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Abstract: Healthcare is one of the notable areas where the integration of the Inter-
net of Things (IoT) is highly adopted, also known as the Medical IoT (MIoT). So
far, MIoT is revolutionizing healthcare because it provides many advantages for
the benefit of patients and healthcare personnel. The use of MIoT is becoming
a booming trend, generating a large amount of IoT data, which requires proper
analysis to infer meaningful information. This has led to the rise of deploying arti-
ficial intelligence (AI) technologies, such as machine learning (ML) and deep
learning (DL) algorithms, to learn the meaning of this underlying medical data,
where the learning process usually occurs in the cloud or telemedicine servers.
Due to the exponential growth of MIoT devices and widely distributed private
MIoT data sets, it is becoming a challenge to use centralized learning AI algo-
rithms for such tasks. In this connection, federated learning (FL) is gaining trac-
tion as a possible method of learning on devices that do not need to migrate
private and sensitive data to a central cloud. The terminal equipment and the cen-
tral server in FL only share learning model updates to ensure that sensitive data is
always kept secret. Even though this has recently become a promising research
area, no other research has been conducted on this topic recently. In this paper,
we synthesize recent literature and FL improvements to support FL-driven MIoT
applications and services in healthcare. The findings of this research help stake-
holders in academia and industry to realize the competitive advantage of the most
advanced privacy preserved MIoT systems based on federal learning.
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1 Introduction

The revolution in the healthcare sector has spawned a large number of MIoT applications, each of which
can access large amounts of data and requires extensive analysis [1]. Over the years, MIoT or well known as
use of IoT driven technologies in healthcare, has shown great potential in many medical applications, such as
disease diagnosis, patient condition monitoring, remote health monitoring, wearable devices, fitness
programs, emergency care, elderly care, epidemic management, etc. [2,3]. Day after day, due to various
factors such as the recent COVID-19 pandemic [3], the rise of chronic diseases, and the elderly
population [2,3], the usage of these MIoT applications has skyrocketed, which has led to the generation
and collection of large amounts of medical data. Traditionally, in a typical MIoT setup, all of these patient
pathology data, and environmental data are first collected by these MIoT devices, and then sent to the
cloud through base stations to train statistical learning models to infer the meaning of data for prediction,
which is also known as AI [2,4–8]. However, in the past, simple data transaction models were used.
When using these AI methods, one party collects data and transmits the data to the other party, and the
other party cleans and fuses the data. Finally, third party will use aggregated data to develop models that
can be used by others. Therefore, the problem we face is that our data is isolated like island, and we are
prohibited from collecting, fusing and using data in different locations for AI processing. Hence, AI
practitioners have huge difficulties in figuring out how to legally solve data fragmentation and isolation
problems [8–10].

The exponential growth of MIoT applications has led to the exponential growth of the technology [1,3–
5] leading to the creation and accumulation of large amounts of data. The feasibility of clinical research is
often hindered by problems in data communication and access especially in terms of privacy issues,
owing to the fact that such medical data usually involve personal identifiable information (PII) and
sensitive pathological information unique to patients [1,4–7], where it would also violate laws and
regulations. For example, the Health Insurance Circulation and Accountability Act (HIPAA) [8]; and the
General Data Protection Regulation (GDPR) [1,9] suggest data privacy and protection of PII. According
to the latest statistics [3–6,9,10], it is clear that the growing IoT devices will contribute to economic
growth worth 5 to 12 trillion US dollars whereas the IoT in healthcare market is expected to reach about
534 billion by 2025, which clearly provides us with a forecast of the amount of data that the entire
healthcare ecosystem will generate as the market expands [10–15]. In order to overcome this problem,
including the aforementioned data fragmentation and isolation issues, FL allows the use of decentralized
optimization methods for privacy protection data analysis, while maintaining data security and
decentralization [1,2,10–16]. On the other hand, with the more effective expansion of IoT networks and
the increasing privacy issues in typical IoT environments over a long period of time, typical AI
technologies that rely on collecting and accumulating all data in one place for further analysis may
become endanger the privacy of aggregated data [16–22]. In this case, this kind of FL manifests itself as
a collaborative and distributed AI method [22–28] that allows training of decentralized IoT devices
without data sharing [28–30], thereby protecting data privacy [8,30–35].

1.1 Contributions and the Significance of Study

FL is used in various activities within the focus of this research (i.e., MIoT) to realize intelligent and
universal medical services by enabling DL and ML models without the need to disclose sensitive patient
data in between multiple medical institutions. Therefore, medical institutions with medical data do not
need to share medical records with each other, so as to better protect the privacy of medical data. The
data model is trained locally and uploaded to the aggregation (or central) server for global computations.
By doing so, FL has achieved a collaborative medical environment between different hospitals to achieve
faster patient diagnosis and treatment while maintaining user privacy [36–42], which has become very
popular during the recent COVID-19 pandemic for collaborative learning between multiple medical
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institutions for drug discovery and disease diagnosis [1,2,8,9,42–44]. We note that FL and its progress have
been extensively discussed in the literature. However, there is currently no research that conducts a
comprehensive review of FL and the IoT in healthcare. Some research has been done on FL and IoT, but
as far as we know, no major efforts have been made on MIoT. The lack of research in this area motivated
us to conduct a comprehensive evaluation of FL in MIoT, highlighting the most important aspect of FL
which is data privacy, which signifies our work among all other research in this area. In terms of other
reviews done on this subject, we were not able to find any related reviews, which proves that, our study
is the first of this kind. Hence owing to this significance of our review we believe this would help other
researchers towards carrying our further study and research, where it would contribute to the new
knowledge in this area and for the betterment of MIoT based healthcare.

Next, we have summarized the key contributions of this paper as follows.

� We have reviewed some of the major opportunities created by FL in the context of MIoT, and
analyzed some major issues, difficulties and future prospects.

� We have categorized recent literature, highlighting key features and contributions, so that readers and
future researchers can better understand the current status of academic achievements on this topic.

� We have evaluated the possible applications of FL in MIoT in detail, juxtaposed the scope of these
applications, and these terms range from basic to recent and future developments.

1.2 Outline of Study

In order to provide a comprehensive review the rest of this study is structured as follows. Section 2
briefly discussed the ubiquitous MIoT environment and FL, and emphasized their key characteristics,
laying the foundation for our research. Section 3 investigates in detail the application areas of FL in
MIoT and the work related to taxonomy. Section 4 assesses challenges and future directions. Finally this
research ends with a conclusion section.

2 MIoT and Federated Learning

2.1 MIoT

The expansion of the IoT has led to more and more connected objects communicating with each other
via the Internet, which is supported by machine-to-machine (M2M) communications, including IoT in
healthcare. These MIoT devices in the healthcare environment (e.g., smart thermometers, blood pressure
monitors, blood glucose monitors, infusion pumps, wearable medical devices, medical imaging devices,
fitness trackers, injectable medical sensing devices, hospital monitoring devices, etc.), collect various
medical data, and then aggregate these data for further processing to obtain meaningful insights about the
patient’s condition [1,2,10–15]. In this regard, many AI technologies including DL and ML have been
applied to the training of statistical data models to perform intelligent decision-making in order to gain
insights from ubiquitous MIoT devices. In most cases, this computation takes place in a remote data
center (or cloud) for the purpose of learning and modeling. Even if these AI computation place in the
cloud (or remote server), it is often affected by the amount of data, storage, and processing power, which
often hinders the proper explosion of data. According to recent research, by 2021, nearly 850 ZB of data
will be generated at the edge of the network through various digital things around us [10]. On the other
hand, it is estimated that by 2021, the global data center traffic will also reach 20.6 ZB [3–9,10,15].
However, the data to be learned contains highly sensitive pathological information, and the use of a third-
party untrusted cloud (or remote server) may lead to privacy risks, such as data leakage and typical
information security attacks or network attacks, while being transmitted through the communication
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medium. Therefore, this lays the foundation for the introduction of a novel and innovative AI learning
method to protect the privacy of network edge data, which we will discuss in the next section.

2.2 Federated Learning

Google recommends FL as a solution to the problem of using a central server to train a shared global
model from distributed data sets scattered on a large number of clients/devices, while avoiding data
leakage [1,2,4,5,8]. Initially, they used FL to train an ML model based on globally distributed mobile
phones by protecting user data. In simple terms, FL can be referred to as training statistical data models
on contaminated data centers or remote devices while maintaining data localization [5–8]. Due to the
continuous increase in the number of IoT devices in recent years, a large amount of data is generated, and
due to its ever-increasing extensive computing and processing capabilities, as well as the privacy issues
we mentioned earlier, it is recommended to store the data locally and push the computations to the edge
of the network with edge computing [6–8]. However, as the storage and processing capabilities of devices
in decentralized networks increase over time, it becomes possible to utilize more local resources on each
device. This leads to an increase in the demand for FL, which makes it possible to directly investigate
statistical models of remote devices. This learning method is completely different from learning in a
traditional distributed environment and requires progress in large-scale AI technology, distributed
optimization and data privacy [15–20]. According to recent research, almost all major service providers
have adopted FL technology [1,6,8,9,11,39]. Examples include using wearable medical devices to predict
emergency medical events, such as the risk of a heart attack. Wearable medical devices and other non-
medical IoT devices, such as self-driving cars, may have multiple sensors that allow them to acquire,
aggregate, react, and adapt to incoming data in real time [33–36]. For example, when predicting the risk
of cardiovascular disease, medical equipment may require the latest models of various pathological
information to safely operate and predict risks in real time, and building aggregate models in these
scenarios may fail due to the privacy of highly sensitive patient medical data concerns and limited
connectivity of devices. Therefore, FL technology can be used to train models in these types of situations
so that they can quickly respond to changes while respecting user privacy [10–15].

On the other hand, when it comes to medical organizations or hospitals, they can be seen as devices in
the FL context, which contain large amounts of data used to predict healthcare. However, due to strict
medical regulations and laws (e.g., HIPAA and GDPR [1,4,5,9,10]), various privacy practices, laws and
ethical barriers require data to always be on the local site [6,7]. In this case, FL provides significant
benefits for such medical institutions because it can reduce the pressure on the medical network while
also allowing private and collaborative learning between these institutions. The classic FL problem
involves studying a single statistical model from basic data stored on two to millions of online devices
distributed globally. The data owner can choose to learn this model. However, due to legal and ethical
restrictions, the device is stored and processed locally [15,17,19]. Therefore, the ultimate goal is to
minimize the objective functions in [6,8–11] as follows,

min
w

F wð Þ; where F wð Þ :¼
Xm

k¼1

pkFk wð Þ (1)

where m denotes total number of devices or data owners who need to train models. pk � 0 and
P

k pk = 1, and
Fk the local objective function for the k-th device. F wð Þ is also defined as the experimental risk over indigenous

medical data. Fk wð Þ ¼ 1

nk

Xnk

jk¼1
fjk w; xjk ; yjk
� �

, where nk is the number of data samples available locally. pk

is a user defied term, which states relative impact on each of the participating device.
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Fig. 1 shows the FL-MIoT architecture and the communication process in a typical FL model training
process, which includes many client devices. In our case, the MIoT device and the aggregation server are
located at the service access point. The general communication process of FL-MIoT includes several
steps [9,10,12–15]. In the system initialization and device selection stage, the aggregator selects accurate
MIoT tasks (e.g., activity recognition, predicting event probability) and sets learning parameters. These
learning parameters include detailed information about the number of communication rounds and learning
rates required to achieve an optimized global model. Then in the local model training and update phase,
once the server completes the initial configuration, it creates a new model and distributes it to the MIoT
clients to start distributed training. Then each client uses its own data set to train the local model, and
then minimizes the loss function to calculate the update. Finally, in the model aggregation and download
stage, a new global model is generated by collecting all model changes from the local client and solving
the optimization problem on the server.

2.3 Classification of FL

We can divide FL into two main categories called data partition and network structure [14,15].
According to the distribution of training data in the sample and feature space, the data partition can be
further divided into three different categories: vertical FL (VFL), horizontal FL (HFL), and federated
transfer learning (FTL). On the other hand, the network structure can be divided into two categories:
decentralized and centralized FL (DFL and CFL). In VFL, it solves the problem of training AI models
across client networks on the same sample set with different feature sets. In addition, local data samples
are combined to train a shared AI model, which uses a variety of encryption mechanisms to enhance
privacy [9,10,15]. In the HFL system, using the local data set from the local client device, which has the
same feature space but different sample space, all local client devices train the global FL model.
However, due to the shared feature space, client devices can use the same AI model for local model

Figure 1: FL–MIoT architecture and communication process
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training. Each client then trains on the local data to compute local updates, which can be hidden through
encryption or differential privacy (DP). The aggregation server collects all local updates from
participating clients, calculates the next global update without accessing local data, and then sends the
global update back to the local client for the next round of local training until the target accuracy is
reached [15,16]. FTL is an extension of VFL to participate in the learning process with different sample
spaces and feature spaces. In this setting, encryption technology can also be used to preserve privacy and
ensure security during learning [14–16].

Fig. 2 shows the configuration of HFL, VFL and FTL [1,9–15,17,19,26–30,44–47]. With CFL, the client
uses their data set to train the FL model in parallel in a single training cycle, using a central server for
coordination [9–15]. After the client transmits the learned parameters to the central server, the server
aggregates them using a weighted average method. Therefore, at the end of the training, each customer
will have a global model and a personalized model. However, the central server is considered a key
element of the CFL network, which is used to propagate model changes to client participants, and to
protect the privacy and security of training data. On the other hand, the DFL method contains a network
topology that does not require any central server [9–15]. The arrangement of CFL and DFL is shown in
Fig. 3. In each communication cycle, customers use their own data sets for local training, just like in a
peer-to-peer (P2P) network where all customer participants are linked. In this method, each client uses
model aggregation to establish a global update consensus by aggregating model updates obtained from
neighboring clients through P2P communication. Due to this arrangement, the decentralized technology is
more scalable than the centralized approach and does not require a central server for calculations. In
addition, it is obvious that the DFL can be further expanded through P2P-based blockchain technology to
further expand the capabilities of the DFL system. By doing so, model changes may be offloaded to the
blockchain ledger for secure model aggregation and dissemination [16–20].

Figure 2: Types of FL models with data partitioning. (a) Horizontal Federated Learning (HFL), (b) Vertical
Federated Learning (VFL), (c) Federated Transfer Learning (FTL)
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3 Applications of FL for MIoT and Related Work

In a typical MIoT environment, AI-based applications (such as ML and DL) have been used to learn
insights from the underlying medical data for various purposes such as disease diagnosis, medical image
analysis, clinical trials, drug discovery, and electronic health records (EHR), etc. A basic problem in this
environment is the privacy issues caused by sharing patient data with the cloud or remote data centers to
train medical data [10,12,17,19,26,28]. On the other hand, compared with other fields such as smart
agriculture or surveillance, the amount of data related to the MIoT system is highly sensitive, as shown in
the HIPPA medical regulations [10,15,21]. This means that deleting or omitting metadata such as patient
information does not provide sufficient privacy protection, especially in complex healthcare
environments. Since traditional AI methods rely on a central server to perform analysis, this is obviously
ineffective in this case because data must be exchanged. Therefore, in this case, FL can combine more
knowledge and enhanced privacy awareness to provide alternative options. In the next section, we will
study FL and its main applications in MIoT, as described in the literature.

3.1 Enables Collaborative Learning

FL is an ML setting in which many partners (hospitals, pharmaceutical companies, or independent
researchers) can collaborate to solve challenging research problems (e.g., COVID-19 drug discovery
[26,27,30,47–50]) without sharing or centralizing data [9,10,15,20]. This approach allows medical teams
to train their models on larger, previously inaccessible data sets, improving the predictive and AI
capabilities of ML algorithms, thereby obtaining improved results in a shorter time and overcoming data
privacy issues. Some examples include FL-based drug discovery involving multiple pharmaceutical
companies through collaborative FL networks [20,23,26,27,30] and clustering of patients, disease
diagnosis, and clinical trials to predict mortality and length of hospital stay.

3.2 Analyzing the EHR Data

The collected patient pathology information is usually stored in digital form and in the form of EHR,
which is very important for medical investigations, disease diagnosis and identifying the suitable

Figure 3: Types of FL models based on the networking structure. (a) Centralized Federated Learning (CFL),
(b) Decentralized Federated Learning (DFL)
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treatment plans [20,21,23,32]. EHRs contain systematic and random biases, which limit the generality of the
results, even though they provide a large amount of patient data for the study. FL is a reasonable way for
medical institutions to connect to EHR data, allowing them to share their experience instead of their data
while maintaining privacy. In these cases, the iterative benefits of learning from large and diverse medical
data sets will significantly improve the performance of the underlying FL model.

3.3 Medical Imaging

Another example of the application of FL in the MIoT environment is medical imaging, which is used
for tasks such as brain tumor segmentation, diagnosis using computed tomography (CT) and magnetic
resonance imaging (MRI) medical scans, in cooperation with multiple medical institutions. The FL for
medical imaging can be found in [10,18,19,24–27,30,31,50].

3.4 Related Work

We have outlined the research overview and the recent developments of the FL in IoT field in Tab. 1. In
this part, we also present taxonomy of related work, highlighting the main features and contributions. For a
better understanding, the underlying use cases and ML/DL types are highlighted. Then we also highlighted
the FL client and aggregator in the FL-MIoT network, as shown in Tab. 2.

Table 1: Existing surveys on FL in IoT in general or MIoT

Reference,
Year

IoT in
general

MIoT
specific

Key contributions

[8],
2019

✓ The author introduces a secure FL framework, which includes HFL,
VFL, and FTL, and includes an investigation of FL.

[9],
2021

✓ In this research, the author introduces FL’s latest developments in
FL-driven IoT applications; provides a classification of related work,
highlighting open research challenges and solutions.

[11], 2020 ✓ The author examined the unique qualities and limitations of FL,
conducted a comprehensive review of existing technologies, and
identified various future research areas.

[13], 2020 ✓ This study explores how FL is used in healthcare to stimulate its
services, and the challenges and issues that must be addressed.

[14], 2019 ✓ The author described how they used TensorFlow to create the FL
system, and the resulting high-level design. Some unresolved issues
and their possible solutions are also discussed.

[15], 2021 ✓ This article discusses the application of FL in IoT, and explains the
integration of FL and IoT with different technologies.

[16], 2020 ✓ This article provides an overview of FL and a technical review of FL
supporting technologies, protocols, and applications.

[17], 2020 ✓ The author studies AI methods for FL-based security, and privacy
protection, including potential attack vectors and future prospects, with
a focus on medical imaging applications.

[28], 2020 ✓ In this article, an overview of patient privacy and distributed FL is
discussed as viable options for maintaining medical records and their
limitations and potential are discussed.

(Continued)
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Table 1 (continued)

Reference,
Year

IoT in
general

MIoT
specific

Key contributions

[36], 2021 ✓ This article investigates the key concepts and architectural patterns in
FL, and discusses the role of FL in the healthcare sector.

[37], 2020 ✓ This article discusses data preservation technology in the IoT from the
perspective of FL-based security and privacy.

[38], 2020 ✓ This article reviews the use of FL in wireless communications and its
responsibilities in 5G applications and edge computing.

[39], 2020 ✓ This article discusses the integration of FL in edge networks and draws
attention to the challenges associated with implementation.

[40], 2020 This study investigated the impact of FL on privacy. However, it does
not consider FL in the IoT systems. Emphasizes data privacy
challenges, attacks, and possible solutions.

[41], 2021 This research examines in detail the key ideas, software engineering
problems and solutions in FL.

[42], 2019 This study introduced an overview of FL system architecture, ML,
privacy aspects and communication architecture.

Table 2: Taxonomy of FL–MIoT applications in healthcare

Reference,
Year

Use case Type FL Client FL
Aggregator

Key Contributions

[1], 2020 Disease
diagnosis

DNN MIoT
devices

Central
server

Introduced a new MIoT FL framework to
reduce communication overhead.

[10], 2020 Medical
imaging

CNN Hospitals Central
server

The author proposes an FL framework for
analyzing multi-center brain image data.

[18], 2019 Medical
imaging

DNN MIoT
devices

Central
server

In this article, the author investigated the
feasibility of using the DP method to protect
patient data in FL settings for brain tumor
segmentation.

[19], 2020 Medical
imaging

– Hospitals Central
server

An FL method for medical image analysis
using decentralized iterative optimization
randomization is introduced.

[21], 2019 EHR – Hospitals Central
server

The authors proposed a decentralized FL
framework to manage EHR data.

[23], 2021 EHR LR Hospitals Central
aggregation
server

FL is used to aggregate local clinical data
from multiple institutions and predict the
survival rate of COVID-19 patients.

[24], 2019 Medical
imaging

– Hospitals Central
server

The author proposes an FL framework that
allows secure access and meta-analysis of
biological data.

(Continued)
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We noticed that the main use cases of FL technology in MIoT are EHR data analysis, medical imaging,
drug discovery, disease diagnosis, and collaborative learning between medical institutions where most of the
research was published after 2019, signifying the novelty of the subject. In order to obtain better performance
and enhanced privacy in FL technology, various FL applications and encryption schemes have been used.
These encryption mechanisms are also integrated with the blockchain to increase privacy protection to
improve FL model delivery and communication privacy. In addition, up to now, in the collaborative
learning between medical institutions, FL has many applications for drug discovery and various

Table 2 (continued)

Reference,
Year

Use case Type FL Client FL
Aggregator

Key Contributions

[25], 2020 Medical
imaging

– Hospitals Federated
Server

The authors introduce FL-based medical
image classification.

[26] /2021 Medical
imaging

CNN Hospitals Central
server

FL technology is used to identify CT scan
abnormalities related to COVID-19.

[27], 2020 Medical
imaging

DNN Hospitals Central
server

FL is used for COVID-19 data training and
testing to evaluate efficacy.

[30], 2021 Medical
imaging

– MIoT
devices

Central
server

The author uses Keras and TensorFlow to
jointly develop a ML model to evaluate X-ray
images of COVID-19 patients.

[31], 2021 Medical
imaging

CNN Medical
institutions

Central
server

The concept of cluster FL (CFL) is used for
automatic diagnosis of COVID-19.

[32], 2019 EHR SVM
and
LR

Hospitals Central
server

The author proposed an FL framework for
learning a global model using distributed
health data stored locally.

[43] / 2021 Medical
imaging

CNN Medical
institutions

Medical
institutions

An FL structure for COVID-19 medical
image classification is proposed.

[44], 2019 Medical
institutions

CNN Data
centers

Medical
data centers

A P2P network composed of medical
institutions is proposed in FL technology.

[45], 2019 Medical
institutions

Data
workers

Data
workers

The authors proposed a DFL integrated with
blockchain for healthcare.

[46], 2020 Medical
institutions

CNN Medical
institutions

Central
cloud server

Using FL, a system for joint activity
recognition is proposed.

[47], 2020 Medical
institutions

CNN MIoT
devices

Cloud
server

FL technology in healthcare paradigm based
on the cloud edge is proposed.

[48], 2020 HER – EHR data
owners

Data center The authors introduced the secure FL
framework for EHR management.

[49], 2019 EHR SVM Medical
institutions

Data center The author proposes an FL for distributed
EHR drug response prediction.

[50], 2018 EHR SVM Medical
users

Data center A distributed binary classification based on
FL and ML for healthcare is proposed.
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applications in learning COVID-19 [1–3] (see Tab. 2). As owing to the novelty of the subject, a few research
works have been done (see Tab. 1), which also signify the importance of our review.

4 Challenges and Future Directions

4.1 Challenges

FL technology faces multiple issues including data security and privacy to prevent data leakage and
comply with privacy protection laws and regulations such as GDPR and HIPPA. This technology also
needs to improve the communication efficiency between client participants and the central server
[10,11,14–20]. Therefore, when deploying an optimized FL model, all these constraints must be resolved.
In addition, a suitable FL solution in the real world will be hindered by many challenges, such as
learning privacy, communication overhead, system heterogeneity, statistical heterogeneity, and regulatory
compliance, as described below.

4.1.1 Privacy
Privacy is considered to be a major issue for FL because it is believed that online data sharing will

endanger the privacy of sensitive medical data [1,2]. In a typical FL scenario, privacy can be classified
into two aspects: global and local privacy. The model changes made at each round must be secret to all
untrusted third parties other than the central server in order to maintain global privacy whereas local
privacy necessitates that the changes be kept hidden from the server as well. FL protects the data created
on each device by only exchanging model updates instead of original data (such as gradient information)
[9,11]. This is because sending model updates during the training process may leak highly sensitive
medical information to a central server or a third party. In this regard, there are existing methods that use
technologies such as Secure Multi-Party Computing (SMC) or DP to improve FL privacy. However, these
methods usually sacrifice model performance in the process. Therefore, this trade-off is interesting and
considered to be the main difficulty in implementing privacy preserving FL systems in healthcare. In this
case, SMC is very suitable for the FL situation, that is, each client uses a combination of encryption and
unintentional transmission to jointly calculate its private data. For example, a public key encryption
method using homomorphic encryption, in which any party can use a known public key to encrypt its
data, and then perform calculations on the data encrypted by others using the same public key. SMC
cannot prevent an opponent from knowing certain personal information, even if it ensures that neither
party will exchange any information with each other or with any third party. On the other hand, DP is a
unique theoretical method to protect personal data privacy, which has been widely used in various
industries such as SVM, boosting and DL research. It ensures that the addition or deletion of variables
has no substantial impact on the results of any research, and is therefore widely used in FL research to
avoid indirect leakage. However, DP can only protect the client from data leakage to a limited extent, and
it may damage the accuracy of prediction to a certain extent, which will be a disadvantage [10–15].
Furthermore, new approaches for introducing a reduced form of local privacy by reducing the strength of
possible adversaries are being developed for circumstances where robust privacy assurance is required.
This method provides higher model performance than tight local privacy and provides greater privacy
assurances than global privacy. Nonetheless, differential privacy may be used in conjunction with model
compression techniques to minimize communication costs while preserving privacy.

4.1.2 Communication Overhead
In the FL network, communication is a major issue, which is also related to the privacy issues of

transmitting raw data and bulk data. Since there are millions of devices in a typical FL network, network
communication is usually slower than local computations performed on local devices, which will become
a bottleneck. Therefore, efficient communication technology must be developed as part of the training
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process to iteratively transmit smaller messages or model updates instead of sending the entire data set over
the network. When reducing the amount of communication in each setting, two factors can be considered;
reducing the number of communication rounds, and reducing the number of messages communicated in
each communication round [10,11].

4.1.3 Systems Heterogeneity
Each device in the federated network may have different processing capacity, storage and

communication capabilities due to the heterogeneity of hardware (e.g., different storage capacity, memory
capacity), network connection (e.g., 3G, 4G, or 5G), and power (battery power). This heterogeneity
usually prevents maximum efficiency when implementing FL. On the other hand, it is important that
most IoT devices, including MIoT, are heterogeneous by default, because the ecosystem does not have
universal standards. However, device-related restrictions can often prevent the device from being active at
all times such as energy restrictions, network connection issues. Therefore, in the FL network, when
communicating with the central server, the client device may suddenly exit the network. In turn, this
could affect the performance of the model. Therefore, the heterogeneous nature of equipment greatly
exacerbates the problems of laggard mitigation and fault tolerance. FL technology expects low-level
clients to be able to accept heterogeneous hardware and be resilient to network device failures [5–10].

4.1.4 Statistical Heterogeneity
Devices often create and collect data in different distributed ways over the network. In addition, the

number of data points on different devices may vary greatly. In addition, there may be an underlying
structure that represents the interaction between the device and its related distribution. This data
production paradigm violates the assumption of independent and identical distribution widely held in
distributed optimization, increases the risk of laggards, and may increase the complexity of modeling,
analysis, and evaluation [10,11]. Although a typical FL attempts to train a single global model, there are
other possibilities, such as using a multi-task learning framework to learn multiple local models at the
same time. In this sense, there is also a strong connection between leading FL and meta-learning.

4.2 Future Directions

FL is currently an active and ongoing research field. In recent times this has gained higher attention for
its potential to offer privacy-preserving distributed learning solutions between medical organizations
incorporating various technologies like blockchain and encryption mechanisms to improve the privacy of
data and enable complex learning from heterogeneous data. In this regard, our main focus is to outline
here the key research directions that we can see in the FL of MIoT in the future.

4.2.1 Advancement of Privacy Preserving Solutions
The privacy of the FL network includes the local and global privacy levels of all devices in the network

(including the aggregation server). However, when it comes to the overall privacy of the entire federal
network, we may also need to consider privacy in a more granular way at the device level. Obviously,
recent research focuses on developing methods to deal with hybrid privacy (device or sample specific)
based on current methods, focusing on each device level to improve security [12,17,44,47,49]. The
blockchain can be integrated with FL to provide better protection for the sensitive data of distributed
learning, because all transaction details can be stored in the blockchain in the network ledger.

4.2.2 Complex Learning
In a typical MIoT environment, data may come from various sources and may not be tagged due to its

complexity. Therefore, future research will focus more on performing exploratory data analysis or
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performing more complex and supplicated learning tasks, such as reinforcement learning. This will also
provide solutions for the scalability, privacy, and heterogeneity of performing complex learning [50].

4.2.3 Heterogeneity Diagnostics
Recent studies have used indicators such as local differences and bulldozers to quantify statistical

heterogeneity. However, due to the heterogeneous nature of federated networks, these metrics cannot be
easily estimated before training. This is currently an unresolved topic; we expect this to be resolved
through future research [10,15].

4.2.4 Data Quality
FL has the ability to connect all isolated medical institutions so that they can exchange experiences while

maintaining anonymity and maintaining the best level of privacy. On the other hand, most healthcare systems
suffer from inefficiency and data overload. There is no universal data standard, so the quality of data obtained
from multiple sources varies. In addition, if unclean data is used as a sample, the evaluation results seem to be
worthless. Therefore, understanding how to clean, correct and improve medical data is essential for the
quality development of FL models [9,10,15,20].

4.2.5 Incentive Mechanisms
Due to the IoT and various third-party websites, more and more smartphone healthcare applications are

compatible with wearable devices. In addition, the data collected in hospitals or medical institutions, these
wearable devices provide another kind of data that is very important to researchers and their users. On the
other hand, in the process of joint model training, the client will experience a lot of communication and
computational overhead. If there are no well-designed incentive measures, this will hinder participation in
FL tasks [50]. Therefore, another key issue may arise, that is, to develop an effective incentive system to
encourage devices with good data to participate in FL [9,10,15,20].

4.2.6 Personalization
Based on the recent studies [9,10,15,20]; it is evident that as of now there isn’t much focus on how to

customize FL models to better meet industry demands. As a result, being able to customize FL models will
result in improved design and overall applicability, which would gain more attention in future.

5 Conclusion

In this study, we analyzed FL in MIoT, which is a novel learning paradigm that can provide additional
privacy for learning data compared with traditional AI methods. In addition, the data privacy and protection
law does not allow stakeholders to directly access personally identifiable data in order to serve the mutual
research and development of common issues between the medical academia and industry (such as
COVID-19). However, FL allows multiple stakeholders to learn from sensitive medical data and create a
collaborative learning environment to ensure the privacy of the underlying data. This is completely
different from typical AI learning where data is organized in a central location. Therefore, this FL
paradigm will soon be applied to all aspects of IoT-based healthcare, for disease diagnosis, clinical trials,
drug discovery, etc., to learn from data and elevate IoT-based healthcare to a new level. We have
discussed the unique characteristics of FL and the accompanying issues in MIoT, because the use of FL
in healthcare is growing rapidly due to recent demand. We have conducted a comprehensive review of
the taxonomy that provides highlights of the related works, their key contributions and unique features.
We have found some outstanding issues worthy of further investigation and future research. It would be
beneficial for academia and industry to work together to solve these challenges. Therefore, as this is the
first review in this area up to the best of our knowledge, we believe that, this research will provide a
useful reference for FL in the MIoT discipline and carrying out future research in this area.
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