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Abstract: Traffic related accidents and route congestions remain to dwell signifi-
cant issues in the globe. To overcome this, VANET was proposed to enhance the
traffic management. However, there are several drawbacks in VANET such as col-
lision of vehicles, data transmission in high probability of network fragmentation
and data congestion. To overcome these issues, the Enhanced Pigeon Inspired
Optimization (EPIO) and the Adaptive Neuro Fuzzy Inference System (ANFIS)
based methods have been proposed. The Cluster Head (CH) has been selected
optimally using the EPIO approach, and then the ANFIS has been used for updat-
ing and validating the CH and also for enhancing the data transmission proce-
dures. The dijkstra’s algorithm has been used for identifying the shortest path
for data transmission. The results showcases that the proposed technique has
attained the maximum Packet Delivery Ratios (PDRs) as 73.23% at a sensor
radius of 130 m and 70.42% at a velocity of 10 km/h. Moreover, the proposed
method has outperformed the existing technique in terms of the CH formation
delay, the end to end delay and the PDR.

Keywords: Vehicular Ad hoc NETworks (VANET); Enhanced Pigeon Inspired
Optimization (EPIO); Adaptive Neuro Fuzzy Inference System (ANFIS); Cluster
Head (CH)

1 Introduction

According to the 2016 United Nations Census Report, the population of the cities is greater than that of
the pastoral areas for the first time in human history. Currently 54.5% of the world’s population is living the in
urban regions and by 2030 it is expected that 60% of the world’s population will subsist in the metropolitan
regions [1]. This raises the number of vehicles in the urban areas. The increasing number of vehicles leads to
traffic congestion. Traffic congestion, in particular, is a serious crisis in all the urban areas [2]. Millions of
people waste hours in traffic every day. Overall, vehicle emissions are a major source of air pollution and
global warming [3]. Due to accidents, traffic congestion has increased [4] and according to the survey,
there are repeated cross-sectional accidents that lead to brutal punishments [5]. To solve these problems,
traffic congestion must be properly managed. Traffic management at road junctions is a multifarious
constraint. In the recent years, Computational Intelligence (CI) works on a set of bio-inspired
computational methods and techniques. Also, CI has been used for finding the vehicle moving directions
and congestion alleviations in the study [6]. Moreover, by incessant improvement of the wireless
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communication technology and the embedded methodology, the Intelligent Transportation System (ITS) is
now turning out to into a hot investigation field in the current years. More than years, the attention in the
Internet of Things (IoT) networks is now improving significantly. More specially, a huge compact of hubs
are now being located on the VANETs [7]. As special MANET (Mobile Ad hoc NETworks), VANET has
turned out to be an essential part of the ITS [8]. Also, a VANET can enhance the flow of traffic for
assisting smart hauling and for affording suitable data services. It launches connections among the
neighboring vehicles and also among the vehicles and the roadside units [9]. The message in a vehicular
network can be categorized into the Vehicle to Vehicle (V2V) and the Vehicle to Infrastructures (V2I)
types [10]. The Dedicated Short-Range Communication (DSRC) appears to be an individual consistent
such as a de-facto protocol in VANETs for sustaining both the Vehicle to Vehicle (V2V) communications
and the Vehicle to Infrastructure (V2I) based communications. The On-Board Unit (OBU) and the Road-
Side Unit (RSU) are the two main message devices that appear to be the predetermined roadside
installations and mobile devices fitted to the vehicles [11,12]. Moreover, VANET can assist in the
reduction of traffic accidents at the intersections by means of sending caveat messages to the vehicles.
But, the performance of the VANETs needs to be improved for ensuring the proper transmission of the
messages; especially the security messages are to be delivered appropriately to the concerned targets.
VANETs are exaggerated by problems such as self authenticity and communication consistency when the
vehicle nodes communicate information with the new nodes [13]. The other key problems in VANETs are
high mobility, constraint of road method, numerous topology deviations, botched network relations, and
appropriate message of information that makes routing of packets difficult [14].

Moreover, by means of influencing the 5G enabled Vehicular Ad hoc NETwork (5G-VANET), it can be
broadly acknowledged that the associated vehicles possess capabilities in enhancing the road safety levels,
transportation intelligence and assists in the vehicle distraction experiences. The numerous enabling
applications in 5G-VANET rely on proficient content distribution between mobile vehicles that appears to
be an extremely demanding problem due to the existence of huge data volume, fast changing topology,
and unbalanced traffic volumes [15]. Propagation is a main emergency service of VANET as the number
of vehicles increases each and every day. Due to the increased density of vehicles, it is required to
transmit the crisis communication to every vehicle for evading the problems related to traffic jams and
vehicle accidents. To overcome this, a hierarchical network organization has been proposed as a
replacement of the flat network organization; here the vehicles would be divided into several virtual
groups called as the clusters. Vehicles in a similar cluster can openly communicate with its head vehicle
through an intra-cluster message, whereas the inter-cluster message could be attained by the head vehicles
[16]. The speed of the vehicles attains a small period of time period unlock for transmitting messages
among the vehicles. When the traffic density on the road appears to be high, the vehicles would produce
close-up messages that can overload the channel. The result would be channel congestion that would lead
to packet losses. The packet loss within the configuration appears to be significant for many VANET
applications, including major emergency alarm methods. This raises the bar for wealth and undermines
the management of the VANETs. Various techniques have been proposed for decreasing van congestions
based on the CH generation delay, the completion delay, and the packet delivery rate. Therefore, the
following contributions have been made as follows:

Initially, the concerned vehicles would be clustered in the network. Therefore, the cluster head would be
selected in the beginning using the Enhanced Pigeon Inspired Optimization (EPIO) method. In the proposed
EPIO, for enhancing the performance of the PIO, the Opposition based PIO with Cauchy distribution has
been adopted and used here. In order to avoid vehicle collisions, the probability of an accident has been
presented based on the expected location of a node and thus offers the required premature caveat and the
follow-up measures if the probability exceeds a predefined limit value. Subsequent to the structure of the
CH, for updating and validating the CH and for improving the data transmission procedures, the ANFIS
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based prediction model has been proposed here. Also, for improving the data transmission process, the
dijkstra’s algorithm has been presented for finding the shortest path. The performance of the proposed
approach has been appraised and contrasted with the existing techniques based on the hop by hop aspect
in terms of the CH formation delay, the end to end delay and the packet delivery ratio.

The rest of the article has been organized as follows. Section 2 discusses the various related works. The
proposed method has been discussed in Section 3. The experimental results and discussions have been
described in Section 4. Finally, the paper has been concluded in Section 5.

2 Related Works

This section discusses several new traffic management researches on congestion control on VANET. In
[17], the Clustering Algorithm using the Traffic Regularity of Buses (CATRB) has been used for improving
the cluster stability on the VANET. In this technique, they have considered the location, speed and route of
the vehicles for accomplishing the clustering process. They have included an allusion code for the permanent
lanes on the motor vehicles in the metropolitan regions. They have elected a cluster leader based on the
concept of a regular triangle that appears to be at the same point as the center and circumference. In [18],
they had presented a strategy called as the game-theoretic based CIAC (Co-operative Interest-Aware
Clustering). The proposed CIAC balances the usage cost by controlling the performance levels of the non
supportive vehicles between the vehicles within the clusters and fillips the vehicles to seize the required
attention in the procedure of clustering for communicating data and charge. In addition, they had chosen
the cluster head based on a strategic game-theoretic method and a fair use strategy. Due to their proposal,
they had reduced the behavior of the non supportive vehicles in VANET. In [19], an adaptive method for
controlling the congestion rate when generating beacons was expected, abbreviated as Adaptive Beacon
Generation Rate (ABGR).

In order to improve the competence of road traffic on VANET the Density-Based Dynamic Cluster
(DBDC) was proposed [20]. Using the DBDC method, the peak density of the exact location was
determined. In addition, it offered an effective solution to the congestion based problems. They used the
average vehicle density threshold for controlling congestion in a cluster. The compilation process started
when the peak density was greater than the threshold value. The findings of the paper clearly
demonstrated that the cluster attained a greater constancy than expected. In VANET, delay was an
important issue that was not focused in the previous work. In [21], they proposed the fuel consumption
and the delay aware Traffic Scheduling scheme. Under this approach, a vehicle interacts with a new
vehicle. It communicates with the road units and collects the data about the reporting area of the vehicles
and the number of vehicles. The information was successfully broadcasted exploiting the Coverage
Awareness Cluster protocol.

As the road congestion increased, in [22] they had developed a method for improving the data collection,
classification, planning, and transmission of the following phases. Under this technique, the traffic data was
observed and sent to the Dynamic Traffic Management Center (DTMC) through the sensor nodes. They
utilized a vague logic for estimating the section priority of the concerned road. Data packets were sent to
the DTMC by the congestion alarm routing algorithm. Due to the expected pattern, the waiting time of
the vehicle had been reduced here. In [23], they had presented a Webster based signal model for
computing the intersection delays. The results of the research proved that the Webster model enhanced
the accuracy of the traffic delay by estimating more than the conventional ones. In [24] the Pigeon
Inspired Optimization (PIO) approach based on a bio-inspired swarm intelligence optimizer was
proposed. The mathematical model of the PIO and the meticulous execution process were provided. The
map and the compass operator model had been used here based on the sun and the magnetic fields,
whereas the landmark operator model was designed based on the identities. Various performance metrics
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had been used for measuring the Quality of Service (QoS), in terms of the end-to-end delay, the packet
delivery ratio and the cluster head formation delay.

3 Proposed Method

3.1 Overview

In our proposal, an Enhanced Pigeon Inspired Optimization (EPIO) approach and an Adaptive Neuro-
Fuzzy Inference System (ANFIS) based methodologies have been presented for enhancing the traffic
management and the data transmission procedures in VANET. The architecture of the proposed scheme
for traffic management using the EPIO and the ANFIS techniques through VANET has been illustrated in
Fig. 1. Initially, the vehicles in the network would be divided into several zones for effective traffic
management. Each zone would then be considered as a cluster. Therefore, the Cluster Head (CH) here is
chosen optimally using the EPIO approach. For avoiding the collision of vehicles, a collision probability
would be observed at the origin of a node’s probable state. While the probability exceeds the predefined
threshold, the CH would transmit an early warning and provide the required guidelines for avoiding the
collision. The vehicles of the VANET possesses dynamic behaviors, therefore the ANFIS based
prediction model has been used for predicting the CH at every particular instance of time interval for
effective traffic management and data transmission. In addition, for improving the data transmission
between the nodes, the shortest path has been selected using the dijkstra’s algorithm.

3.2 Zone Division and Initial Formation of Cluster

In our proposal, a dynamic zone clustering method has been employed in VANET. For enhancing the
traffic management in VANET, vehicles in a particular area have been divided into eight zones. Each
zone has been considered as a cluster here. Clusters are virtual groups in VANET that can be organized
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Figure 1: Proposed architecture for the cluster head selection using an Enhance Pigeon Inspired
Optimization, and for validating and updating the cluster head using an Adaptive Neuro-fuzzy Inference
System in VANET for efficient data transmission
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by the CH and the clustering algorithm. Every cluster in the VANET zone would possess a CH and a list of
Cluster Members (CMs). Here, CMs refer to the vehicles of each cluster.

3.3 Cluster Head

The cluster head has been selected in each zone based on the dynamic zone based clustering
methodology. The PCH (Percentage of Cluster Head) estimation process has been used here for avoiding
data congestion. In each zone the vehicles have been divided initially for estimating the maximum buffer
size. This is then followed by the computation of the distance between the source and the sink nodes in
each of the individual zones. For example: the node nearest to the sink node possessing a higher
percentage would be opted as a cluster head for avoiding data congestion. Therefore, the CH has been
selected based on the various parameters like: node location (vehicle location), velocity and buffer size
based on the PCH as the CH should possess a higher stability among its neighboring vehicles. To choose
the CH optimally, the EPIO technique has been deployed.

3.4 Fitness Function

The fitness function fmax has been computed using the Eqs. (1) and (2).

w ¼ w1:pþ w2:vþ w3:b (1)

fmax ¼ maximizeðwÞ (2)

where, v represents the velocity of the vehicles due to the increasing number of vehicles, it is inversely
proportional, p indicates the location distance, w1, w2 and w3 represent the co-efficient, b represents the
buffer size of each of the vehicles and w represents the weight of the final value based on the clustering
process.

3.5 Selection of Optimal Cluster Head Using Proposed EPIO Algorithm

In our proposed EPIO algorithm, the opposition based PIO technique with Cauchy distribution has been
implemented. Here, the Opposition Based Learning (OBL) has been used for enhancing the performance of
the conventional PIOA and the dynamic Cauchy probability distribution has been used as a mutation
operator. The process of selecting the optimal cluster head has been discussed as follows:

3.5.1 Mathematical Model of PIO
The PIO algorithm has been offered with reference to the magnetic field and sun, map and compass

based operator models. The Landmark operator model has been offered based on its identities. In order to
idealize the various incoming characteristics of the pigeons, two operators have been constructed based
on a certain defined set of procedures:

The Map and compass operator: Pigeons could perceive the earth’s field by utilizing the magnets for
creating a map in its brain. They tend to assume the height of the sun for adjusting the direction of the
compass. As they fly towards their target, they would become less dependent on the sun and the magnetic
particles. In the PIO model, virtual pigeons have been employed naturally. In this map and compass
operator, rules have been described with reference to its location Xi and velocity Vi of a pigeon i.
Locations and velocities in the D-dimension search space have been modernized in every iteration. Based
on the Eqs. (3) and (4), the new position Xi and velocity Vi of a pigeon i at the tth iteration can be
computed.

Vi tð Þ ¼ Vi t � 1ð Þ:e�Rt þ rand: Xg � Xi t � 1ð Þ� �
(3)
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Xi tð Þ ¼ Xi t � 1ð Þ þ Vi tð Þ (4)

where, Xg is the current global best location, rand is the random number and R is the map and compass factor
gained by contrasting the individual locations between the pigeons. Fig. 2a shows the best locations of all the
pigeons that have been assured by exploiting the map and compass operator. In contrast with every flying
location, it is clear that the right-centered pigeon’s location appears to be the top one. According to
Eq. (3), each pigeon can alter their flying route subsequently by this exact pigeon location, it is
articulated by broad darts. The thin arrows indicate the preceding flying route that has a relation with the
factor Vi (t−1).e

−Rt in Eq. (3). The Landmark operator: When the pigeon flies near its target, they would
essentially rely on the adjoining signs. If they become aware of the signs, they would fly directly to the
end. If they are far away from the target and are not familiar with the symbols, they would follow the
pigeons that are aware of the symbols. In the landmark operator, the partial number of pigeons has been
lessened by the factor Np in each of the individual generations. Yet, the pigeons would still appear distant
from the target and would appear different with different landmarks. Let Xc(t) represent the center point
of several pigeon’s location at the tth iteration and consider that the individual pigeons can fly straight to
their target. The location modernization rule for the pigeon i at the tth iteration has been obtained by
using the Eqs. (5)–(7).

Np tð Þ ¼ Np t � 1ð Þ
2

(5)

Xc tð Þ ¼
P

Xi tð Þ:fitness Xi tð Þð Þ
Np

P
fitness Xi tð Þð Þ (6)

Xi tð Þ ¼ Xi t � 1ð Þ þ rand: Xc tð Þ � Xi t � 1ð Þð Þ (7)

where; fitness xi tð Þð Þ represents the excellence of the individual pigeons. For every individual pigeon Xp, the
optimal location of the Nc

th iteration can be indicated as min (Xi1, Xi2…, XiNc). Fig. 2b illustrates the PIO’s
landmark operator model. The center point of all the pigeons (pigeon at the center of the circle) can be
considered as the target for each of the individual iterations. Partially all the pigeons (pigeons outside
circle) have been found to follow the same path, i.e., two pigeons can be at the same location. Pigeons
near its target (pigeons in a circle) can fly very quickly towards their targets.

Figure 2: (a) Map and compass operator (b) Landmark operator model
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Opposition Based Learning (OBL): In OBL, the initial population of the individual methodologies
would be approximate and gradual in its subsequent iterations until an optimal solution is reached. The
accumulation time of this technique is related to the distance between the initial assumption and the
optimal solution. If the choice of the original solution appears to be optimal, then it can be integrated
quickly, or else, it would consume longer time durations for accomplishing the integration procedures.
One of the best ideas for improving the initial solution by evaluating the existing candidate solution and
its counter solution at the same time is to learn from the OBL and select is the one that appears to be
more suitable for the initial solution. This is because, according to the probability theory, any predicted
solution is 0.5 times larger than its actual solution. This technique would be constructive not only to start
the population, but also to develop the ultimate key for the individual iterations. OBL’s is an optimization
problem, also at the same time it is capable of estimating the present aspirant solution together with its
counter solution.

Proposed Enhanced Pigeon Inspired Optimization Algorithm: In our proposed method, the adopted
opposition based learning and the dynamic Cauchy distribution improvises the performance of the PIO
together with their convergence speed. The meticulous execution procedure of the EPIO in the cluster
head selection process is as follows. Also the pseudo code for the EPIO technique for the CH selection
has been indicated in algorithm 1.

Step 1: Opposition based initial population: To control the size according to the resistance, the factors ai
and bi must be dynamically updated based on the current population search space. This means that the least
and the largest values of every dimension in the current population have been inured to compute with the
contrary solution as an alternative of the predefined interval limits ([ai, bi]). The dynamic resistance on
the other hand can assist the pigeons in identifying the enhanced conditions and speed up levels. The new
opposition-based technique has been calculated using Eq. (8).

OPi;j ¼ apj þ bpj � Pi;j (8)

where Pi,j is the j
th location vector of the ith pigeon in the population, OPi,j is the opposite position of Pi,j, a

p
j

and bpj are the least and the greatest values of the jth dimension in the current population respectively.

Step 2: Set the parameters of the PIO technique, namely, the number of iterations Nc1max and Nc2max for
the two operators is to be set as Nc2max > Nc1max. The map and compass factor indicated by R with the
population size Np has the D dimensions of the solution space. Also, start with the location distance,
buffer size, and speed of the individual vehicles.

Step 3: Calculate the fitness function using Eq. (2)

fitnessðXiðtÞÞ ¼ fmaxðwÞ (9)

Step 4: Every pigeon is set with a randomized path and velocity. By comparing the robustness of the
individual pigeons the present preeminent path can be obtained.

Step 5: Function map and compass operator: Initially, the velocity and the path of the individual pigeons
can be updated using Eqs. (3) and (4). Fitness can be compared with the upcoming pigeon’s and thus the new
preeminent path can be discovered.

Dynamic Cauchy distribution

Different mutation operators have been proposed in the evolutionary optimization literature for
enhancing the performance levels by avoiding the pre-integration procedures. Among them, the spread of
the Gauss and the Kuchi has become popular. Compared to the Gaussian probability distribution, the
Cauchy probability distribution tends to escape the local optimum due to its long-tail probability
distribution function. This prompts us to utilize the Cauchy probability distribution as a mutation operator
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for improving the execution of a regular PIO. In this algorithm, the dynamic Cauchy mutation has been
applied on the pigeons for enhancing the performance of the PIO. The one-dimensional Cauchy density
function has been denoted by Eq. (10).

f xð Þ ¼ 1

p
t

t2 þ x2
; �1 < x < 1 (10)

where t > 0 is a scale parameter. The Cauchy distributed function can be computed using Eq. (11).

FtðxÞ ¼ 1

2
þ 1

p
arctan

x

t

� �
(11)

where Ft (x) represents the Cauchy distributed function and x represents the solution of the fitness function.
The cause for exhausting such a mutation operator is to raise the probability of evading from a local optimum
[25]. The Cauchy mutation operator employed in the EPIOA can be computed using Eq. (12).

w ið Þ ¼
Ppopsize

j¼1 v j½ � i½ �.
Pop Size (12)

whereW ðiÞ is the maximum and minimum value,V ½j�½i� is the ith speed vector of the jth pigeon in population
and Pop Size indicate the population size.

Step 6: If Nc > Nc1max, end the map and compass operator and run the subsequent operator. Otherwise,
go to Step 4.

Step 7: Arrange the pigeons according to its practice values. According to Eq. (5), partially pigeons with
high robustness would follow the other pigeons. Then according to Eq. (6), we can obtain the hub of the
individual pigeons, this hub thus appears to be the preferred location. All pigeons would flee to the end
by altering the flight routes according to Eq. (7). Subsequently, it would store the most excellent key
parameters and cost values.

Step 8: if Nc > Nc2 max, end the landmark operator and select the CH. Otherwise, go to Step 6.

Algorithm 1: EPIO Algorithm

Input:
CH: function that has to be optimized, D: dimension of the search space and Np: the number of pigeons.
Search range: till it reaches the search space’s borders, R: the map and compass factor.
Nc2max: landmark operation with the maximum number of generations.
Nc1max: map and compass operator with the maximum number of generations.
P: the location distance, b: the buffer size of the individual vehicles and v: the velocity of the vehicles.
i. Initialization
Initialize the search range, R, D, Np, Nc1max and Nc2max, velocity (Vi) and path (Xi) for each pigeon.
Set Xp = Xi, Nc = 1, p, b, v and the opposition based initial population.
Compute the fitness value of the individual pigeon’s using Eq. (9).
ii. Map and Compass operation
For Nc = 1to Nc1max do
For I = 1 to Np do

While Xi is beyond the search range do
Compute Vi and Xi using Eqs. (3) and (4).

End while
(Continued)
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3.6 Collision Probability

After selecting the optimal cluster head using the EPIOA, the vehicle collision is to be avoided. Collision
probability has been evaluated due to the node’s predictable state. The generation of the warning message
provides guidelines to the vehicles based on this probability. Based on the relative distance and speed
with a pair of front and rear nodes the expected state can be represented. The probability of avoiding
collision [26] has been computed using Eq. (13).

qs ¼
vf � vr
� �

sþ g
� �� Q

� �
r� Qð Þ

� 	
; 8 vf 6¼ vr (13)

where ρs is the probability of the number of collisions among the nodes, η is the relative distance among the
nodes and vf and vr represents the velocity of the front and the rear node respectively. Eq. (13) has been found
to employ the nodes moving on the highway with random speeds that are associated with a set χ containing
the predefined speed range. The fraction ðvf � vr

� �
sþ hÞ in Eq. (13), evaluates a score, in which σ

indicates the maximum score obtained and Q indicates the minimum score. Furthermore, a conflict
domain has been distributed in two ways, where each of the individual events appears to be an
independent Bernoulli event with two possible outcomes (with or without conflicts). Collision probability
can be computed using Eq. (14).

qc ¼ qm � qs ; 8 vf ; vr 2 v and vf 6¼ vr
0; otherwise



(14)

where, ρc denotes the collision probability and ρm denotes the maximum collision probability. The proposed
method further computes the probability depending on the direction of the nodes. Since highways are bi-
directional, at a given time the nodes can move in the opposite directions. The probability of a collision
between two or more nodes traveling on the opposite sides of the highway may be higher depending on
their relative distance and relative speed (as indicated in Eq. (14)). However, in practice there will be a
conflict among them. Therefore, ignoring the direction component in the realistic bi-directional scenarios

Algorithm 1 (continued)

End for
Evaluate Xi, then update Xp and Xg using the dynamic Cauchy mutation operator.

End for
iii. Landmark Operations
For Nc = Nc1max+1 to Nc2max do
While Xp is greater than the search range do
Rank all the available individual pigeon’s based on their obtained fitness values.
Np = Np/2
Keep half of the individual pigeon with better fitness value and ignore the rest.

Xc = average path value for the remaining individual pigeons.
Compute Xi using Eq. (7).
End while

Evaluate Xi, then update Xp and Xg using the dynamic Cauchy mutation operator.
End for
iv. Output
Xg: An optimal Cluster Head is selected.
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makes the proposed scheme inefficient. To solve this problem, the Hamming distance has been included for
calculating the final collision probability using Eq. (15).

qc ¼ qc k (15)

where, k indicates the hamming distance. This determines the problem of imprecision in the probability
evaluation for the nearby nodes and also for the nodes moving in the opposite directions. Consider the
collision probability derived using Eq. (14) among Node A and C2: CH is 0.9. This is definitely a
frightening circumstance regarding the probability attained. Even though the nodes are moving on the
opposite directions of the highway, there is no possibility for collision among them. To ensure this,
Eq. (15) has been proposed. Therefore, if it attains the value as 0, then the probability of the collision
becomes 0.

3.7 Updating and Validation of CH and Enhance the Data Transmission

In the previous step the CH has been selected using the opposition based learning algorithm. After a
certain time interval, the CH of the individual zones that plays an important role may be updated and
validated correspondingly. Congestion may occur while broadcasting the messages over the VANET
channels (i.e., the message channel turns into surpass via communication, and event-driven
communications). It has been observed that an increased number of vehicles in the cluster area are
endeavoring to transmit concurrently in the impenetrable circumstance. This indeed would reduce the
packet delivery ratio and thus congestion may encounter. Therefore, the ANFIS based model has been
introduced for updating and validating the CH and for enhancing the data transmission process.

3.7.1 Adaptive Neuro Fuzzy Inference Method Based Prediction Model
The ANFIS is a multi-layer feed-forward network that includes both the terminals and the directional

links. The ANFIS model functions with respect to the ambiguous Sugeno model with an adaptive system
structure that supports both the learning and the adaptation based procedures. For example, two inputs
provided through ‘x’ and ‘y’ with the output ‘z’ have been used for the ambiguous logical inference. Let
the rule base have two fuzzy “if-then” rules of the Takagi and the Sugeno’s type [27] and this has been
denoted in Eqs. (16) and (17).

If ðA1 is xÞ ; then ðz1 ¼ r1þ q1yþ p1xÞ Rule 1 (16)

If ðA2 is xÞ ; then ðz2 ¼ r2þ q2yþ p2xÞ Rule 2 (17)

Under the Rule 1 and Rule 2, Zi has been observed as the output around the fuzzy area stated by the
fuzzy rules, the fuzzy sets have been denoted as Ai and Bi where as pi, ri ,and qi represent the acquired
design parameters for the training procedures. The ANFIS architecture employs these rules as represented
in Fig. 3. The circle indicates the permanent node and the adaptive nodes have been indicated using the
square symbols.

Figure 3: The architecture of the ANFIS model
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Here, the ANFIS model has been trained using the grid partition technique. The proposed ANFIS based
prediction model predicts the CH based on the inputs such as location distance, velocity and buffer size of the
vehicles. For efficient creation of the CH, the ANFIS prediction model has been learned with the samples
acquired from the initial EPIOA based clustering algorithm. Therefore, there is no need of any additional
training of the ANFIS and is thus trained with respect to the initial node conditions. Based on the training
data, the ANFIS can be trained and updated. This updated ANFIS engine has been named as the self
learning CH predictor. After certain time interval, the ANFIS based prediction model would predict the
particular node as the CH or not. It’s appears to be a rapid process and hence the CH formation delay
appears to be less.

3.7.2 Data Transmission
After the CH formation and validation, the data transmission from the source to the destination would be

accomplished. Therefore, in order to enhance the data transmission between the nodes, the dijkstra’s
algorithm can be adopted and utilized for computing the shortest path for the encountered data
transmission process. The Dijkstra’s algorithm was initially proposed in the year 1956 by Edsger Dijkstra
and published in the year 1959 [28]. The Dijkstra’s algorithm has been represented in the form of a
weight matrix whereas every weight number appears to be Wij ≥ 0. By means of utilizing the exploring
methodology the path to every point can be traced and labeled accordingly. Specifically, the label
comprises of two parts, the first part corresponds to the letter that specifies a symbol in front of that
point, this illustrates it residing location. And the second part corresponds to the number; it indicates the
distance from the starting point to that of the present location. It could detect the shortest path from the
start node to the nearby sink node. Dynamically Evolving Networking (DEN) model was introduced in
[29] for solving the dynamic routing problem during mobility. In [30], the microscopic mobility model
was deployed with realistic traffic management for solving the dynamic routing problem by incorporating
the lognormal model. Initially, the distance between the cluster heads and their velocities were computed.
Then, the dijkstra’s algorithm was applied for finding the shortest route for transmitting the data easily
and effectively. The dijkstra’s algorithm was considered for both the forward and the backward searching
mechanisms with minimum cost. The path was changed for every certain instance of time by the
dijkstra’s routing algorithm. Also, when an emergency occurs inside the zone, the message would be sent
to the cluster head and then it would flood the information to all the vehicles that are connected to it.

4 Experimental Results and Discussion

Results of the proposed methodology have been analyzed with different performance metrics like:
Packet Delivery Ratio (PDR), end to end delay and Cluster Head (CH) formation delay. Also, the
proposed method has been analyzed and contrasted with the existing hop-by-hop technique. Tab. 1
represents the simulation parameter of the proposed method. Performance of the proposed method has
been analyzed under two conditions: performance related to the change in velocity and performance
related to the change in sensor radius.

Table 1: Simulation parameters of proposed method

Parameters Value

No. of Lane 2

Length 4 km

Zones 8

Packet size 500
(Continued)
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4.1 Performance Metrics

4.1.1 Packet Delivery Ratio:
The average ratio of successfully received packets at the sink node to the total number of packets

generated in the source node.

4.1.2 Average End-to-End Delay:
It is the time variation among the communication data source from the destination. Data transfer between

the sources to the destination may be lost due to the node coverage area or their location.

4.1.3 CH Formation Delay:
Initially, the CH selection would be done based on the EPIOA based clustering algorithm, after the t-

time slot the CH updating or validating procedures would be accomplished based on the ANFIS
prediction. This time duration of the CH update is called as the CH formation delay.

4.2 Performance Analysis

4.2.1 Performance Related to Change in Velocity:
In the first test case, the performance of the proposed method has been analyzed and derived from

various velocity levels of the vehicles such as 5, 10, 20, and 30. Tab. 2 illustrates the performance of the
proposed and the existing methodologies with respect to the change in their velocity. Fig. 4a represents
the performance of the proposed and the existing methodologies in terms of the CH formation delay. As
shown in the Fig. 4a, the proposed methodology’s performance level with respect to the CH formation
delay has been achieved as 0.2876 ms for a velocity of 5, 0.286560963 ms for a velocity of 10,
0.286553023 ms for a velocity of 20 and, 0.286560743 ms for a velocity of 30. Whereas, the hop-by-hop
algorithm based on the existing technique has achieved 0.575368939 ms for a velocity of 5,
0.573121926 ms for a velocity of 10, 0.573106045 ms for a velocity of 20 and, 0.573121487 ms for a
velocity of 30. Therefore, from the obtained results the proposed methodology has been observed to
perform better than the existing method in terms of the CH formation. This is because the proposed
methodology has consumed lesser time durations in the formation of the CH.

Table 1 (continued)

Parameters Value

No. of vehicle [50,100,150]

Sensor radius [80,100,130,160] m

Change in velocity [5,10,20,30] km/h

Table 2: Comparative performance of the proposed and the existing schemes with respect to different
velocities

Proposed scheme Existing scheme

Velocity (km/h) 5 10 20 30 5 10 20 30

PDR 0.3661 0.7042 0.5070 0.3098 0.3483 0.6699 0.4823 0.2947

CH formation 0.2876 0.2865 0.2865 0.2865 0.5753 0.5731 0.5731 0.5731

End to end delay 1.0428 2.7285 1.5857 1.1428 5.7857 4.8857 4.6 4.7428
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Fig. 4b illustrates the performance of the proposed and the existing methodology using the end to end
delay metric. As shown in Fig. 4b, the proposed method has consumed minimum time duration for
accomplishing the data transmission process using the end to end delay for different velocities such as 5,
10, 15, 20 and for 30 it was 1.042857143, 2.728571429, 1.585714286 and, 1.142857143 ms respectively.
Whereas, the existing methodology on the other hand had taken 5.785714286 ms for a velocity of 5,
4.885714286 ms for a velocity of 10, 4.6 ms for a velocity of 20 and 4.742857143 ms for a velocity of
30 correspondingly. Also, when there appears a raise in the velocity value, the end to end delay decreases
i.e., the data transfer speed raises. Therefore, the proposed methodology has been observed to perform

Figure 4: (a) Comparative performance of the proposed and the existing techniques in terms of the CH
formation delay with respect to different velocities. (b) Comparative performance of the proposed and the
existing techniques in terms of the end to end delay aspect with respect to different velocities.
(c) Comparative performance of the proposed and the existing techniques in terms of the PDR factor with
respect to different velocities
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better than the existing methodology in terms of the end to end delay attribute. Fig. 4c illustrates the
performance of the proposed and the existing method in terms of the packet delivery ratio.

4.2.2 Performance Related to Sensor Radius (R):
In the second test case, the performance of the proposed method has been analyzed with different sensor

radius. Tab. 3 illustrates the performance of the proposed and the existing techniques with respect to the
sensor radius. The performance of the proposed and the existing methods in terms of the CH formation
delay has been represented in the Fig. 5a with respect to different sensor radius.

As shown in Fig. 4c, the proposed methodology achieves the maximum packet delivery ratio as
0.704225352 at a velocity of 10. Similarly for the velocities such as 5, 20 and 30 the methodology has
achieved the packet delivery ratios as 0.366197183, 0.507042254 and 0.309859155 respectively. The
existing method has achieved the packet delivery ratios as 0.348398701 for a velocity of 5,
0.669997503 for a velocity of 10, 0.482398202 for a velocity of 20 and 0.294798901 for a velocity of
30 correspondingly. In addition to this, the packet delivery ratio decreases with an increase in its velocity.
Therefore, from this analysis, when compared with the existing method, the proposed method has been
observed to achieve better performance levels in terms of the packet delivery ratio. Fig. 5a represents the
CH formation delay performance of the proposed method for different sensor radius such as 80, 100, 130,
and 160, this has been observed as 0.287525993 ms, 0.286554477 ms, 0.286564961 ms and,
0.286563588 ms respectively. Whereas the existing technique has attained 0.575051986 ms for a sensor
radius of 80, 0.573108955 ms for a sensor radius of 100, and 0.573129923 ms for a sensor radius of
130 and 0.573127176 ms for a sensor radius of 160. From the obtained results it has been found that the
proposed method outperforms to the existing techniques in terms of the CH formation delay (i.e., the
proposed method has taken less time to form CH).

The performance of the proposed and the existing method for the end to end delay aspect has been
illustrated in Fig. 5b with respect to different sensor radius. Fig. 5b represents the performance of the
proposed method in terms of the end to end delay aspect and this has been observed to be
0.471428571 ms for a sensor radius of 80, 0.957142857 ms for a sensor radius of 100, 2.485714286 ms
for a sensor radius of 130 and, 1.928571429 ms for a sensor radius of 160. While, the existing technique
has 3.328571429 ms for a sensor radius of 80, 4.142857143 ms for a sensor radius of
80,5.185714286 ms for a sensor radius of 80 and 5.3 ms for a sensor radius of 160. It can be seen that
the proposed method has taken minimum time for accomplishing the data transmission process as the end
to end delay value appears to be low during the evaluation of the present technique.

Table 3: Comparative performance of the proposed and the existing schemes with different sensor radius

Proposed scheme Existing scheme

Sensor radius (m) 80 100 130 160 80 100 130 160

PDR 0.1549 0.2957 0.7323 0.4929 0.1473 0.2813 0.6967 0.4689

CH formation 0.2875 0.2865 0.2865 0.2865 0.5750 0.5731 0.5731 0.5731

End to end delay 0.4714 0.9571 2.4857 1.9285 3.3285 4.1428 5.1857 5.3
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Therefore, the proposed scheme has outperformed in terms of the end to end delay aspect. The
performance of the proposed and the existing method for the packet delivery ratio has been illustrated in
Fig. 5c by varying the sensor radius. It clearly indicates that the proposed method has achieved the
maximum packet delivery ratio at a sensor radius of 130 as 0.732394366. Likewise, for the other sensor
radius such as 80, 100 and, 160 the proposed method has achieved the values of 0.154929577,
0.295774648 and, 0.492957746 respectively. Whereas, for the sensor radius of 80, 100, 130, and 160 the
existing method has been achieved the delivery ratios as 0.147399451, 0.281398951, 0.696797403 and,

Figure 5: (a) Comparative performance of the proposed and the existing techniques in terms of the CH
formation delay with respect to different sensor radius. (b) Comparative performance of the proposed and
the existing techniques in terms of the end to end delay attribute with different sensor radius.
(c) Comparative performance of the proposed and the existing techniques in terms of the PDR factor with
various sensor radius
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0.468998252 respectively. When compared with the existing method, the proposed method outperforms in
terms of the packet delivery ratio with high values.

5 Conclusion

To enhance the traffic management in VANET, the EPIOA based clustering methodology has been
proposed initially for selecting the optimal CH. The CH has been used for reducing the collision of the
vehicles and for enhancing the data transmission procedures among the nodes efficiently. In VANET, the
nodes appear to be dynamic in nature. Therefore, for updating and validating the CH and for enhancing
the data transmission processes the ANFIS based prediction model has been proposed for updating and
validating the CH. Additionally, for enhancing the data transmission process, the dijkstra’s technique has
been proposed for identifying the shortest path for accomplishing the data transmission procedure. Also,
the proposed method has been analyzed under two conditions such as different velocities of the vehicles
and the sensor radius. The results show that the proposed methodology outperforms the existing
technique in terms of the CH formation delay, the end to end delay and the packet delivery ratio.
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