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Abstract: Blockchain technology is known as a decentralized, distributed ledger
that records digital asset. It has been applied in numbers of aspects of society,
including finance, judiciary and commerce. Ethereum is referred to as the next
generation decentralized application platform. It is one of the most popular block-
chain platforms that supports smart contracts. Smart contract is a set of codes that
sored on blockchain and can be called and created as turing-complete programs
running on the blockchain. Developers use smart contracts to build decentralized
applications (Dapp) which has widely used cryptocurrency related project. As
smart contracts become more popular and more valuable, they are faced with
more risk of being hacked. As a result that smart contracts cannot be modified
once deployed on the blockchain, it is a great challenge to fix and update
deployed vulnerable contract which can lead to a huge loss of cryptocurrency
and financial disorder. In this paper, we focus on Integer Bugs in Ethereum Smart
Contracts and present ISmart, which protects deployed smart contracts against
attacks caused by Integer Bugs. We implemented ISmart based on go-ethereum,
a Ethereum client written in Go, by adding a simplified taint analysis component.
In our preliminary, ISmart can prevent attacks accurately with little runtime
overhead.
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1 Introduction

Since Satoshi Nakamoto first set the Bitcoin and blockchain into motion in 2008 [1], the massive
adoption of Bitcoin has fueled innovation. As a decentralized database, the blockchain allows transactions
and data, to be stored and verified with no need of any centralized authority. With the development of
blockchain, the emergence of Ethereum expands the function of bitcoin by Turing-complete smart
contracts. The idea of smart contract was first proposed by Szabo in 1997 [2]. Ethereum provides a
decentralized platform which can execute programs (smart contracts) by Ethereum Virtual Machine
(EVM) [3]. More and more applications are deployed in blockchain. Liu et al. [4] proposed a food
traceability framework based on permissioned blockchain. Wang et al. [5] stores electronic records on
blockchain for secure provenance. Jiang et al. [6] proposed protocol for WLAN mesh security access
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based on blockchain. Li et al. [7] protects energy trading based on Consortium Blockchain. Developers
usually write smart contract code in a high-level language such as Solidity. Developers can create a new
cryptocurrency with smart contract under an ERC Token Standard. In the real world, these
cryptocurrencies are closely related to money which attracted attackers.

In April 2018, hackers attack the BecToken by integer bugs, leading to an extremely large amounts of
tokens lost and the price of BEC tokens worthless. The code of vulnerable function is shown in Fig. 1. The
line 3 of smart contract code indicates a multiplication without overflow limitation. If the result of
multiplying is the max (max of 256-bit integer) + 1, the amount will overflow and be calculated to be
0 which will pass the constraint in line 5. Attackers can transfer unlimited BEC tokens.

Academia proposed numerous different solutions to check smart contracts for vulnerabilities in static
analysis, Oyente [8] is a symbolic execution tool which is used to find security bugs in smart contracts,
Osiris [9] is a symbol execution tool based on Oyente, which focuses on handling integer errors,
including overflow, symbol error and truncation error. ZEUS [10] verifies the correctness of smart
contracts by using model checking. Due to the fact that the deployed smart contracts can't be changed,
these static analysis tool can only give a suggestion before deployment but not deployed contracts. And
limited to offline environment, these tools may not cover more bugs in complex path compared with
runtime-protection.

The contributions of our work lay on the following aspects:

� We present ISmart, a simplified taint analysis component which protects deployed smart contracts
against attacks caused by Integer Bugs.

�We analysis three different types of integer bugs arithmetic bugs, truncation bugs and signedness bugs
and construct corresponding strategy in taint analysis.

�We run ISmart on real Ethereum smart contracts, and find that ISmart successfully interrupt dangerous
transactions.

2 Background

2.1 Ethereum Virtual Machine (EVM)

Ethereum is referred to as the next generation smart contract and decentralized application platform. It
consists of a network of mutually distrusting nodes form a decentralized public ledger. Users can create and
execute smart contracts function by submitting transactions to Ethereum network. Miners will execute the
smart contracts during the verification of blocks by EVM. Ethereum Virtual Machine (EVM) is a custom

Figure 1: BEC vulnerable function
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virtual machine which executes smart contracts in Ethereum blockchain system which is a low-level stack-
based virtual machine without register. Developer always uses Solidity to program smart contract
application, which can be compiled to an instruction set of opcodes and bytecode further. Due to the
smart contract will be executed by all miners in the network, Ethereum introduced the concept of gas to
ensure miners benefits. Almost every execution of instruction will cost gas, when submitting a
transaction, the sender has to provide the amount of gas that offered to the miner for the execution of the
smart contract. If the gas is not enough, the transaction will fail because of out-of-gas exception. The
success execution of a smart contract results in a modification of the world state σ. It is a data structure
stored on the blockchain mapping an address a to an account state σ[a].

2.2 GO- Ethereum

Go-Ethereum is one of the three original implementations (along with C++ and Python) of the Ethereum
protocol written in Go. Go-Ethereum is used to execute transactions in Ethereum as showed in Fig. 2. When a
transaction is accepted, it will be converted into a Message object by EVM. The Message object consists of
four parts: from, to, amount and data. from means the caller address of the transaction. to means that if the
value of to is not null, EVM will find contracts code according to the value of to from StatedDB, otherwise
EVM will create new contracts according to transaction information and store related information into
StateDB. amount means the amount of value in transaction. data means the input of transaction which
describes the called function in smart contract and the corresponding function parameter values. Then
contracts code and input data will be sent to EVM interpreter. EVM is a stack based virtual machine.
Four components need to be operated in the interpreter PC, Stack, Memory, Gas. PC is similar to the PC
register in the CPU which points to the currently executed instruction. Stack is the execution stack which
has a width of 256 bits and a maximum depth of 1024 bits. Memory is memory space. Gas represents a
gas pool, the transaction will fail if it run out of the gas.

Figure 2: Overview of Go-Ethereum
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2.3 Integer Bugs of Smart Contracts

In this section, we will briefly review on Integer Bugs of smart contracts.

Arithmetic Bugs. Arithmetic bugs include arithmetic overflow and arithmetic underflow. In addition,
due to the special design of EVM, the result divided by 0 or module 0 is 0. This is controlled at the
compiler level. The judgment of divisor 0 was not added before solidity 0.4.0. Arithmetic overflow is a
value greater than the maximum value that can be stored, and arithmetic underflow is a value less than
the minimum value that can be stored. As show in Fig. 3, for a 16-bit unsigned number, the maximum
value that can be represented is 2^16 � 1 . For a value greater than 2^16 � 1, it will be silently “wrap
around”.

Signedness Bugs. Converting an unsigned integer type to a signed type of the same width may introduce
a signedness error. This conversion may change a positive value to a larger negative value. As shown in
Fig. 4, this function only allows the caller to withdraw ether from the balance of the smart contract.
However, if the parameter value is negative, it may be forcibly converted to an unsigned integer, and the
amount transferred would be a huge positive integer.

Truncation Bugs. When converting a larger value into a narrower type value, it may cause a truncation
error. In traditional languages such as Java, upward transformation is allowed and downward transformation
is not allowed. For example, assigning a 64-bit value to an 8-bit integer type is easy to cause truncation errors,
resulting in the loss of digital accuracy. Of course, if the value size of 64 bits is exactly less than the maximum
value of 8-bit integer type, no truncation error will be raised. As shown in Fig. 5, the type of balance is a 32-
bit unsigned integer. msg.value defaults to a 256-bit unsigned integer. It may result in loss of accuracy if
converting msg.value to 32-bit unsigned integer.

Figure 3: An example of Overflow bug

Figure 4: An example of Signedness bug

Figure 5: An example of Truncation bug
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3 An Overview of ISmart

An overview of ISmart describing its workflow is shown in Fig. 6. ISmart is based on extending a GO-
Ethereum client. We mainly add a taint engine and protector in EVM interpreter. Taint engine labels the data
at pre-defined source and monitor it changes in the execution of the program. Protector protects contract from
attacks by pre-defined strategy. As shown in Fig. 6, EVM will get function and function parameters from
input data. Then EVM will get smart contract code form stateDB by code address. The information will
be sent to interpreter to run the program. When program running, we will analyze interpreter memory and
stack to find integer bugs and interrupt the transaction.

3.1 CFG Analysis

When programming smart contract, developer may use some protection schemas to protect contract
from attacks. They use constraints to determine whether an attack has occurred, such as required function
or library so named SafeMath. ISmart needs to quickly detect the execution of transaction will be
attached. ISmart will build CFG [11] from opcode to get the possible execution path. Due to that EVM is
stack-based, only instruction conditional JUMPI and the unconditional JUMP can control the program
execution process. We segment code to basic block which has not jumps instruction. When running
detection, we can get run-time information from stack and memory so that we can simplify execution
paths and easily get jump destination. We will analyze the instruction in current path to judge whether the
protection mechanism should be triggered.

3.2 Taint Engine

Taint tracking is a popular technique in code analysis [12]. Taint analysis usually introduces the concept
of taint source and sink. Taint source represents the direct introduction of untrusted data or confidential data
into the system. Taint sinks are pre-defined points in the code, for example, add instruction may cause
overflow bugs. ISmart will detect the taint if a tainted value reaches a taint sink.

Source. In the EVM, there are many of instructions that input and read data might cause integer bugs.
We choose environment information and stack, memory, storage operations as the source in ISmart.
Environmental information, such as calldatacopy and calldataload shown in Tab. 1, provides values at
transaction level and attackers can set any value which is vulnerable. Operations such as sload or mload
will read data from storage or memory which may be integer type data, so we analyze data type created
by these operations. Ismart will record the set of storage addresses for detecting integer bugs.

Figure 6: Overview of ISmart
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Sinks. In the EVM, there are many of instructions that have impact on path execution, storage and token
transfer. If the execution of the instruction is based on affected integer value, it may cause heavy financial
losses. The operations such as sstore or jumpi have impacts on storage and stack. The parameters of the
operations determine result. And some system operations such as call or return also change the execution
path of the program. We choose sstore, jumpi, call, mstore and return as sinks for our taint analysis.

3.3 Integer Bugs Protector

Integer bugs protector is the core component for protecting the transaction. The protector no only
analyzes taint marks and values but also has a strategy to detect attacks. As shown in Tab. 2, we have
developed different strategies for different vulnerabilities. For example, we mark the type of variables by
specific instructions in stack to detect truncation error. They some public library, like SafeMath, that will
protect the smart contract by protection scheme. They ensure right result of calculation by require or
assert function. Integer bugs protector needs to quickly distinguish the success of attacks finally. We
mark special operation, such as revert, in CFG struct to screen the potential of success attacks.

Arithmetic Bugs. In EVM, instruction add and mul may cause arithmetic overflow, and sub instruction
may cause arithmetic underflow. In this case, it is necessary to define constraints on the boundary value. add
and mul judge whether it is greater than the maximum value and sub judges whether it is less than the
minimum value. For example, when two unsigned integers a and b are added, we need to checks
arithmetic overflow constraint ða þ b . 2Þ^n� 1, where n represents maximum bits of the two integers.

In addition, to detect the problem of dividing by 0 or modulus 0, check constraints need to be contracted.
The division and modulus operators of EVM are signed/unsigned division (i.e., sdiv and div) and signed/
unsigned modulus (i.e., smod, mod, addmod and mulmod). For example, for signed division, check
whether the divisor can be zero. If the solver can meet the constraints under the current path conditions,
there may be arithmetic errors.

Truncation Bugs. To find truncation errors, we should identify signed and unsigned integers first. In
solidity, and and signextend are used to truncate signed and unsigned integers. The constraint for the and
and signextend instructions is that the input value is greater than the output value. We need to filter out
other type (i.e., address) by conversion Schema. For example, the conversion of the type address is
equivalent to 160 bits.

Signedness Bugs. To find Signedness errors, we identify the symbol of the integer value. Signed/
unsigned type information about all integer values needs to be reconstructed from the EVM instruction
executed. We mark all integer in three types (signed, unsigned, unkown). Lable signed means that the
value is consider as singed integer the same as that lable unsigned means that the value is consider as
unsinged integer. Lable unkown means that the value needs to juge by related instructions. When evm
running, any integer is marked both as signed and unsigned type, the protector will trigger a Signedness error.

Table 1: Source information

Instruction Operation Illustration

Calldatacopy Calldatacopy(t, f, s) Copy s bytes from calldata at position f to mem at position s

Calldataload Calldataload(p) Call data starting from position p (32 bytes)

Sload Sload(p) Storage [p]

Mload Mload(p) Mem [p… (p + 32))
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Protection process. The overall protection process is shown in Algorithm 1. We monitor instructions
and variables that we consider important. First, we build CFG by contract bytecode and analyze the
instructions in the execution path and basic block to quickly detect whether the path is vulnerable. Then,
opcode call is a start of a transactions, meanwhile, we construct three monitoring sets: vulnerable_set,
sign_set, trun_set. vulnerable_set is used to store variables which is stained. sign_set is used to store
variables with singed lable. trun_set is used to store variables with its number of bits. When evm
running, if current opcode is in arithmetic_interesting, such as add, parameter and result will be sent to
arithmetic_constrains function. If the result is vulnerable, the effect variable will be added to
vulnerable_set and CFG path will be checked to juge whether quickly interrupt the process. If the opcode
is in truncation_interesting, such as signextend, variable will be labeled and added to trun_set after
checking the variable type and its width. If the opcode is in signedness_interesting, such as slt, variable
will be labeled and added to sign_set after checking the variable singed type. If trun_set and sign_set
checked result by constrains is vulnerable, they enter the same process as arithmetic detection. Finally, we
will check the opcode in sensitive_ops to ensure that the results are not affected.

Table 2: Integer bugs detection

Type Constrain Related instruction

Arithmetic Bugs x op y∈ [ − 2*n, 2*n − 1] add, sub, mul, div, mod

Truncation Bugs Same bits & (input = output) and, signextend

Signedness Bugs Only marked as signed or unsigned slt, sgt, lt, gt

Algorithm 1: Instrumentation process

Input : bytecode, constrains, Interrupt,
define_function (CFG)
define_function (arithmetic_constrains)
define_function (truncation_constrains)
define_function (signedness _constrains)
cfg = CFG(bytecode)
while evm.isrun() do:

if evm.pc.op == call:
vulnerable_set = new set()
sign_set = new signedness()
trun_set = new truncation ()

else if evm.pc.op in interesting_ops:
swich evm.pc.op:

case arithmetic_ interesting:
if arithmetic_constrains(args):
vulnerable_set.add(integer)
if cfg.blockTest():
revert()

case truncation_interesting:
juge_truncation(integer)
if truncation_constrains(trun_set, integer):
vulnerable_set.add(integer)

(Continued)
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4 Evaluation

ISmart mainly protects EVM against integer bugs. We evaluate the effectiveness and performance of
ISmart on the Ethereum private-net. In the test, we need to deploy the contract on the private network
and construct inputs of smart contract to trigger the attacks. Fortunately, there are some static analysis
tools can help us to collect contracts and trigger information. We collect smart contracts from EtherScan,
known as a famous Blockchain Explorer, and programing by ourselves. We selected 75 contracts that
covering all bugs to test the performance of ISmart.

4.1 Experimental Environment

We run ISmart and origin client on a server that equipped with Intel i7 8 core CPU, 512GB SSD and
16GB memory in Ubuntu 18.04 LTS. In order to simulate practical condition, we deploy all contracts on
the private network and synchronize partial status of the main network by Ethereum full node. We
prepared the corresponding data to trigger the function. As shown in Fig. 7, we should construct the input
data of transaction. Input data is usually divided into two parts: The first four bytes are called 4-byte
signature, which are the first four bytes of the keccak hash value signed by a function as the unique
identification of the function. Followed data is the parameters provided to the called function. EVM push
the 4-byte signature into the stack through the calldataload instruction, and then compare it with the
functions contained in the contract. If it matches, call the jumpi instruction to jump into the code and
continue execution. Based on above, we can construct customized input data to trigger attack to verify
the protection of Ismart.

4.2 Performance

In this section, we present the results of our protection as shown in Tab. 3. The columns show the
vulnerability type, the number of vulnerabilities used for the test, and its protection effect. The rows
represent the results for each integer vulnerability type. In the experiment, we only focus on the situation
when the vulnerability is triggered by transaction and we collect imitation transactions constructed by
existing tools and ourselves manually. The number of transactions that trigger vulnerability is variable.
The tested contracts contain common CVE contracts, such as mentioned BECtokens, and also
programing by ourselves. In three integer vulnerability cases, ISmart successfully interrupt the dangerous
transactions from executing when any vulnerability detected. We can conclude that ISmart has excellent
protection capacity.

Algorithm 1 (continued)

if cfg.blockTest():
revert()

case signedness _interesting:
juge_sing(integer)
if truncation_constrains(sign_set, integer):
sign_set.add(args)
vulnerable_set.add(integer)
if cfg.blockTest()

revert()
else if evm.pc.op in sensitive_ops:

if integer in vulnerable_set:
revert()

evm.run(OP)
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Due to that smart contracts run on distributed platform, Memory consumption and computational
efficiency are particularly important. In Ethereum, all nodes will participate in the calculation of each
transaction. Additional consumption ISmart casused will be attached to all nodes. As shown in Tab. 4, we
tested ISmart and Origin-client memory and transaction efficiency. Official client needs 9243 MB
memory in normal running, Ismart required on average 9455 MB of memory with integer bugs detection
increased by 2.2% than official client. We also compare their execution efficiency through the number of
transactions per second. Every transaction will call a function of smart contracts, we use partly vulnerable
function by trigger information and normal function by synchronized information in mainnet. The
average code length of function is 23 and the average transaction of official and ISmart are 13 and
11 respectively. The overhead is mainly due to recording data and strategy execution. Ismart caused extra
costs when finding interesting opcode. There is no affect on normal execution of smart contract unless
attack occurred. Compared with the origin-client, the extra costs are acceptable for potential financial losses.

Figure 7: Smart contract transaction

Table 3: Performance of protection

Type Amount Interrupt

Arithmetic Bugs 30 100%

Truncation Bugs 25 100%

Signedness Bugs 20 100%

Table 4: Overhead of protection

Type Memory (averge) Tx/s (averge)

Origin-client 9243 MB 13

Ismart 9455 MB 11
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5 Related Work

Runtime Validation. Sereum [13] provides a tool to detect reentry attacks in real time. It extends the
original Ethereum client to track the impact of each operation of transaction on storage and state. It
identified re-entrancy attacks by taint analysis on modeled memory and state. Soda [14] is an EVM
online detection platform which user can only find attacks but not avoid. It acts as a monitor for the full
Ethereum node and trace execution information of the smart contract. If there is an attack detected
through the information, it provides alarm information, but the illegal transaction will be handled by
Ethereum finally.

Fuzzing test. ContractFuzzer [15] simulated Ethereum transaction execution model and collected
sensitive data to trigger vulnerabilitie. It is running on the Ethereum network with a high execution rate,
but because all parameters are generated randomly that can fail to cover deeper paths and expose
vulnerabilities. Learning Fuzz [16] provides a machine learning model based on execution data produced
by expert detecteor. Because it used the model to select the functions and parameters, it has a good
performance in some cases. Machine learning also is applied in malware detection [17]. Wei et al. [18]
provide a new fuzzing way in the detection of smart contracts. They combined Taint Analysis and
Genetic Algorithms to find better execution parameters that may trigger vulnerability efficiently.
REGUARD [19] uses fuzz testing to find reentrancy bugs in smart contracts. The detection of Reentrancy
bugs is related to execution status which is efficiently in fuzzing test, but they inevitably miss critical
vulnerabilities because of the random input.

Static Analysis. Researchers developed sound and scalable static analyzers [20–22] and formal
verification tools [23–25]. Securify [20] is based on abstract interpretation to merges execution paths to
avoid path explosion. ZEUS [10] takes a transform way that converts smart contracts source code into
LLVM IRs by a defined policy. Then it uses the existing LLVM tools to detect the smart contract in
convenient way. TeEther [21] is a symbolic execution tools that combines information flow detection
with exploit generation. Benefit from Integration of information flow, it has a high precision.
SMTCHECKER [22] is a verify tool developed by the Ehtereum Foundation to detect arithmetic bugs
based on performing SMT-based bounded verification. Hirai [23] provides a way to prove safety of smart
contracts in interactive theorem provers by formalizes the Ethereum Virtual Machine based on semantic
analysis. They have a Semantic analysis. Grishchenko et al. [24] formalizes the Ethereum Virtual
Machine by small-step semantics in F* framework. They use bytecode and constraint to define numbers
of security properties of smart contracts. Lahiri et al. [25] provide a way that expresses high-level
specification by state machine representation. They formulate formal specification and verification of
smart contracts and verify whether the execution meets the specification.

6 Conclusion

Integer bugs are on of most commonly bug in Ethereum. We present the design and implementation of
ISmart, a protector for preventing smart contracts from integer bugs. ISmart extends the origin Ethereum
client with a taint engine and protector. We tested it in a real environment with various of smart contracts.
ISmart accurately captures three types of integer vulnerabilities in the experiment. Moreover, in our
evaluation, ISmart only increases memory consumption by 2.2% compared with origin client in high
accuracy. Furthermore, we will try to implement our methodology on more EVM versions and detect
more vulnerabilities.
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