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Abstract: This paper presents a novel fuzzy logic based Convolution Neural Net-
work intelligent classifier for accurate image classification. The proposed
approach employs a semantic class label model that classifies the input land cover
images into a set of semantic categories and classes depending on the content. The
intelligent feature selection algorithm selects the prominent attributes from the
given data set using weighted attribute functions and uses fuzzy logic to build
the rules based on the membership values. To annotate remote sensing images,
the CNN method effectively creates semantics and categorises images. The deci-
sion manager then integrates the fuzzy logic rules with the CNN algorithm to
achieve accurate classification. The proposed approach achieves a classification
accuracy of 90.46% when used with various training and test images, and the
three class labels for vegetation (84%), buildings (90%), and roads (90%) provide
a higher classification accuracy than other existing algorithms. On the basis of
true positive rate, false positive rate, and accuracy of picture classification, the
suggested approach outperforms the existing methods.
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1 Introduction

Remote sensing is a technique for monitoring and detecting the earth’s surface area without physical
contact, utilizing specialized sensing devices such as high-resolution cameras and satellite images [1].
The benefits of remote sensing are that it enables remote monitoring of an unattended environment on a
continual dynamic basis [2]. It also offers information about changes that occur in the environment,
which is beneficial. With the advancement of remote sensing technology, research on remote sensing has
shifted its focus to precise image classification through the application of image processing and machine
learning algorithms [3]. Image annotation is a popular machine learning technique that makes use of
artificial intelligence to annotate images depending on their context. The majority of existing image
annotation systems classify the image using a single class label in order to provide an overall
understanding of the image. Unfortunately, image annotation based on a single class label gives
inadequate information to categorise and annotate images more accurately in nature. Segmentation-based
semantics is a widely used technique that classifies objects in a scene based on their image pixels in order
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to extract information [4]. Semantic image segmentation based on a single class label, on the other hand, is a
difficult and time-consuming process. Additionally, this procedure incurs computational overhead, which
might deplete system resources, and the annotation of the image classification is imprecise by nature [5].
To address the limitation of a single class label classifier, a classifier based on multiple class labels has
been developed to offer adequate information about the scene to annotate multi label and categorize the
image with greater accuracy [6]. When compared to single-label remote sensing image classification,
multi-label remote sensing image classification is a more realistic challenge. The purpose of multi-label
annotation is to predict numerous semantic labels that will be used to characterize a remote sensing image
scene. Due to its higher descriptive capacity, multi label may be used in numerous disciplines, like image
annotation [7,8] and image retrieval [9–11]. However, the multi-class labels demonstrated limited
performance as the image annotations are classified using handcraft features from the given images and
the images in high-level semantics are not displayed to ensure a precise classification and annotation of
the images in a more accurate way. To overcome the limitations of existing systems, this study proposes
an efficient fuzzy logic-based CNN Intelligent Semantic Multi-label annotation technique for more
precisely classifying and annotating Land-cover high-resolution remote sensing images. The proposed
intelligent classifier makes use of a semantic multi-label model in which the image is represented using
high-level semantics. Further, the presented intelligent classifier classifies the image into a series of
semantic categories, each with a unique set of classes based on the content of the remote sensing image.
Furthermore, it applies intelligent feature selection, in which the prominent characteristics are chosen
based on the weightage attribute functions utilizing the information gain ratio.

2 State of the Art

In the realm of remote sensing, it is important to annotate scene images with multiple labels in order to
comprehend the images [12,13]. Qi et al. (2020) constructed a multi-label high spatial resolution dataset to
understand well about semantic scene images with deep learning approach from the overhead perspective.
Their suggested method enables the classification and retrieval of multi-label images via deep learning.
This strategy outperformed previous methods in multi-label image classification and retrieval tasks. To
evaluate the performance of image classification, investigators employed mean average precision, average
F1 score and precision at number of retrieved images, as well as average normalised modified retrieval
rank, mean average precision, and precision at number of retrieved images. Zhu et al. (2020) proposed a
deep learning framework for multi-label annotation of remote sensing images. One of the primary
features of this system is the use of convolutional neural networks to learn features from dual-level
semantic ideas. One problem of this approach is that it neglects to include the dependence of the label at
the object level and label relationships between the scene level and the object level. Vanegas et al. (2019)
presented a kernel matrix factorization based semi-supervised online learning approach for automatic
multi-label annotation. The proposed method worked with large datasets, which addresses one of the
primary shortcomings of kernel-based methods, namely their inability to scale. Also, this method is ideal
for non-linear complicated relationships and significantly reduces the amount of memory and calculation
time required for multi-label annotation tasks.

Hu et al. (2013) proposed a multi-level max-margin discriminative analysis for the annotation of high-
resolution images. To create discriminative features, the algorithm use the maximum entropy discrimination
latent Dirichlet Allocation technique. It utilises the bag-of-words to incorporate both word-level and topic-
level elements in order to increase annotation performance in multi-level semantics and contextual
information. Jeppesen et al. (2019) introduced a remote sensing network which is a deep learning model
to detection cloud free images in optical satellite imagery. This model was trained and evaluated using
Landsat 8 Biome and SPARCS dataset over biomes with cloud over snowy and icy region images.
Further, the model treated the noisy data and increases performance over cloud masking method.
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Kadhim et al. (2019) proposed an effective method for deep learning and CNN based satellite image
classification technique for feature extraction. Four effective ways for improving the performance of
satellite image classification were presented. Cao et al. (2020) presented an automatic image annotation
technique based on CNN with threshold optimization to address the problem of over- or under-labeling in
multi-label image annotation. Hoxha et al. (2020) proposed a remote sensing image retrieval system
capable of generating and utilizing textual descriptions that characterise the relationship between objects
and their associated attributes in remote sensing images. Xia et al. (2021) suggested a stacked ensemble
method for improving the pairwise label correlation and weight learning processes. Additionally, they
created an optimization approach to achieve an ideal ensemble solution that is both efficient and optimal.
Markatopoulou et al. (2019) addressed deep convolutional neural network architecture that taking the
problem of multi-label video/image annotation by exploiting multi-task learning to find the relation
between targets and structured output learning to find the correlation between the concepts. Both models
are built using standard layers that may be trained using back propagation to increase the accuracy of
annotations. Wanga et al. (2019) experimented with an automatic image annotation technique based on a
multiclass label selection algorithm. Using a convolutional neural network, this technique improves
annotation performance. Alshehri (2020) discussed a technique for extracting image features using
principal component analysis and the wavelet transform. Moreover, the author suggested a prediction
technique based on neural networks for image classification of retrieved data. Jabari et al. (2013)
proposed a classification method in high resolution urban satellite images using fuzzy logic. Fuzzy logic
is used for satellite image to handle the main problem such as uncertainty in the position of object
borders in high resolution image classification. Li et al. (2017) investigated a method for extracting visual
attention features using a multi-scale procedure. Further, researchers created a fuzzy classification method
for classifying high-resolution remote sensing scene images. This approach allows for an accurate
classification rather than other measurements of quantitative accuracy. Gheshlaghi et al. (2017) proposed
an analytical network process and fuzzy based decision making system for detecting landslides problems.
Bharti and Kurmi (2017) described a novel approach for classifying high-resolution urban satellite images
into three categories using fuzzy logic: road, building, and vegetation. Ma et al. (2017) discussed the use
of remote sensing imagery to classify land cover images using an object-based approach. According to
the literature review, the majority of existing image classification algorithms are ineffective at accurately
detecting class labels and at semantically annotating the multiple class labels. Motivated by these
findings, a unique intelligent classification technique is suggested in this work, which leverages intelligent
fuzzy rules in conjunction with the CNN algorithm to categorise image class labels with more accuracy.
According to high level semantics, proposed intelligent classifier combines CNN algorithm with
convolutional layer, min–max pooling layer, and decision manager to efficiently classify images into
different types of label classes. Finally, the decision manager decides on image annotation by integrating
intelligently produced fuzzy rules and CNN classification.

The contributions of the proposed system are

1. The Multi label semantics where the images are annotated with single-class label and represent them
in high level semantics.

2. The proposed model provides intelligent feature selection algorithm where the prominent features are
selected from the class label.

3. The proposed system incorporates an intelligent classifier, which utilises intelligent fuzzy rules and a
CNN classifier to appropriately annotate images using the retrieved feature set.
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3 Proposed System Architecture

The proposed system’s architecture is depicted in Fig. 1, and it is composed of eight modules: an image
dataset module, a semantic analysis module, a class label classification module, an intelligent feature
extraction module, a CNN classification module, a fuzzy rule generator module, a fuzzy inference
module, a knowledge base module, and a decision manager module.

Image data set module is the first module of a proposed system. It allows use of the UCMerced data set,
with 70% of the images being used for training and 30% for testing the proposed system. The second module
is devoted to semantic analysis. The semantic analysis module’s primary function is to provide a higher-level
knowledge of the given scenery and to annotate the given image with various class labels [14,15]. The
following module is for intelligent feature extraction. The main role of this module is to identify and
extract the prominent features from the annotated class labels. The next module is CNN classification.
This module is further divided into three submodules: max pooling, convolutional, and decision. The
following module is fuzzy inference, which employs fuzzy rules. The accompanying module is the fuzzy
rule generator. The fuzzy rule generator module is further divided into four submodules: fuzzification,
rule creation, rule firing and matching, and rule execution. The succeeding module is the knowledge base,
which stores the created fuzzy rules. Decision manager is the last module of the system proposed. The
main role of the decision manger is to take the decisions and control and coordinate the other modules
present in the system.

4 Proposed System

The semantic annotation phase is the initial phase of the proposed system. The data collection UC
Merced is used as an input, and it contains high-resolution remote sensing images of land cover, and
some sample images are shown in Fig. 2. The most important job of the semantic annotation phase is to
carry out high-level thinking and assign different class labels to the image [16]. The proposed approach
employs multiple label annotation to more precisely classify the images. Algorithm 1 details the
algorithm for the semantic annotation module.

Figure 1: Architecture of annotation for land-cover remote sensing images
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4.1 Initial Level Image Segmentation Phase

In this step, the images are segmented into homogenous non- overlapping discrete sections based on
their attributes such as values of their grey pixel, texture and auxiliary data. The proposed systems
segment the image using a multi-resolution segmentation technique. The proposed system takes into
account three critical parameters: scale, shape, and compactness. Based on the results of initial
segmentations the class label items such as shadows, vegetation area and roadways can be defined.
However, for the accurate detection of buildings, the second level image segmentation is essential.

4.2 Intelligent Fuzzy Based Image Classification

In the fuzzy image classification, the segments are classified on the basis of the specific values defined in
the membership functions instead of applying a decision based upon the binary values. The membership
functions based on fuzzy logic have values ranging from 0 to 1. Where 0 indicates that the object is not a
member of the class and 1 indicates that the object is a member of the class. A triangle membership
function is used in the proposed system [17–20]. The approach utilizes three variables: low, medium, and
high. The fuzzy inference system generates intelligent fuzzy rules based on the linguistic variables. The
decision manager makes the decision based on the generated fuzzy rules. The suggested system tests all
object classes by classifying each image segment using intelligent fuzzy rules. The parameters used for
the object based image classification are explained as follows.

4.2.1 Segment Shadowing
In the object based image classification, the Segment Shadowing is used to identify the objects which are

elevated. The proposed system uses two parameters namely segment brightness and segment density to
determine the shadow of the image segments.

Figure 2: Sample images from the UC-Merced data set (a) Agriculture (or) Vegetation area; (b) Building;
(c) Roads (or) Freeways
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4.2.2 Brightness
The brightness is defined as amount of mean value of each pixel or segment present in all the bands of

the image. The brightness of the segments of the image can be computed by using Eq. (1) [21]:

Segment brightness ¼ red colour þ blue colour þ green colour þ NIR=4 (1)

In object based image classification, the shadow objects in the image segments contains low brightness
values. Moreover, in order to improve the accuracy of the brightness the proposed system employs a fuzzy
logic based K-means clustering approach to detect the cluster with darkest values. Finally, the mean and
Standard Deviation (SD) of the darkest cluster is computed. To build intelligent fuzzy rules, the computed
darkest cluster is used as a linguistic variable for the shadow brightness. The two parameters NIR ratio
[21] and NDVI [21] are considered in the proposed approach to calculate the vegetation area for the
given image segment. Eq. (2) contains the formula for calculating the NIR ratio and follows:

NIRRatio ¼ NIR

NIRþ Rþ Gþ B
(2)

where NIR ratio is Near Infrared imaging and NDVI is the difference vegetation index which is used to
identify the vegetation area from the given image segment. Two important metrics, Lcm [21] and Le [21],
are taken into account while identifying the road from an image segment. The Lcm and Le are computed
by using Eqs. (3) and (4):

LCM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p areaðobjectÞ2

p
perimeterðobjectÞ (3)

Le ¼ AreaðobjectÞ
LengthðobjectÞ2 (4)

The intelligent fuzzy rules can be used to identify the road class label from a given image segment based
on these criteria. To determine the building class labels from a given image segment, three critical
characteristics must be considered: the elliptical fit, the rectangular fit, and the shadow position within the
given image segment. Rectangular fit is defined as the degree to which objects (buildings) fit within a
rectangle. The number 0 indicates that the objects do not fit within the rectangle, whereas the value
1 shows that the objects do fit within the rectangle. The term “elliptical fit” refers to the degree to which
objects fit into an elliptical structure. The value 0 indicates that the objects do not fit within the elliptical
structure, whereas the value 1 shows that the things do fit within the elliptical framework. The shadow
position is used to denote the locations of buildings in an image segment. The most frequently used
position of the shadow for identifying buildings in a given image segment is on the southern or western
side. Intelligent fuzzy rules are formed based on all of these computed parameters [22–24].

5 Semantic Annotation Module

The algorithm for semantic annotation module is explained in Algorithm 1.In this algorithm, the UC
Merced image data set is taken as input and the output of this algorithm is Set of annotated class labels
[25]. Initially, in this algorithm Image Set (IS) is defined as set of images ranging from IS1 to ISn. The
next step is store the elements of the IS into an array. The Class Label(CL) set is defined as set of class
labels ranging from CL1 to CLn and these elements are stored in an array. The next phase is image
segmentation phase. The image is divided into equal non-overlapping segments S1 to Sn in this step using
the Image Set (IS).
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Algorithm 1: Semantic annotation feature extraction module

Input: UC Merced image data set

Output: Set of annotated class labels

(1) Define image set IS = {IS1, IS2, IS3…ISn}

(2) Store the IS into an array, i.e IS = [IS1- ISn]

(3) Define class labels set CL = {CL1,CL2, CL3…CLn}

(4) Store the CL into an array i.e., CL = [CL1- CLn]

(5) For each IS do the following

Partition P(IS)→ {S1, S2, S3 … Sn} Where S1, S2, Sn are the non-overlapping segments IS

Repeat the process until P(IS) = {ϕ}
End for

(6) For each P(IS) do the following Class label detection probability (CLDpm) = classify p(IS1)

→MedLDA algorithm to identify the Class Labels in the given p(IS1)

Repeat p(IS1) = {ϕ}
End For

Class label detection probability (CLDps) = classify p(IS1)→ SVM algorithm to identify the
Class Labels in the given p(IS1)

Repeat p(IS1) = {ϕ}
(7) Compute the Total class label detection probability TCLPn = CLDpm∪CLDp

(8) For each (TCLPn) → Assign (CL) // Assign the class labels to each image partition segments

Repeat the process until TCLPn = {ϕ}
End For

Calculate the class label detection probability for each portioned image set using the MedLDA and CNN
algorithms. The combined class label detection probability of the MedLDA and CNN algorithms is used to
get the total class label detection probability. Class labels are assigned to each image segment based on the
estimated total class label detection probability, and annotation is performed using the class labels.

5.1 Intelligent Class Labels Extraction Phase

In this phase, features are extracted from the annotated class labels in order to achieve more accurate
classification of the target images. This step extracts features using machine learning algorithms.
Algorithm 2 explains the stages involved in the collection of Intelligent class labels. This method takes a
set of annotated class labels as input and extracts intelligent features from the set of class labels as output.
The class labels are initially loaded and stored in an array. Each class label undergoes pre-processing. The
proposed algorithm extracts intelligent features from a set of class labels using an optimized
VGG16 model and a RESNET model [21,22]. Finally, for improved classification, the retrieved features
are assigned to the appropriate classes.
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Algorithm 2: Intelligent Class labels extraction phase

Input – Set of class labels.

Output – Intelligent features from the set of class labels.

(1) Begin

(2) Load the class labels and store them into an array CL1 to CLn // where CL is the set of class labels.

For each CL1 to CLn

DO

(3) Perform pre-processing to the set of class labels

Convert the CL -→ RGB to grey scale

Divide each class labels into various pixels of P1 to Pn

Repeat until Cl = {ϕ}
End For

For each pre-processed class label

Do

(4) Extract the features using optimised VGG16 Model to all the class labels.

FExt1 = Extract Features (CL) -→ VGG16 Model

(5) Assign the extracted class label features to the corresponding class labels such that

CL1 = { Fext1…Fextn} // where Fext is the extracted class label features.

Repeat until CL = {ϕ}
End For

For each pre-processed class label

Do

(6) Extract the features using optimisedResNetModel to all the class labels.

FExt1 = Extract Features (CL) -→ResNet Model

(7) Assign the extract

ed class label features to the corresponding class labels such that

CL2 = {Fext1…Fextn} // where Fext is the extracted class label features.

Repeat until CL = {ϕ}
End for

Compute FFext = Fext1 + Fext2 // where FFext is fusion feature extraction

End for

For each class labels CL1 to CLn

Do

(8) Assign FFext to the corresponding class labels and store in the database

End for
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In this step, land cover satellite images were intelligently classified using fuzzy logic and the CNN
algorithm. This step takes the annotated class labels and extracted intelligent features as input. Tab. 1 has
annotations for the possible land cover images. Intelligent fuzzy rules are built using these annotated
class labels and the collected intelligent features [26–28]. The object shape, annotated class labels, and its
features are referred to as membership functions in the proposed system. Algorithm 3 provides the
intelligent fuzzy rules for the proposed system for improving land cover image classification [21]. The
proposed intelligent-based fuzzy classification algorithm makes use of a triangular membership function
that is more appropriate for mamdami than sugeno models. As a result, the mamdami model is favored
above the sugeno model in the proposed model. The algorithm illustrates the classification of vegetation
areas using clever fuzzy rules.

Algorithm 3: Intelligent fuzzy rules for image classification (Classification of Vegetation)

Input – Set of class annotated class labels, intelligent features

Output – Intelligent fuzzy rules

One of the Fuzzy rules -Classification of Vegetation

“NIR_Ratio == Low &NDVI_Value == Low =>Image_Segment_Classification = Not_a_vegetation_area”
“NIR_Ratio == Low&NDVI_Value == Medium =>Image_Segment_Classification = May_be_a_
vegetation_area”

“NIR_Ratio == Low &NDVI_Value == High =>Image_Segment_Classification = May_be_a_vegetation_
area”

“NIR_Ratio == Medium &NDVI_Value == Low =>Image_Segment_Classification = Not_a_vegetation_
area”

“NIR_Ratio == Medium&NDVI_Value == Medium =>Image_Segment_Classification = May_be_a_
vegetation”

“NIR_Ratio==Medium&NDVI_Value == High =>Image_Segment_Classification = Medium_Vegetation_
area”

“NIR_Ratio == High &NDVI_Value == Low =>Image_Segment_Classification = May_be_a_vegetation_
area”

“NIR_Ratio == High &NDVI_Value == Medium =>Image_Segment_Classification = Highly_vegetation_
area”

“NIR_Ratio == High &NDVI_Value == High =>Image_Segment_Classification = Strong_Vegetation_
area”

Table 1: Classification and efficiency results using binary cross entropy algorithm

Class label Training images Testing images TP TN FP CA

Vegetation area 350 150 73 26 1 73

400 200 74 24 2 74

450 250 75 22 3 75

500 300 77 22.5 1.5 76.23

550 350 79 20.5 0.5 78.88
(Continued)
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Fig. 3a illustrates a mamdami-based fuzzy inference system model for classifying vegetation areas from
image segments. This model considers two membership functions, namely the NRI ratio and NDVI values,
with weightings of low, medium, and high. Nine intelligent fuzzy rules are generated based on these
membership functions. To perform the fuzzification process, the intelligent fuzzy rules are triggered and
the rules are executed. The decision manager performs defuzzification and generates three alternative
results from the performed intelligent fuzzy rules, namely strong vegetation area (3), high vegetation area
(2), may be vegetation area (1), and not vegetation area (0). The membership function for the input
variable NIR Ratio is shown in Fig. 3b. Fig. 3c gives Membership function for an input variable NDVI
value is shown in Fig. 3c, and the Membership function for an output variable of image segment
classification for vegetation area is shown in Fig. 3d. Similarly, the fuzzy inference systems are built for
road and building classifications.

Table 1 (continued)

Class label Training images Testing images TP TN FP CA

Buildings 350 150 74.5 18.5 7 74.5

400 200 76.5 19.5 4 76.5

450 250 77.5 20 3.5 76.73

500 300 79.6 17.5 2.9 79.6

550 350 80.5 17.7 1.8 80.5

Roads 350 150 76.5 14.4 9.1 76.5

400 200 78.4 14.4 7.2 78.4

450 250 79.4 13.5 7.1 79.4

500 300 80.1 14.9 5 80.1

550 350 81 13.6 4.8 81.4

Figure 3: Continued
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6 CNN Based Classification Algorithm

By extending the CNN algorithm with intelligent fuzzy rules, the proposed system develops a novel
intelligent CNN-based image classification algorithm. The proposed algorithm performs the convolution
operations for two functions x and y for the operator using the integral given in Eq. (5) as follows.

ðx � yÞðtÞdef ¼
Z 1

�1
xðsÞyðt � sÞds ¼

Z 1

�1
xðt � sÞyðsÞds (5)

The Eq. (5) provides the convolution operations for two functions x and y for the operator using the
integral. By employing this equation, the proposed system develops nine maximum pooling layers and
ten convolutional layers for the two functions x and y, which are used to conduct image classification.
Moreover, the proposed system employs the sigmoidal function as a activation function and we use the
bias function defined by f(x) = x + 1/x as a bias function along with the CNN. The proposed algorithm
employs nine max pooling layers and ten convolution layers for performing the classification of the
image. All of these layers operate on the image data set and provide a set of features such as NIR ratio,
NDV ratio, LCM value, LE value, Std value, rectangular fit, and elliptical fit that can be used to classify
the images in the given data set. In this proposed model, we use the sigmoidal function as a activation
function and we use the bias function defined by f(x) = x + 1/x as a bias function along with the CNN. By
comparing them to the features selected by the feature selection algorithm, the CNN applies fuzzy rules
to obtain feedback on the selected features. If both are identical, the classification process is initiated. In
the event of a mismatch, it asks the decision manager for guidance on the qualities to employ depending
on their sensitivity. Errors are communicated in reverse order and are minimized during the classification
process. The intelligent fuzzy CNN proposed in this paper performs multiclass classification on a variety
of distinct class labels, including buildings, vegetation, land, roads, and vehicles.

7 Experimental Setup and Results

The proposed intelligent classification model is implemented using the MATLAB 2013a software. The
proposed model generates intelligent fuzzy rules using a mamdami model with triangle membership

Figure 3: (a) Fuzzy inference system for vegetation area classification; (b) Membership function for an input
variable NIR_Ratio; (c) Membership function for an input variable NDVI_vale; (d) Membership function for
an output variable of image_segment_classification (NV- Not_a_Vegetation area, MBV–May_Be_a_
Vegetation, MVA–Medium_Vegetation_Area, HVA–Highly_Vegetation_Area, SVA–Strongly_Vegetation_
Area)
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functions. The proposed classification model is compared to previously published models using performance
criteria such as True Positive Rating (TPR), True Negative Rating (TNR), False Positive Rating (FPR), and
Classification Accuracy (CA). The TPR, TNR, FPR, and CA are calculated in the following manner.

TPR ¼ TP

TP þ FN
(6)

TNR ¼ TN

TP þ FP
(7)

FPR ¼ FP

FP þ TN
(8)

CA ¼ TPR

TPRþ TNRþ FPR
(9)

Tab. 1 gives the classification detection accuracy of various class labels such as vegetation, road, and
buildings for binary cross entropy algorithm. In Tab. 1, three class labels namely vegetation area, building
and roads are considered. For each class labels different sets of training and testing images are given as
input to the buildings for binary cross entropy algorithm.

As shown in Tab. 1, the average true positive value for the vegetation area class label is 75.6%, the
average true negative value is 23%, the average false positive value is 1.6%, and the classification
accuracy for the binary cross entropy algorithm is 75.42 percent when training and testing images are
varied. For building class label the average true positive value is 77.72%, average true negative value is
18.64%, average false positive value is 3.84% and classification accuracy of for binary cross entropy
algorithm is 77.56% for varying training and testing images. For road class label the average true positive
value is 79.08%, average true negative value is 14.16%, average false positive value is 6.64% and
classification accuracy of for binary cross entropy algorithm is 79.16% for varying training and testing
images. Tab. 2 exhibits the classification detection accuracy for CNN utilizing the RNN algorithm for
various class labels such as vegetation, road, and building. In Tab. 2, three class labels are considered:
vegetative area, building, and road. Different sets of training and testing images are fed into the CNN
using the RNN algorithm for each class label. From the Tab. 2, it is clear that for vegetation area class
label the average true positive value is 79%, average true negative value is 15.3%, average false positive
value is 1.2% and classification accuracy of for binary cross entropy algorithm is 79.14% for varying
training and testing images. For building class label the average true positive value is 82.4%, average true
negative value is 15.66%, average false positive value is 2.54% and classification accuracy of for CNN
using RNN algorithm is 83% for varying training and testing images. For road class label the average
true positive value is 79.08%, average true negative value is 12.3%, average false positive value is 4.5%
and classification accuracy of for CNN using RNN algorithm is 83.16% for varying training and testing
images.

Table 2: Classification and efficiency results by CNN using RNN algorithm

Class label Training images Testing images TP TN FP CA

Vegetation area 350 150 74 2.5 1 74.7

400 200 77 22.5 0.5 77

450 250 79 20 1 79

500 300 82 16 2 82

550 350 83 15.5 1.5 83
(Continued)
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Tab. 3 summarizes the classification detection accuracy for the proposed intelligent classification
algorithm for various class labels such as vegetation, road, and building. Tab. 3 considers three class
labels: vegetative area, building, and road. Different sets of training and testing images are given into the
buildings for the proposed intelligent classification algorithm for each class label. From the table it is
clear that for vegetation area class label the average true positive value is 88.42%, average true negative
value is 11%, average false positive value is 1.38% and classification accuracy of for binary cross entropy
algorithm is 87.68% for varying training and testing images. For building class label the average true
positive value is 90.96%, average true negative value is 7.58%, average false positive value is 1.66% and
classification accuracy of for proposed intelligent classification algorithm is 90.68% for varying training
and testing images. For road class label the average true positive value is 90.5%, average true negative
value is 7.44%, average false positive value is 2.06% and classification accuracy of the proposed
intelligent classification algorithm is 90.46% for varying training and testing images.

Table 2 (continued)

Class label Training images Testing images TP TN FP CA

Buildings 350 150 80.5 16.5 3 80.5

400 200 81.6 17.1 2.3 80.7

450 250 82.7 15.3 2 82.7

500 300 83.1 14.8 3.1 82.27

550 350 84.1 14.6 2.3 83.26

Roads 350 150 81.4 12.6 6 81.4

400 200 82.4 12.7 4.9 82.4

450 250 82.6 11.8 4.6 83.43

500 300 84.1 12.6 3.3 84.1

550 350 84.5 11.8 3.7 84.5

Table 3: Classification and efficiency results for the proposed intelligence classification algorithm

Class label Training images Testing images TP TN FP CA

Vegetation area 350 150 85 14 1 85

400 200 87 12 2 86.13

450 250 88.5 11 1.5 87.6

500 300 89.9 10 1.1 89

550 350 91.7 8 1.3 90.7

Buildings 350 150 86.1 12.8 2.1 85.24

400 200 88.9 10 1.1 88.9

450 250 92.1 6.2 1.7 92.1

500 300 93.6 5.1 1.3 93.1

550 350 94.1 3.8 2.1 94.1
(Continued)
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Fig. 4 illustrates the classification accuracy of three classification algorithms: CNN with binary entropy,
CNN with RNN algorithm, and the proposed intelligent classification algorithm for three image class labels:
vegetative area, buildings, and roads. From the Fig. 4, it is observed that the proposed intelligent
classification algorithm has better classification accuracy of three class labels for vegetation class label
(84%), building (90%) and roads (90%) when it is compared with other existing classification algorithms
such as CNN with binary entropy for vegetation class label (75%), building class label (76%) and road
class label (79%) and CNN with RNN algorithm with classification accuracy of various class labels
vegetation class label (79%), building class label (80%) and road class label (83%). The proposed
intelligent classification technique achieves a higher classification accuracy because it combines semantic
analysis with single label image segmentation.

Moreover, when compared to other existing classification algorithms, the proposed intelligent
classification algorithm employs intelligent fuzzy rules in conjunction with the CNN algorithm to
accurately classify the selected class labels vegetation area, buildings, and roads. Furthermore, the
proposed intelligent classification method has a higher proportion of genuine positives and a lower
proportion of true negatives, as well as a lower false positive rate. As a result, the proposed intelligent
classification method outperforms other existing classification algorithms in terms of class label accuracy.

8 Conclusion and Future Work

A novel intelligent Fuzzy based CNN image classification model has been proposed in this paper. This
strategy is advantageous for enriching the target information and outperforms manual image labeling by
collecting semantic descriptors from the images automatically. The experimental results from three remote

Figure 4: Classification accuracy

Table 3 (continued)

Class label Training images Testing images TP TN FP CA

Roads 350 150 86.5 10.1 3.4 86.5

400 200 89.8 8.2 2 89.5

450 250 90.6 8 1.4 90.6

500 300 91.8 6.1 2.1 91.8

550 350 93.8 4.8 1.4 93.8
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sensing image datasets demonstrate that the proposed framework significantly improves the performance of
Multi Label annotation when compared to alternative annotation approaches. In comparison to previous
methods, the improvised algorithm adaptively decides the number of semantic classifications within class
labels during annotation. The proposed intelligent classifier overcomes the least probability retrieval error
during classification. This approach produces more true positives and fewer true negatives, as well as
lower false positive rates. The future research will entail modifying the similarity measurements in order
to generate more semantically related scenes using enhanced metric learning approaches. Additionally, it
focuses on developing Fuzzy-CNN to operate on many classes and incorporate methods for classification
judgments, incorporating Multi Label and Multi Class output models into land cover remote sensing images.
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