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Abstract: The Internet of Things (IoT) plays an essential role in connecting a
small number of billion devices with people for diverse applications. The security
and privacy with authentication are challenging work for IoT devices. A light-
weight block cipher is designed and modeled with IoT security for real-time sce-
narios to overcome the above challenges. The light-weight PRESENT module
with the integration of encryption (E)-decryption (D) is modeled and implemented
on FPGA. The PRESENT module has 64-bit data input with 80/128/256-bit sym-
metric keys for IoT security. The PRESENT module performs16/32/64 round
operations for state register and key updation. The design mainly uses Substitu-
tion-permutation (SP) network for state updation. The permutation layer is used
to create more diffusion and confusion in the state for unauthorized access. The
results and analysis of the PRESENT-80/128/256 are designed using Verilog-
HDL with Xilinx Environment and implemented on Artix-7 FPGA. The
PRESENT-80/128/256 module is compared with similar recent works with perfor-
mance improvements. Similarly, the proposed work is compared with different
light-weight algorithms with improvements for better security in IoT devices.
The proposed PRESENT-256 module with 64-rounds on Artix-7 FPGA utilizes
less than 2% Chip area (Slices and LUTs), works at 412.4 MHz frequency, and
consumes 192 mW total power and 0.58 Mbps/slice of hardware efficiency.

Keywords: IoT devices; security; present block cipher; lightweight; encryption;
decryption; FPGA

1 Introduction

The IoT is used to connect social networks, allowing devices and people to interact with information
sharing. At present, around 8.4 billion devices are interconnected globally, and by 2022 it is expected to
be around 20 billion. The usage of IoT applications is increasing day by day, and people are making use
of them effectively worldwide. The IoT is one of the futures markets to expand the digital economy to
the next level [1]. The IoT industry expects economic growth in terms of revenue from billions in
2018 to trillions by 2024. There is a considerable difference and tremendous changes in past, present, and
future IoT architectures. The past IoT architecture contains many devices and is connected individually to
the cloud system. The cloud system provides data processing, storage, and other interconnection services
to the devices individually. The present IoT architecture has different device groups, and all are connected
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to the cloud system through standard node devices. The same categories of devices are grouped and
communicated with each other. In future IoT architectures, all the devices are connected to the internet
and communicate with each other directly. Social IoT is introduced to connect the different social
networking users to interconnect to things. So, with the help of the internet, the user can share their
devices directly [2]. The IoT supports a wide range of intelligent and diverse applications like smart
cities, innovative environments, security and emergencies, smart grids and smart metering, smart
agriculture, smart retail, and many more.

The authentication with security, Interoperability, and privacy issues is a more challenging task in IoT
devices. The future IoT applications can’t perform their operations with high demand by not providing an
interoperable, trusted IoT ecosystem. The IoT has to build better trust and create a suitable ecosystem.
The internet, mobiles, and wireless sensor nodes (WSN) are common resources to create security issues
generally. Apart from the security issues, The IoT faces other major challenging issues like
authentication, information storage, management issues, privacy issues, and many more. There is always
a significant challenge to provide security to IoT devices than the typical devices (information technology
(IT) devices). Normal (IT) devices are generally resource-rich devices implemented with complex
algorithms to provide security and other capabilities. The IT devices are used homogeneous technology
for higher security. The IoT devices have device limitations based on software and hardware and only
lightweight security algorithm based on the provision. The heterogeneous technology is incorporate with
IoT for data security in an enormous amount [3].

In general, The IoT application has four layers, namely: Sensing layer, Network Layer, Middle-ware
Layer, and Application Layer. Each layer is used for different IoT applications using different technology
platforms, which causes enormous security threats and issues. The four Layers used in different IoT
applications are represented in Fig. 1 with possible devices and technologies [4–6].

The sensing Layers mainly contain sensors and actuators. The sensors sense the physical process or
changes in the environment and send the information to the other devices. At the same time, Actuators
receives the sensing data and responsible for controlling and moving mechanism. Many sensors like
ultrasonic sensors, temperature, pressure, heat, smoke detector, and humidity are available and are used to
sense the physical environment. The Network Layer is used to transmit the data information received
from the sensing layer to the control unit to process the operation. The Middleware layer is used to
provide storing and computing features. This layer provides an abstract layer between network and
application layers. The application layer’s requirements are fulfilled by the middleware layer using the
Application programming interface (API). Finally, the application layer provides required services to the
end-users directly. Intelligent applications like homes, grids, cities, meters, healthcare, transport and
buildings appear in this layer. These four layers are caused by possible threats and are tabulated in Tab. 1.

The security solutions for IoT using edge computing and machine learning are recent trends for low-end
IoT devices. The IoT data is secured using scalable and end-end data collection modeling using intelligent
data collection unit, actuation, and automation model, along with monitoring and analytics unit. Furthermore,
the IoT devices are configured based on on-demand security with security module specification, interface
specification, security service profile, device profile, device image generation unit with multiple devices
[7]. The FPGA is also provided security to the trusted devices by configuring the bit-stream encryption
and authentication. Furthermore, the FPGA provides features by using a unique identifier, Physically
Unclonable Function (PUF), program and JTAG intercepts, key clear and device precise, Voltage and
temperature monitors along with bit-stream scrubbing [8]. In addition, there are many security algorithms
available for securing the IoT data includes Tiny XTEA [9], light encryption device (LED) [10],
Hummingbird Algorithm (HB) [11], SPECK Block cipher [12], SIMON cipher [13], AES, DES, Triple
DES [14], SIoT [15] and many more. However, in these, only lightweight ciphers are considered for IoT
device security.
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Motivation: The security incorporation for IoT-based devices is essential to secure the received data
information with privacy. Incorporating security and privacy features in IoT-based devices is challenging
for several reasons [16]. Firstly, the IoT device’s processor is limited and can’t perform multiple tasks
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Figure 1: Layers used in IoT applications

Table 1: List of possible attacks in IoT layers

IoT layers Possible attacks

Sensing layer Side-channel attacks, eavesdropping booting vulnerabilities, false data injections, node
capture attacks, sleep deprivation attacks, code injection attacks

Network layer Common attacks, data transmit attacks, dos/ddos attacks, routing, access attacks,
unlawful attacks, phishing attacks

Middle-ware
layer

Men in-middle attack, signature attack, flooding attack (cloud), sql injection, cloud
malware injection attacks

Application
layer

Reprogram attacks, service interruption attacks, access control attacks, ddos attacks, code
injection attacks, data theft attacks
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within the limited timeline. Secondly, IoT devices are battery-operated, and it isn’t easy to produce the low-
power while incorporating security algorithms. Third, the security algorithm’s implementation cost should be
low to extend the other device’s incorporation. Lastly, the advanced security algorithms usage in an IoT
environment is suitable and affects the computational performance and increases the hardware
complexity. The lightweight algorithms are introduced to resolve the above problems. The lightweight
cipher algorithms provide better security with low cost and excellent system performance in a short
duration. The lightweight block ciphers are suitable and provide security for low-end IoT devices in real-
time applications without affecting unauthorized user’s data.

Contributions: In this manuscript, an efficient PRESENT-80/128/256 lightweight cryptographic
modules for encryption and decryption are presented with low Latency and High Throughput. The
contribution of the proposed work is highlighted as follows:

� The existing PRESENT ciphers are working with 32 round operations with key. The proposed
PRESENT cipher architecture is modified and configurable to work with 16/32/64 round
operations individually with the key module.

� The proposed work introduces a 256-bit key in PRESENT cipher to strengthen the security features.

� The PRESENT-80/128/256 with different 16/32/64 rounds are works parallel with the key updation
mechanism to improve the latency parameter and provide high throughput and hardware efficiency.

� The proposed PRESENT-80/128/256 work is synthesized individually and compares the performance
parameters with existing PRESENT and lightweight ciphers with better improvements.

The manuscript is organized as follows: Section 2 presents the review of existing lightweight block
ciphers, including recent PRESENT algorithms and their limitations. Section 3 describes the hardware
architecture of PRESENT-80/128/256 encryption and decryption modules with proper key updation.
Section 4 highlights the Results and comparative analysis of the proposed work. Finally, it concludes the
overall work with improvements in Section 5 with future work.

2 Related Work

This section elaborates on the different cipher algorithms and recent PRESENT light-weight algorithms
for different applications using different environments and highlights the limitations of these works. Mohd
et al. [17] present the comparative discussion of the light-weight block ciphers for the lower-constrained
devices. The list of light-weight algorithms with key size, block size, the number of rounds used, and the
structure type is tabulated in detail. The implementation of ciphers with software and hardware platforms
is discussed in detail with its performance metrics. The performance of hardware-based ciphers is
compared with area, power, throughput, and energy factors. The open research issues like performance
modeling, security metrics, software coding style, and hardware trojan are discussed. Edwar et al. [18]
discuss the PRESENT algorithm and its performance evaluation on the FPGA platform. The hardware
architecture of PRESENT with data path units is presented. It was designed PRESENT cipher (Both 80-
bit and 128-bit Keys) using 64-bit-data size with 32-standard rounds. The proposed work is extended to
256-bit key with flexible 16/32/64-rounds with 64-bit-data size to improve the security aspects. The 256-
bit key with 64-bit rounds in PRESENT cipher is complex combination for unauthorized users.

The work evaluates and compares the performance parameters like Latency, Throughput, CMOS
process, and Area with existing approaches. Azari et al. [19] explain the PRESENT cipher model on the
FPGA platform using 80-bit and 128-bit key mechanisms. The mathematical expression of the block
cipher is analyzed in detail with architecture. The simulation waveforms of the 80-bit and 128-bit key
mechanisms are discussed, along with resource comparison.
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Thorat et al. [20] present the new hybrid cryptosystem with light-weight features for the IoT
infrastructure. The hybrid approach includes the s-box of the PRESENT is integrated with permutation
instruction-based PREMS cipher. The work is analyzed both in software and hardware environment with
the realization of the performance metrics. Chom Thungon et al. [21] discuss the comparative analysis of
both the AES and PRESENT Block ciphers for personal area network-based IoT applications. The
performance comparison of hardware characteristics with different devices and memory consumption are
discussed. The work concludes that the PRESENT cipher gives better performance in memory
consumption than the AES cipher. Aragona et al. [22] discuss the PRESENT and other light-weight
ciphers (PRINT and RECTANGLE) in detail with mathematical proofs. Pei et al. [23] explain the light-
weight block ciphers usage and its performance, security trade-off in the Industrial Wireless sensor
network (WSN). The Industrial WSN for factory automation is discussed using light-weight block ciphers
(KLEIN, L-block cipher, PRESENT, Piccolo, HIGHT). The memory usage and throughput factors are
discussed for all the light-weight block ciphers in the Industrial WSN system.

Jangra et al. [24] explains the implementation of the PRESENT and CLEFIA light-weight block ciphers in
python and analyzes the performance metrics. The metrics like throughput, resource utilization, and security
strength are discussed for both the ciphers. The PRESENT cipher gives less memory utilization and less
throughput than the CLEFIA cipher. Rashidi [25] discuss the light-weight ciphers like LED, SIMON, and
PRESENT modules with flexible hardware architectures. The work results are implemented on the ASIC
platform with 180 nm CMOS Technology and are compared with existing similar works with constraints
improvements. Jenny et al. [26] present the compact S-Box of block ciphers like LED, GIFT, and PRESENT
for low-constrained applications. The S-Box designs are optimized using Karnaugh mapping to reduce the
gate count values for these three block ciphers. Jang et al. [27] discuss the symmetric key cryptographic
algorithms like PRESENT and GIFT with quantum computations. The reversible logic gates-based
architecture is constructed for both the PRESENT and GIFT ciphers. The quantum resources like the number
of gates used and circuit paths are discussed and compared with similar works.

Most of the PRESENT algorithms are conventional with iterative approaches and RAM or LUT-based
key scheduling from these review analyses. These approaches consume more Chip areas and affect the
system performance, and not suitable for IoT devices.

3 Proposed Work

The light-weight PRESENTencryption and decryption modules for 80/128/256-bit keys are presented in
this section. The proposed PRESENT block cipher is well suited for IoT security in real-time scenarios.

3.1 PRESENT-80/128/256 Encryption Module

The PRESENT-80/128/256 encryption module is represented in Fig. 2. It mainly includes 64-bit plain
text, Substitution-permutation (SP) network with a 16/32/64-rounds state updation, along with an 80/128/
256-bit key updation unit. The SP network mainly contains 16 Substitution Boxes (S_box_Func) and
Permutation Layer (PLayer). Initially, the Key load (kld) is activated, the 80/128/256-bit key is stored in
the key register. When the key load is zero and load (ld) is activated, the state transition starts, the input
64-bit Plain-text is stored temporarily in the state register for the initial round. Suppose the load signal
becomes zero for the next 16/32/64-rounds of operations. The state register data is XOR with 64-bit key
register data as a round key and generates the SP Network 64-bit input. The MSB bits of 64-bit is
considered for round key input out of 80/128/256-bit key register output. The SP network of 64-bit input
divides the 4-bit Data individually 16 times and generates 16 S-boxes. The main aim of this work is to
design a Light weight PRESENT-80/128/256 cryptographic modules for encryption and decryption with
low Latency and High Throughput. The lightweight cipher algorithms provide better security with low
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cost and excellent system performance in a short duration. The PRESENT lightweight block ciphers are
suitable and provide security for low-end IoT devices in real-time applications without affecting
unauthorized user’s data. The Contribution section provides the main objective of the proposed work.

The key register (KRi) provides the 64-bit key KRi ¼ ki63 . . . k
i
0 for 0 ≤ i ≤ 15/31/63. The state register

receives the KRi with current State_Reg (sr63…sr0) and performs the XOR operation using the below Eq. (1)
till 0 ≤ j ≤ 63.

srj ¼ srj � kij (1)

The State_Reg values are updated in Sbox_Func and perform the S-BOX operation of PRESENT-80/
128/256, and it is tabulated in Tab. 2.

generate Rounds_with_Keys ()

For (i = 0; i < 15/31/63; i = i+1;

XOR (State_Reg, KRi)

Sbox_Func (State_Reg)

PLayer (State_Reg)

end for;

State
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Figure 2: PRESENT-80/128/256 encryption module: pseudocode and hardware architecture

Table 2: PRESENT-80/128/256—Sbox_Func for encryption

In 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Out C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

40 IASC, 2022, vol.33, no.1



The SP inputs are replaced with S-box table data and generate 16 individual S-BOX outputs. Each S-
BOX input and outputs are 4-bits. The Sbox_Func currently has 64-bit Data (sr63…sr0) and decomposes
it into sixteen 4-bit blocks (b15…b0). Where bi = sr4*i+3 || sr4*i+2 || sr4*i+1 || sr4*i for 0 ≤ i ≤ 63. The
Sbox_Func [bi] similarly updates the Sbox values and inputs them to the permutation layer. The
permutation layer (PLayer) receives the 64-bit S-BOX outputs and creates more confusion and diffusion
using the Permutation table [28]. The P-table data replaces the S-BOX data for the next 16/32/64-rounds
and updates to the state register. Thus, after successive 16/32/64-rounds of clock cycles, the state register
generates 64-bit ciphertext as PRESENT-80/128/256 cipher output. The Key updation unit updates the
round key 16/32/64-times parallel, generates the updated 80/128/256-bit key data, and inputs it to the
decryption module for reverse key updation. The detailed key updation for encryption and decryption for
PRESENT-80/128/256-bit are described with hardware modeling in the next section.

In this work, the complete work is carried on FPGA with implementation. The Power reports are
generated using Xilinx X-power analyzer. In FPGA, the total power is divided into two parts: Quiescent
(Static) and dynamic power. The Quiescent (Static) power utilization is obtained based on device
(irrespective of the designs). Where, the dynamic power utilization is obtained based on the design
operation (In this work-PRESENT-80/128/256). The static power is utilization for the Artix-7 FPGA is
fixed 0.083 W. This static power includes leakage power of the device and not depends on design. Rest
of the dynamic power varies from the 0.103–0.109 W as the clock frequencies increases. The proposed
work, reduces chip resources (Slices. LUTs) to improves the dynamic power. The time complexity in
FPGA implementation is considering based on the execution time (Latency) in terms of Clock cycles.
The latency (clock cycles) used for the Proposed PRESENT is mentioned in Tab. 6.

3.2 PRESENT-80/128/256 Encryption Module

Like the encryption module, the decryption module receives 64-bit ciphertext as an input and an 80/128/
256-bit updated key as the input key. The detailed hardware architecture of PRESENT-80/128/
256 decryption is represented in Fig. 3. It is an entirely reverse process of encryption and few changes in
the SP-Network.
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Figure 3: Hardware architecture of PRESENT-80/128/256 decryption module
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The replacement of S-BOX, PLayer, and key updation module with Inv_Sbox_Func, Inv_PLayer [28],
and inverse key updation unit, respectively. The Inverse Inv_Sbox_Func is tabulated in Tab. 3 and used in
Inverse SP-network.

3.3 Key Updation Modules for PRESENT-80/128/256

The key updation and inverse key updation architecture units are represented in Figs. 4a and 4b for
PRESENT-80 encryption and decryption. For PRESENT-80, the key register (KRi) stores 80-bit Data
temporarily for 64-bit round key operation KRi = k63k62…k1k0 and starts updating. Consider the KRi for
PRESENT-80 module in Eq. (2) as follows:

KRi ¼ k63k62 . . . k1k0 ¼¼. k79k78 . . . k17k16 (2)

The 80-bit register key (KRi) in Eq. (2) is mainly used to update the MSB portion of the first 64-bit key
out of the 80-bit key for round operations in the Encryption process. Later perform the shifts left (<<)
operations 19 times and further process the key updation using a round counter. The concatenation of the
first 15-bits [14:0] keeps the same followed by the next 5-bits [19:15] are XORed with 5-bit round
counter (cnt), and 56-bits [75:20] keeps the same, along with last 4-bits [79:76] are performed by S-BOX
(S17) operation to generates the 80-bit updated key of PRESENT-80 Encryption. Similarly, for
PRESENT-80 Decryption, the 80-bit key register data concatenates the First 15-bits [14:0] followed by
the next 5-bits [19:15] are XORed with 5-bit round counter (cnt), 56-bits [75:20] keeps same, along with

Table 3: PRESENT-80/128/256—Substitution Box (S-BOX) for decryption

In C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Out 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

<< 19

<< 61cnt

Key Register Key Register

80

155564

80

IS17

S17

cnt

80

155564

80

(a) (b)

Figure 4: Hardware architecture of PRESENT-80 key modules (a) key updation (b) inverse key updation
module
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last 4-bits [79:76] are performed by Inverse S-box (IS17) for the generation of the 80-bit key. This 80-bit key
is left-shifted by 61 times for the generation of the 80-bit updated key.

The key updation and inverse key updation architecture units for PRESENT-128/256 encryption and
decryption are similar to PRESENT-80 with few changes. For PRESENT-128 Encryption, the key register
stores 128-bit Data temporarily and operate updating as follows. The 128-bit register key shifts left (<<)
67 times initially, then process the key updation. The 5-bits [66:62] are XORed with a 5-bit round
counter (cnt), and MSB 8-bits [127:120] are performed by two S-BOX (S17 and S18) operation for the
generation of the 128-bit updated key. The other bits keep as it is with corresponding positions. Similarly,
for PRESENT-128 Decryption, the 128-bit key register data uses 5-bits [66:62] are XORed with 5-bit
round counter (cnt), and MSB 8-bits [127:120] are performed by two Inverse S-box (IS17 and IS18)
operation for the generates the 128-bit key. The rest of the bits keeps as it is with corresponding
positions. This 128-bit key is left-shifted (<<) by 61 times to generate the 128-bit updated key.

The key updation and inverse key updation process for PRESENT-256 encryption and decryption as
follows: For PRESENT-256 Encryption, the key register stores 256-bit Data temporarily and starts
updating as follows. The 256-bit register key shifts left (<<) 195 times initially, then process the key
updation using a round counter. The 5-bits [128:124] are XORed with a 5-bit round counter (cnt), and
MSB 8-bits [255:248] are performed by two S-BOX (S17 and S18) operation for the generation of the
256-bit updated key. Similarly, for PRESENT-256 Decryption, the 256-bit key register data uses 5-bits
[128:124] are XORed with 5-bit round counter (cnt), and MSB 8-bits [255:248] are performed by two
Inverse S-box (IS17 and IS18) operation for the generates the 256-bit key. Finally, this 256-bit key is left-
shifted (<<) 61 times to generate the 256-bit updated key.

4 Results and Analysis

The PRESENT-80/128/256 light-weight block ciphers for IoT security are designed using Verilog-HDL
on the Xilinx Platform and implemented on the Artix-7 FPGA device for prototyping purposes. The
simulation is carried out using the Modelsim 6.5f simulator. The PRESENT-80/128/256 modules of
hardware constraints and comparative analysis with similar and different existing approaches are
tabulated in this section.

The complete integration of encryption and decryption PRESENT-80/128/256 modules Performance
results on Artix-7 FPGA are tabulated in Tab. 4. The Table contains area, frequency, total power
utilization, and hardware efficiency with different key sizes and rounds for PRESENT-80/128/
256 Modules. For example, the area utilization is <2%, and operating frequencies are also better on
Artix-7 for PRESENT-80/128/256 modules with different rounds.

Table 4: Performance results of PRESENT-80/128/256 modules on Artix-7 FPGA

Resources PRESENT-80 PRESENT-128 PRESENT-256

Data size 64 64 64

Key size 80 128 256

Rounds 16 32 64 16 32 64 16 32 64

Area

Slice registers 358 359 359 454 455 455 710 711 711

Slice LUTs 435 437 437 487 489 489 615 617 617

LUT-FF pairs 289 291 291 341 343 343 469 471 471
(Continued)
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The PRESENT-80/128/256 consumes less total power with the range 0.186–0.192 W. Therefore, the
power utilization is relatively more minor, and we can easily use these PRESENT modules for IoT
devices for authentication purposes. The Throughput (Mbps) and efficiencies like Throughput/Slice
(Mbps/slice) and Throughput/LUTs (Mbps/LUT) are also tabulated. The PRESENT-80/128/256 Module’s
Chip area (Slices and LUTs) and frequency utilization on Artix-7 is graphically represented in Fig. 5.

The total power consumption of PRESENT-80/128/256 module with different clock frequencies on
Artix-7 FPGA is represented in Fig. 6. The total power (W) mainly includes quiescent (Static) and
dynamic power. The total power is generated using the Xpower analyzer tool on Xilinx Environment.
The dynamic power varies with the PRESENT-80/128/256 design module. The static power is constant
and does not depend on the design module, and depends on the selected device (Artix-7 FPGA). The
static power for the PRESENT-80/128/256 is an average of 0.083 W, and dynamic power varies based on
design modules. As the device clock frequencies increase, the total power of the PRESENT-80/128/256 is
also increased.

Table 4 (continued)

Resources PRESENT-80 PRESENT-128 PRESENT-256

Frequency

Max. frequency (MHz) 410.79 410.7 412.4 410.79 410.79 412.49 410.79 410.79 412.4

Power

Total power (W) 0.186 0.187 0.188 0.188 0.189 0.19 0.19 0.191 0.192

Hardware efficiency

Throughput (Mbps) 1644 822 413 1644 822 413 1644 822 413

Throughput/Slice (Mbps/slice) 4.59 2.29 1.15 3.62 1.8 0.9 2.32 1.15 0.58

Throughput/LUTs (Mbps/LUT) 3.77 1.88 0.95 3.37 1.68 0.85 2.67 1.33 0.67
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Figure 5: Resource utilization Graphical representation of PRESENT-80/128/256 module on Artix-7
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The performance analysis of the proposed PRESENT-80/128/256 with different lightweight-block
ciphers for 32-rounds is represented in Fig. 7 and tabulated in Tab. 5 with improvements.
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Table 5: Performance analysis of different lightweight-block ciphers with proposed work

Designs Data size Key Area (Slices) Throughput
(Mbps)

Efficiency (Kbps/
Slice)

FPGA
device

LED [10] 64 128 315 105.34 334.41 XC3S5000

SPECK [12] 128 128 34 2.8 82.35 XC3S50

SIMON [13] 64 128 24 9.6 400 XC3S50

SPECK [13] 64 128 34 7 205.88 XC3S50

HB [11] 16 64 485 171.36 353.3 XC3S200

XTEA-1 [9] 64 128 266 19 71.42 XC3S50
(Continued)
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The different lightweight block ciphers include Tiny XTEA [9], LED [10], SPECK [12,13], SIMON
[13], Hummingbird [11], are implemented on low-end Spartan-3 FPGA devices. The proposed work is
compared with existing light-weight block ciphers with improved throughput (Mbps) and efficiency
(kbps/slice) in the greater margin. These light-weight block ciphers consume more Latency for execution
and affect overall performance in terms of Throughput and Efficiency.

The analysis of PRESENT-80/128 ciphers with similar recent PRESENT cipher modules are compared
with different FPGA families like Spartan-6, Virtex-4, Virtex-5, Artix-7 are tabulated in Tab. 6 with
improvements.

Table 5 (continued)

Designs Data size Key Area (Slices) Throughput
(Mbps)

Efficiency (Kbps/
Slice)

FPGA
device

XTEA-3 [9] 64 128 254 36 141.73 XC3S50

This work 64 80 181 391.54 2163.23 XC3S50

This work 64 128 231 391.54 1694.97 XC3S50

This work 64 256 284 391.54 1378.66 XC3S50

Table 6: Comparative analysis of PRESENT-80 and 128 block ciphers with recent existing works

Designs Year Data
size

Key FF's LUT's Slices Fmax
(MHz)

Lat
(CC)

Thr
(Mbps)

Thr*
(Mbps)

*Efficiency
(Kbps
/Slice)

XC6slx16-3csg324

Ref. [29] 2016 64 80 136 229 74 221.63 33 429.83 26.3 355.38

Ref. [30] 2017 64 128 201 220 61 210.66 136 99.13 6.38 104.61

Ref. [30] 2017 64 80 153 170 48 257.4 133 123.86 6.53 135.94

This work 2020 64 80 178 266 178 264.24 32 528.48 27.12 152.35

This work 2020 64 128 226 318 226 264.24 32 528.48 27.12 120.1

xc5vlx50t-3ff1136

Ref. [30] 2017 64 80 153 190 67 542.3 133 260.96 6.53 97.39

Ref. [30] 2017 64 128 201 239 73 431.78 136 203.19 6.38 87.41

Ref. [31] 2019 64 80 149 216 54 545.05 51 683.98 17.01 315

Ref. [31] 2019 64 128 197 267 72 433.78 63 440.66 13.77 191.25

This work 2020 64 80 183 272 183 455.76 32 911.53 27.12 148.19

This work 2020 64 128 231 324 231 455.76 32 911.53 27.12 117.4

xc4vlx25-12ff668

Ref. [30] 2017 64 80 153 215 124 375.66 133 180.77 6.53 52.62

Ref. [30] 2017 64 128 202 265 152 364.56 136 176 6.38 41.98

This work 2020 64 80 183 292 179 389.98 32 779.97 27.12 151.5

This work 2020 64 128 231 344 209 389.98 32 779.97 27.12 129.76
(Continued)

46 IASC, 2022, vol.33, no.1



5 Conclusion and Future Work

The light-weight efficient, low-latency, High Throughput PRESENT-80/128/256 integrated Encryption,
and Decryption modules are designed and implemented on FPGA for prototyping. The PRESENT80/128/
256 Encryption and Decryption modules have their state updation and key updation units. The proposed
work performs 16/32/64 rounds of state and key updation operations to create more confusion and
diffusion to the attackers. The PRESENT-80/128/256 uses parallel operation for data and key updation,
which consumes less execution time with better Latency. The PRESENT-80/128/256 is well suited to
low-end IoT devices for security incorporation because of low Latency and High Throughput. The results
are analyzed and compared with recent PRESENT models with improved chip area, Latency,
Throughput, and efficiency on different FPGA devices. The PRESENT-80/128 is also compared with
different light-weight algorithms with improved hardware constraints. The PRESENT-80/128 works with
a throughput of 821.58 Mbps for 32-rounds on Artix-7 FPGA. In the future, Optimize the power
performance by using the ASIC platform and also analyze the real-time power usage in IoT applications.
In addition to that, analyze the critical attacks using PRESENT cipher on IoT infrastructure and its
application to realize the security aspects.
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