level j + 1 and details in three
orientations (horizontal, vertical, and diagonal) as shown in Fig. 5.

where X is the input image, LL represents the approximation coefficients, LH represents the horizontal
details, HL represents the vertical details, and HH represents the diagonal details. The proposed DWT
reduces the dimensions of features by performing the single-level 2-D wavelet decomposition. The
decomposition is performed to extract the approximation coefficients (LL). Fig. 6 displays a visual
example of the proposed DWT layer.

4 Dataset

Data is obtained from the Ribosomal Database Project (RDP) [18] Release 11. The RDP repository
contains aligned and marked bacterial sequences, archaea, and fungi and tools to analyse these sequences
further. The bacterial genome contains a record for smaller sub-units of ribosomes RNA (16 s RNA), and
it is helpful as a general genetic marker. It is often used to determine bacterial diversity, perform
identification, and estimate genetic similarity, and it is the basis for molecular taxonomy [18].
Two different sequences are used for comparison: full-length sequences with a length of approximately
1200–1500 nucleotides, and 500 bp DNA sequence fragments. A total of 2000 sequences have been
chosen from the three most popular phyla of bacteria from phylum to genus (see Tab. 1).

Figure 5: 2D-DWT bands

Figure 6: The proposed DWT layer

Table 1: 16S Bacteria dataset composition

Bacteria Kind Phylum Class Order Family Genus

Actinobacteria 1 1 3 13 26

Firmicutes 1 2 4 17 39

Proteobacteria 1 2 12 35 35
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5 Experiments

The proposed framework is composed of two major processes: DNA sequence pre-processing and the
BLSTM classifier. Fig. 7 shows the structure of the proposed framework to classify bacterial DNA sequences
into taxonomic levels. The BLSTM is implemented by using MATLAB 2018a. The pre-processing stage
consists of conversion of the DNA sequence into a two-dimensional numerical matrix followed by a data
reduction layer. Firstly, the DNA sequence dataset that contains a finite number of characters is converted
into a two-dimensional numerical matrix to be appropriate for processing with DWT. Such matrix
comprises information about the specific position of each nucleotide in the sequence. This conversion is
performed by two approaches as follows:

� First approach. We segment the original DNA sequence to a number of subsequences using a tool
called nmercount containing {’A’, ‘C’, ‘G’, ‘T’, ‘-’} characters, nmers = 4. This is followed by
applying one-hot coding on all subsequences. Finally, we use the DWT.

� Second approach. We segment the original format of the DNA sequence to a number of
subsequences with kmers = 6 followed by constructing CGR as explained, previously. Finally, we
apply the DWT. The encoded data is divided into two subsets: the training set including 70% of
the original data and the testing set including the other 30% of the data. Two experiments were
performed after preparing the different data subsets as follows:

○ Experiment 1: We feed the encoded DNA sequences obtained with the first approach to the
BLSTM model. This encoding process provides a dataset that is similar in complexity to that
used in the text classification problem. Fig. 8 shows an example of transforming a DNA
sequence by the first approach.

○ Experiment 2: We feed the encoded DNA sequences obtained with the second approach to the
BLSTM. This encoding process is conducted to achieve high accuracy and speed up the next

Figure 7: Structure of the proposed BLSTM model
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classification step. Figs. 9 and 10 show examples of pre-processing by FCGR, and then single-level
2-D wavelet implementation is implemented.

Figure 8: Example of transforming a DNA sequence with the first approach

Figure 9: Encoded DNA sample by the FCGR method

Figure 10: Encoded DNA sample by the FCGR method after DWT
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6 Results and Discussions

The accuracy levels of different models based on LSTM and BLSTM with different data pre-processing
techniques are presented for comparison. The first treatment depends on processing of the dataset as text
using DWT in the so-called Text-DWT-BLSTM and Text-DWT-LSTM. The second treatment depends on
dataset processing with FCGR in the so-called FCGR-DWT-BLSTM and FCGR-DWT-LSTM. Firstly, a
comparison between the two traetments considering the full-length DNA sequence and 500 bp-length
sequences is introduced. The classification performance is presented in Tabs. 2 and 3. From these tables,
it is clear that the FCGR-DWT-BLSTM outperforms the other models, especially at the family and genus
level. Moreover, this model needs less running time. Besides, Figs. 11a and 11b illustrates a comparison
between models based on F1 score. Therefore, the FCGR followed by the DWT is preferred as a pre-
processing method. In addition, a comparison of the proposed FCGR-DWT-BLSTM and FCGR-
BLSTM without using DWT is presented in Tabs. 4,5. It can be seen clearly that the FCGR-BLSTM
gives slightly better accuracy than that of the FCGR-DWT-BLSTM. Besides, the FCGR- BLSTM has a
longer processing time than the FCGR-DWT-BLSTM by about 56 mins.

A comparison is presented between the proposed FCGR-DWT-BLSTM and three state-of-the-art
methods based on DL for Rizzo et al. [4,11] and Giosue Lo Bosco and Mattia Antonino Di Gangi [9].
The input data fed to the models has the same length in the training and testing phases. The simulation
results are given in Tabs. 6 and 7, and Fig. 12a,b. Tabs. 6 and 7 illustrate that the highest accuracy for the
proposed FCGR-DWT-BLSTM. Rizzo et al. model [4] and the proposed model give the highest values at
the genus level. Compared to Rizzo et al. model [4], the proposed model gives a slightly better accuracy
from 75.33% to 75.45%. The proposed model has a longer processing time than that of Rizzo et al. [4]
by about 37 mins on average. This paper confirms that FCGR followed by the DWT is suitable to be
applied for numerical representation in DNA classification applications. In this paper, SGD with
Momentum (SGDM) is the selected optimizer, and it was implemented in all models.

Table 2: Comparison of accuracy scores between created models with and without FCGR considering a full
length

Classifier Phylum Class Order Family Genus

Text-DWT-BLSTM 1 1 0.9980 0.9483 0.9364

Text-DWT-LSTM 1 1 0.9980 0.9353 0.9272

FCGR-DWT-LSTM 1 1 0.9985 0.9633 0.9463

FCGR-DWT-BLSTM 1 1 0.9985 0.9763 0.9589

Table 3: Comparison of accuracy scores between created models with and without FCGR for 500 bp-length
sequences

Classifier Phylum Class Order Family Genus

Text-DWT-BLSTM 1 1 0.9020 0.7740 0.7220

Text-DWT-LSTM 1 1 0.9020 0.7733 0.7173

FCGR-DWT-LSTM 1 1 0.9165 0.8033 0.7465

FCGR-DWT-BLSTM 1 1 0.9165 0.8105 0.7545
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Figure 11: Comparison of F1 scores between the created models; (a) Full length, (b) 500 bp-length
sequences

Table 4: Comparison of accuracy scores between created BLSTM models with and without DWT considering
full-length operation

Classifier Phylum Class Order Family Genus

FCGR-BLSTM 1 1 0.9985 0.9773 0.9590

FCGR-DWT-BLSTM 1 1 0.9985 0.9763 0.9589

Table 5: Comparison of accuracy scores between created BLSTM models with and without DWT for 500
bp-length sequences

Classifier Phylum Class Order Family Genus

FCGR-BLSTM 1 1 0.9165 0.8135 0.7573

FCGR-DWT-BLSTM 1 1 0.9165 0.8105 0.7545

Table 6: Comparison of accuracy scores of the proposed framework and the three state-of-the-art methods in
case of full-length operation

Classifier Phylum Class Order Family Genus

Rizzo et al. [4] 1 0.9970 0.9855 0.9733 0.9300

Rizzo et al. [11] 0.990 0.990 0.9882 0.9654 0.9220

Giosu´e Lo Bosco et al. [9] 0.990 0.9890 0.9520 0.9354 0.9183

Proposed (FCGR-DWT-BLSTM) 1 1 0.9985 0.9763 0.9589
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7 Conclusions and Future Work

This paper has introduced an approach for solving the bacterial sequence multi-classification problem
based on the BLSTM. Two data structure representation methods for the pre-processing phase have been
utilized: one-hot coding and FCGR. Both are followed by DWT for data reduction. The experimental
results proved that selecting the appropriate data pre-processing method is an essential key in
classification tasks based on the BLSTM. According to the obtained results, the accuracy of the proposed
FCGR- DWT-BLSTM reaches 95.89%, and 75.45% for full-length and 500 bp-length sequences at genus
level. Despite these accuracy levels, it has less running time compared with other models. Finally, the
proposed DWT-BLSTM has been copmared to three state-of-the-art methods based on DL. The system
evaluation revealed superiority of the DWT-BLSTM implementation over other methods. This study
confirms that FCGR with k-mers = 6 followed by DWT is suitable for effective mapping of DNA
sequences with the proposed BLSTM to achieve the best performance. We will try to use the proposed

Table 7: Comparison of accuracy scores of the proposed framework and the three state-of-the-art methods in
the case of 500 bp-length operation

Classifier Phylum Class Order Family Genus

Rizzo et al. [4] 0.9955 0.993 0.8960 0.8130 0.7533

Rizzo et al. [11] 0.990 0.990 0.8960 0.8124 0.7523

Giosu´eLo Bosco et al. [9] 0.990 0.97 0.7572 0.7935 0.7283

This paper (FCGR-DWT-BLSTM) 0.99 0.99 0.9165 0.8105 0.7545

Figure 12: Comparison of F1 scores of the proposed framework and the three state-of-the-art methods in
case of (a) Full-length operation, and (b) 500 bp-length operation
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models in the classification of COVID-19 images in order to reach the best trade-off between high accuracy
and low execution time. Future research directions may include more accurate pre-processing of DNA
signals using multi-dimensional DSP-based features.
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