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Abstract: Lightning has been one of the most talked-about natural disasters
worldwide in recent years, as it poses a great threat to all industries and can cause
huge economic losses. Thunderstorms are often accompanied by natural phenom-
ena such as lightning strikes and lightning, and many scholars have studied deeply
the regulations of thunderstorm generation, movement and dissipation to reduce
the risk of lightning damage. Most of the current methods for studying thunder-
storms focus on using more complex algorithms based on radar or lightning data,
which increases the computational burden and reduces the computational effi-
ciency to some extent. This paper proposes a raster-based DWT (discrete wavelet
transform) method for thunderstorm identification, this method uses DWT,
CFSFD (clustering algorithm for fast search and finding density peaks) algorithm
and ADTD (active divectory topology diagrammer) lightning location data for
thunderstorm identification. The advantage of this method is that it supports dif-
ferent spatial resolutions and can identify any shape and number of thunderstorms
at the same time and in the same area. It is effective in eliminating some of clut-
tered, scattered lightning data and extracting dense areas of thunderstorms.
Furthermore, the method has a time complexity of O(n), and the computational
efficiency is significantly better than the current TITAN (thunderstorm identifica-
tion, tracking, analysis, and nowcasting) algorithm, which provides a good basis
for subsequent extrapolation studies of thunderstorms.
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1 Introduction

Thunderstorms are a kind of localized strong convective weather, commonly found in tropical and
temperate regions, and their occurrence is often accompanied by natural phenomena such as lightning
strikes and lightning. This has resulted in many irreparable economic losses, which are increasing year by
year. Therefore, the forecasting of thunderstorm activity has received wide attention from meteorological
industry and community. So far, the vast majority of lightning prediction methods have tried to find the
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relationship between relevant meteorological factors and lightning occurrence, and use this relationship to
predict the occurrence of thunderstorms. The study of thunderstorms is divided into three main areas:
identification, tracking, and extrapolation prediction of thunderstorms. The basis for making extrapolation
predictions is the accurate identification of thunderstorms and tracking. Currently, two major areas of
research on thunderstorms are based on machine learning algorithms and deep learning [1]. Different
research methods use different data to study thunderstorms. The radar echo extrapolation method is
widely used in proximity forecasting, which is based on radar data. Lightning data itself is also a valuable
reference factor, because thunderstorm activity is always accompanied by strong discharge phenomena.
Lightning data can record the specific moment and location of lightning, allowing a macroscopic view of
the distribution and direction of lightning, and it well reflects the change of strength and movement trend
of thunderstorm activity. In this paper, we propose a thunderstorm identification algorithm based on
rasterized data, using DWT, CFSFD algorithm and lightning data to perform thunderstorm identification.
The method casts lightning location data into the cut geographic raster data and combines DWT and
CFSFD algorithm to extract dense thunderstorm areas. The method not only improves the accuracy of
thunderstorm identification at the same time and under the same area, but also breaks the limitations of
previous research methods in terms of shape and number. This method differs from other methods in that:

1. The method uses the DWT to process lightning localization data, combined with CFSFD algorithm,
and the experiment proves that this method has the highest recognition accuracy compared with
existing thunderstorm recognition algorithms.

2. The method is significantly more computationally efficient than some existing methods with higher
complexity, with time complexity of O(n).

3. In addition, the method supports different spatial resolutions for thunderstorm identification and can
achieve good results. It provides a good basis for the subsequent extrapolation research on
thunderstorms.

The arrangement of the rest of the paper is as below. Section 2 provides a brief overview of relevant
work on thunderstorm identification. Section 3 proposes a DWT-based thunderstorm identification
method. Section 4 introduces core data and schemes employed in the experiments, presents an analysis of
results and evaluates the performance of the method. Finally, we discuss and conclude in Section 5.

2 Related Work

Given the powerful destructive power and suddenness of thunderstorm weather, which brings
inconvenience and loss to people's lives in all aspects, it is a current priority to study the fine
meteorological disaster weather warning of thunderstorms gale and improve short-time forecasting
capability in an in-depth and effective way. So far, many scholars at home and abroad have made some
achievements in the research of thunderstorms and windy weather.

Numerous researchers have used radar data for effective identification, tracking and extrapolation of
thunderstorms. Dixon et al. [1] first proposed TITAN algorithm for thunderstorm identification, they
mainly use radar body sweep information to first identify thunderstorms, then new thunderstorms will
appear over time, the new thunderstorms are matched with original thunderstorms, finally, the geometric
inference is performed to deal with merging and splitting; Based on radar-based data from the Beijing
Observatory, Yang et al. [2] used machine learning methods to establish a model for early identification
and proximity prediction of thunderstorms, but misjudgment rate would be relatively high for individual
storm forecasts, and there was no attempt to use the entire radar observation data of a long time series for
the study; Shi et al. [3] take a deep learning approach and propose a radar echo extrapolation method
based on a dynamic convolutional neural network with input, which is different from the traditional radar
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echo extrapolation method, this method improves the accuracy of prediction by establishing a correlation
between convolution kernel and input image based on the strong correlation between radar echo images at
adjacent moments; Yan et al. [4] used ground-based Doppler weather radar emissivity factor data and an
improved DBSCAN(Density-Based spatial clustering of application with noise) algorithm to investigate the
three-dimensional structure identification and feature volume of thunderstorm monoliths; HOU et al. [5]
proposed an algorithm for automatic identification, tracking and proximity forecasting of thunderstorms
using a tree structure representation of radar reflectivity images, the algorithm uses a region tree structure to
represent intensity regions and their spatial relationships in radar reflectivity images, and identifies
thunderstorms by clustered regions in the region tree structure; ROSSI et al. [6] proposed a probabilistic
short-time forecasting method for convective thunderstorms to address the problem of uncertainty in short-
time forecasting. The method begins with a two-dimensional radar thunderstorm identification and tracking
algorithm combined with Kalman filtering of noise measurements from the storm's center of mass using a
continuous white noise acceleration model, and then the resulting smoothed estimates of storm center of
mass and velocity components and their error covariance values applied to the proximity forecasting of
thunderstorm generation; ZOU et al. [7] further optimized a new algorithm based on TREC(tracking a radar
echo by cross-correlation) algorithm and named BTREC(Barnes filter-based tracking of radar echoes by
cross-correlation), which is an effective objective analysis method for smoothing radar echo motion vector
and can better correct the inconsistency of noise and TREC vectors.

In Addition, some scholars have made some efforts to identify, track and extrapolate thunderstorm
predictions based on lightning data. In order to accurately predict the movement trend of thunderstorms,
Huang et al. [8] introduced kernel density estimation and weighted Euclidean distance to improve the
clustering algorithm for clustering analysis of real-time ground flash data, lightning density is calculated
by least-squares fitting of the quadratic trajectory of the thunderstorm motion based on the change in the
time-shifted position of the thunderstorm center and kriging interpolation. Zhou et al. [9] combined
CFSFD algorithm with Kalman filter algorithm to analyze, track, and extrapolate thunderstorm activity in
South China based on lightning data; Hou et al. [10] used DBSCAN algorithm for spatial cluster analysis
to construct a lightning cluster identification and proximity forecasting system for strong thunderstorm
weather in the Jiangsu region; Tuomi et al. [11] proposes a new algorithm for thunderstorm identification
that uses Spatio-temporal thresholds to distinguish lightning clusters and thus identify and track
thunderstorms; Kohn et al. [12] cited lightning location data in the WDSS-II (Warning Decision Support
System) and used lightning density threshold to accomplish the identification and tracking of
thunderstorms, and achieved good short-term forecasting results; Bonelli et al. [13] combined radar data
and lightning location data to set Spatio-temporal thresholds for thunderstorm path identification, tracking
and extrapolation; Lu et al. [14] proposed a thunderstorm identification, tracking and extrapolation
algorithm based on radar, satellite and lightning data. The algorithm can identify the lightning occurrence
region, track it using a period of monitoring information, and finally predict center location coordinates of
the region using Holt's two-parameter linear exponential smoothing method.

In summary, there are three shortcomings in the research of thunderstorm identification. Firstly, in terms of
algorithm complexity, most of the thunderstorm identification algorithms proposed by meteorologists do not do
well in terms of complexity, for example, two representative algorithms in the development history of
thunderstorm identification tracking - TITAN algorithm and SCIT (storm cell identification and tracking)
algorithm [15], which increase the computational burden to a certain extent and have disadvantages of long
computation time and low computational efficiency. Secondly, some related studies are lacking for different
spatial resolutions and different scales of thunderstorm identification. Some studies have excellent results for
small-scale thunderstorm identification and poor results for large-scale thunderstorm identification. Lastly,
noisy data in the lightning data can also have an impact on the final recognition results. Some studies have
been unable to avoid the effects of this noise, resulting in poor recognition accuracy.
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In this paper, we propose a thunderstorm identification method based on rasterized data and ADTD
lightning location data, in which DWT is used to denoise ADTD lightning location data, and then
CFSFD algorithm is used for efficient clustering to achieve the purpose of thunderstorm identification.
The experimental results show that the recognition accuracy of the method is higher than some other
methods in the identification of thunderstorms with different spatial resolutions. The method is also the
best in identifying any shape and number of thunderstorms at the same time and in the same area under
the same conditions.

3 Thunderstorm Identification Method

The thunderstorm identification method proposed in this paper is based on ADTD lightning location
data, which mainly includes area rasterization and generation of quantization space, DWT for data
preprocessing, then feature mapping transform to restore original feature space, and CFSFD algorithm for
efficient clustering to achieve the purpose of thunderstorm identification.

3.1 Overview

The core of the thunderstorm identification algorithm proposed in this paper lies in transforming the
lightning data within the geographic raster using DWT, then clustering them using an efficient CFSFD
algorithm, and identifying thunderstorms at last. The specific idea is as follows: we divide the geospatial
region into m � n geographic rasters, put each lightning data into the corresponding geographic raster, and
count the number of data entries in each geographic raster Ci;j; i 2 m; j 2 n, fCi;jg is the quantized feature
space, and perform DWT on the rows and columns of feature space fCi;jg respectively to form a new

feature space fTi;jg. The size of feature space at this point is
m

2
� n
2
, The new feature space fTi;jg is then

reduced to original feature space fCi;jg according to the feature mapping matrix, lastly, lightning data
after DWT is clustered by the CFSFD algorithm to form a cluster and obtain the final recognition result.
The following diagram shows the flow of thunderstorm identification (Fig. 1).

Figure 1: Thunderstorm identification flow chart

3.2 Data Preprocessing

In order to reflect the differences of different regions, rasterizing the lightning data is the method used in
this paper. The ADTD lightning locating data used in this paper is provided by Hunan Meteorological
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Disaster Defense Technology Center, with 5 km * 5 km as the resolution of raster cutting, the whole province
of Hunan is cut into more than 8000 grids, in order to determine the location and area of each grid, the
diagonal of grids are respectively by latitude and longitude positioning, this method aims to analyze the
lightning characteristics of each grid area, thus making thunderstorm identification more accurate (Fig. 2).

In order to obtain the data structure required in the experiment, data needs to be pre-processed and the
specific steps carried out are as follows:

Step1 : Slitting raster

In order to reflect the differences of different regions, this paper uses ArcGIS to slice the whole province
of Hunan into more than 8000 geographic rasters with a raster resolution of 5 km * 5 km.

Step2 : Putting lightning data into a raster

The number of lightning streaks in each raster can be determined based on the geographic extent of the
raster after slicing with latitude, longitude, and lightning data.

Step3 : Label Grid

After putting lightning data into raster, the number of lightning in each raster can be determined
according to the actual situation, marking each lightning data as 1, n lightning in the raster as n,
indicating a positive sample area, and no lightning in the raster as 0, indicating a negative sample area.

3.3 Discrete Wavelet Transform

Wavelet transform is a signal transformation from the time domain to frequency domain, and is a multi-
scale analysis method for signals, also known as multi-resolution analysis. Wavelets are widely used as a
denoising method based on the DWT because of their low entropy, multi-resolution, de-correlation, and
flexibility in base selection [16]. In real production life, noise is everywhere. Noise may exist in the data
collection process or in the surrounding environment, and the information to be expressed by the data
itself is often obscured by the presence of noise, so data noise abatement is a key step in the data pre-
processing process. In the study of thunderstorm identification, some scattered lightning data in the raster
will affect overall identification effect in the clustering process, and we compare these lightning data
which will affect the effect to the “noise” in the experimental data. The DWT is a discretization of the
scale and translation of the fundamental wavelet and is commonly used in digital image processing.
Binary wavelets are often used as wavelet transform functions in image processing. Set ’ðtÞ is
fundamental wavelet, and the expansion and translation of it gives:

Figure 2: Geographical area rasterization
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’a;b ¼ 1ffiffiffiffiffi
aj jp ’

t � b

a

� �
a; b 2 R; a 6¼ 0 (1)

For f ðtÞ 2 L2ðRÞ, the continuous wavelet transform is:

WTf a; bð Þ ¼ 1ffiffiffiffiffi
aj jp
Z 1

�1
f tð Þ’� t � b

a

� �
dt ¼ , f ; ’a;b. (2)

When a ¼ 2�j and b ¼ k � 2�j, where j; k 2 Z, then there are discrete wavelets as:

WTf j; kð Þ ¼ , f ; ’j;k . ¼ 2
j
2

Z 1

�1
f tð Þ’�ð2jt � kÞdt (3)

where a is the scale factor, b is translation factor, and ’� is a complex conjugate of ’ðtÞ.
As DWT is simpler to compute and more suitable to be applied to lightning localization data, DWT is

selected in this paper for noise reduction of lightning data to remove the data that have an impact on the
experimental results. In order to obtain satisfactory denoising results, it is crucial to determine some of
the parameters used in the wavelet denoising algorithm, such as the type of wavelet basis function, the
number of decomposition layers, threshold value and threshold function, etc. Different wavelet basis
functions will produce different effects in denoising. The better the regularity of the wavelet basis
function, the higher resolution. Some of the commonly used wavelet basis functions are Haar,
Daubechies, Symlets and Coiflets [17]. The choice of wavelet coefficients also has a significant impact on
the denoising effect, and narrowing the wavelet coefficients is a useful denoising method [18]. The
wavelet decomposition is performed using the fast algorithm of wavelet transform-Mallat algorithm. The
approximate and detailed coefficients obtained from the decomposition can be obtained using two
analysis filters. The low-pass filter (H) outputs the approximate coefficients of the low-frequency part and
the high-pass filter (G) outputs the detail coefficients of the high-frequency part, after thresholding, the
final reconstruction is carried out and the reconstruction data is the original noisy data after denoising
[19]. The decomposition algorithm is as follows.

Aj;k ¼
P
n
Aj�1;nHðn� 2kÞ

Dj;k ¼
P
n
Aj�1;nDðn� 2kÞ

8<
: (4)

The specific steps are as follows:

Step1 : After the study area is sliced into rasters, the number of lightning bars within each raster can be
determined based on the geographic extent of the raster after slicing together with latitude, longitude, and
lightning data. And count the number of data bars in each geographic raster Ci;j; i 2 m; j 2 n, fCi;jg is
then the quantized feature space.

Step2 : The rows and columns of the feature space fCi;jg are respectively changed by discrete wavelets

to form a new feature space fTi;jg, and the size of the feature space at this time is
m

2
� n
2
. At this time, a

threshold K is given, and the noise is removed in the new feature space, and the rasters smaller than the
threshold K are set to 0.

Step3 :According to the feature mapping matrix, the new feature space fTi;jg after filtering by setting the
threshold is reduced to the original feature space fCi;jg, and the lightning data after DWT are clustered by
CFSFD algorithm to form a cluster to obtain the final recognition result. The details of clustering are
described in the next section (Fig. 3).
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3.4 Thunderstorm Identification

After the above-mentioned data pre-processing and discrete wavelet transform, the next step is to
perform thunderstorm identification. Given that the occurrence of a strong convective weather like
thunderstorms is often accompanied by lightning, the lightning data are linked into dense clusters that can
be used for representing thunderstorms, and the use of a clustering algorithm can achieve thunderstorm
identification. At present, there are many existing clustering algorithms and improved clustering
algorithms, but each of them has its own advantages and disadvantages. As compared with traditional K-
means clustering and classical clustering algorithms such as DBSCAN [20], clustering by fast search and
find of density (CFSFD) can be more efficient and better for the clustering of lightning, so CFSFD
algorithm is used in this paper. It is a simple and straightforward density clustering algorithm and finds
possible cluster centers and distances by quickly searching and finding density peaks for clustering and
defining local densities and distances [21]. CFSFD eliminates the need to pre-specify the centers of
clusters and the hyperparameters K values, and also enables better recognition of thunderstorms with non-
spherical shapes. One of the advantages of this algorithm is the low complexity of the algorithm when
compared to traditional algorithms, because instead of considering vector space distances, it only takes
into account the point-to-point distances, which do not need to be mapped into vector space.

The lightning density is calculated as follows:

qi ¼
Xn
i¼0

’ðdi;j � deÞ (5)

In Eq. (5), ’ xð Þ ¼ 1; x, 0
0; x � 0

�
; n is the number of lightning flashes clustered; di;j is the distance between

two lightning flashes i; j. dc is the distance threshold, and after reviewing the references, dc should be taken so
that the number of lightning with di;j < dc is about 2% of the total [22]. Based on the lightning density formula
defined above, it is possible to calculate the lightning density of each lightning bolt, that is, the number of
lightning bolts per bolt within a given threshold dc. It is very important to calculate the lightning density to
identify thunderstorms, because as mentioned earlier the occurrence of strong convective weather
thunderstorm pairs is accompanied by lightning, therefore the lightning density is an important basis for
thunderstorm identification, the more dense the lightning is, the higher the lightning density is, indicating
a more intense discharge process.

Figure 3: Example of DWT thunderstorm identification algorithm
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qi ¼
Xn
i¼0

e�
di;j
dc

� �2

(6)

Other methods of calculating the lightning density are available, and we can also use the Gaussian kernel
function of Eq. (6) to calculate the lightning density. This is justified by the fact that the Gaussian kernel
function decays exponentially from the center to the periphery according to the distance, making it easier
to determine the unique thunderstorm center.

Define lightning distance:

di ¼ min di;j
� �

;qj. qi (7)

Depending on the lightning distance defined by Eq. (7), the smallest distance of all other lightning whose
lightning density is larger than it is from that lightning is calculated for each lightning, where for the lightning
with the largest lightning density, the lightning distance d ¼ maxðdijÞ. For the larger δ lightning, the fewer
scattered points around it and the higher the cluster independence on a certain region. Regarding the
confirmation of the thunderstorm center. Assuming that there are two thunderstorms in Fig. 4, the density
values of all lightning in Fig. 4 are arranged in descending order, with “1” indicating the point with the
highest density, “2” the next, and so on. The distribution of the density of each lightning bolt after
normalized distance is given in Fig. 4, and the vertical coordinate is relative distance ratio d ¼ di

dmax
.

Thunderstorm center lightning can be confirmed by screening the points that satisfy both q. qmin and
d. dmin conditions as distance centers given dmin and qmin. Lightning 1 and lightning 10 in Fig. 4 can be
used as the thunderstorm center. While lightning 2~8 have greater density than lightning 10, it’s d, dmin,
so it cannot be used as the central lightning of thunderstorms. Although lightning 26~28 have larger δ
values, their q,qmin, similarly, cannot be used as the center of thunderstorm clustering.

Taking into account, there is a good identification of thunderstorms belonging to small and medium scale
weather systems and the effect of actual experimental clustering with qmin ¼ 1:5 and dmin ¼ 20 km for all
kinds of thunderstorm single lightning clusters. Assignment of the remaining lightning. When the
thunderstorm center lightning is confirmed, the category label of the remaining lightning is assigned
according to the following principle: the category label of lightning is the same as the category of the
nearest lightning amount above that lightning density.

Figure 4: Clustering algorithm diagram
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4 Experiments

4.1 Presentation to Data Sources

The data from experiments in this paper are of two primary types: geographic raster data of Hunan
Province, and ADTD lightning positioning data. Among them, the ADTD lightning location data is the
bulk of our data for this experiment. Lightning location data is obtained by a special lightning locator
detection network survey, by monitoring the ground flash radiation VLF(Vertical launch facility) signal,
after waveform judgment to give the precise time of the lightning signal arrived at the sensor, so as to
determine the location of lightning occurrence. In order to better understand the thunderstorm
phenomenon and to obtain better experimental results, higher resolution and more detailed data need to
be collected [23]. In this experiment, a total of 80,000 lightning data from 2015–2016 in Hunan Province
were collected, and the data were provided by the Hunan Meteorological Disaster Defense Technology
Center. Geographic raster sliced data is a sliced division of the whole province of Hunan and populated
into a geographic raster of Hunan Province based on the latitude and longitude of the lightning location
data, which is the process of data rasterization. The data used in the experiments are listed in Tab. 1 below.

4.2 Experimental Schemes

In order to demonstrate the superiority of the thunderstorm identification algorithm proposed in this
paper. Four experimental schemes are designed in this experiment to compare with K-means clustering
algorithm and DBSCAN clustering algorithm respectively. Different experimental effects are obtained for
the four experimental schemes, and the selection of the final data of the DWT and the setting of the
parameter threshold are determined according to the experimental results. The experimental scheme
designed in this paper is scheme 4 in the following Tab. 2. The details of the schemes are listed in Tab. 2.

Table 1: Description and presentation of experimental data

Index Data name Data description

1 Geographic raster data of Hunan
Province

8953 grids with 5 km side length

2 ADTD Lightning Positioning Data Includes lightning intensity and lightning density data

Table 2: Description of the thunderstorm identification experiment

Index DATA Experimental scheme

Scheme 1 Geographic raster data, lightning location data of Hunan
Province

K-Means clustering algorithm
[24]

Scheme 2 Geographic raster data, lightning location data of Hunan
Province

DBSCAN clustering algorithm
[25]

Scheme 3 Geographic raster data, lightning location data of Hunan
Province

CFSFD algorithm

Scheme 4 Geographic raster data, lightning location data of Hunan
Province

DWT CFSFD algorithm
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4.3 Experimental Accuracy

After the final recognition results are obtained experimentally, in order to better compare experimental
results, the recognition results of thunderstorms are binarized in this paper as follows:

R ¼ 1;When thunderstorms occur
0;When thunderstorms do not occur

�
(8)

Define R as the label value for each raster, and the value of R for that raster is 1 if the final identified
thunderstorm falls within that raster, and 0 if the final identified thunderstorm does not fall within the
raster. The accuracy of thunderstorm identification is defined as follows [26].

P ¼ N

T
� 100% (9)

Where N denotes the number of correctly identified thunderstorms, T denotes the total number of
thunderstorms in that time period, and the accuracy P reflects the effectiveness of the DWT identification algorithm.

4.4 Experimental Results and Analysis

Four experimental schemes are designed in this experiment, and the proposed method in this paper is
compared with K-means clustering algorithm and DBSCAN clustering algorithm respectively, and all
four methods are based on the same laboratory environment and experimental data. The histograms of
accuracy for each of the several experimental schemes are illustrated below (Fig. 5).

After conducting a large number of experiments, the experimental results found that the experimental effect of
thunderstorm identification was reduced by about 20% only considering the traditional clustering algorithm without
considering the noise of the lightning data itself, specifically, it seems that the K-means clustering algorithm not only
has the disadvantage of being difficult to determine the K value, but also is sensitive to noise and anomalies,
resulting in its poor application in thunderstorm identification. It is found that the accuracy of K-means
clustering algorithm in thunderstorm identification is only about 60% after combining 15 to 19 years of
lightning data in Hunan Province; In contrast the experimental effect of the DBSCAN clustering algorithm for
thunderstorm identification is 5.44% more accurate than the former, with an accuracy of 64.31%. The
DBSCAN clustering algorithm outperforms K-means algorithm in this field benefiting from the fact that it can
cluster dense data sets of arbitrary shape and can discover anomalies while clustering and is insensitive to
anomalies in the data set; The CFSFD algorithm has about 10% higher recognition accuracy compared to
the two previous traditional clustering algorithms because it does not require pre-specified clustering centers.
The experiment proves that after processing the noise of the lightning data itself, the lightning data within the

Figure 5: Accuracy of four experimental schemes
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geographic raster is transformed using DWT, and then clustered using an efficient CFSFD algorithm, the
experimental results are optimal and the accuracy is maintained at more than 85%. The comparative
experimental analysis shows that although the lightning data dominates the identification of thunderstorms. But
at the same time it is also more sensitive to data itself. Therefore, when analyzing the thunderstorm weather in a
certain area, the improvement cannot be made only from the machine learning algorithm. When comprehensive
data and reasonable methods are considered, the method is considered relatively stable and accurate.

In this paper, the experiments collected a total of 80,000 lightning data from 2015–2016 in Hunan
Province, screened out the moments of frequent lightning, and identified them using the above DWT
thunderstorm identification algorithm. The following figure is a selection of some experimental effect
pictures for display, the red lightning icon indicates lightning, and it can be seen that the number of
identified thunderstorms and the size of thunderstorms in the following four figures are different.

Experimental effects map shows frequent thunderstorms in Changsha. The results of the experiment indicate
that the closer the water system is, the more frequent lightning activity is and the higher the probability of a
lightning strike. Fig. 6 shows two maps of thunderstorm recognition in Changsha at different times of the day
on August 15, and Fig. 7 shows two maps of thunderstorm recognition in Changsha at different times of the
day on July 16. Fig. 6a shows that a total of four thunderstorm clusters were identified in Changsha at the
same moment, and it can be seen from Fig. 6a that the scales of these four thunderstorms are different, with
the first main thunderstorm in the figure occurring in Ningxiang City and having a larger range of influence;
In contrast the fourth thunderstorm in the map occurs mainly in Liuyang City, where the thunderstorm is small
in scale and has a small area of influence. It can be concluded that the algorithm in this paper is able to
identify thunderstorms of different sizes at the same moment. Fig. 6b shows the identification of
thunderstorms after half an hour, from Fig. 6b we can see that thunderstorms occurred in five locations in
Changsha at the same time, which has changed compared to Fig. 6a half an hour ago. It can be shown that
the algorithm can identify different numbers of thunderstorms in the same area and is consistent with the
actual number of thunderstorms occurring. Figs. 7a and 7b show the effect of thunderstorm identification after
changing the spatial resolution. A total of four thunderstorms are identified in Fig. 7a, with the second one
being the largest and the fourth one being the smallest at that moment in time. Fig. 7b shows the number of
thunderstorm identifications as 2, with the largest thunderstorms covering the districts of Yuelu, Yuhua and
Tianxin. According to Figs. 7a and 7b, it can be seen that this algorithm can identify thunderstorms with high
accuracy even at different spatial resolutions. A large number of comparative experiments have shown that the
method proposed in this paper is superior to other comparative test methods in terms of accuracy and complexity.

Figure 6: The effect of thunderstorm identification on a day in August 2015 in Hunan Province. (a) shows
the effect of thunderstorm identification in Changsha City at 2 pm on a day in August 2015. (b) shows the
effect of thunderstorm identification in Changsha City at 4 pm on a day in August 2015
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5 Discussion

Analysis of the use of lightning location data is of great importance for the identification of
thunderstorms. However, the problem is that in previous studies, the data are not well processed before
the experiment, which leads to poor recognition, and some previous studies have limited the size as well
as the shape of thunderstorm recognition, in addition to the large amount of meteorological data which in
turn leads to inefficient recognition algorithms. In this paper, in order to solve the problems existing in
the existing research, we propose the method of combining DWT with the CFSFD algorithm. The
experiments prove that the method proposed in this paper can effectively process a large amount of
lightning positioning data at the same moment while improving the computational efficiency, and
eliminate some data that will affect the effect in order to achieve a satisfactory recognition effect. On one
hand it can identify thunderstorms of different numbers and scales with high accuracy, which on the other
hand also performs well under experimental conditions with different spatial resolutions. Afterward, we
will further optimize the method, we will further improve the accuracy of the experiment, and on this
basis, we will carry out extrapolation experiments for thunderstorms.
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