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Abstract: Extended Exponentially Weighted Moving Average (Extended EWMA
or EEWMA) control chart is one of the control charts which can quickly detect a
small shift. The average run length (ARL) measures the performance of control
chart. Due to the derivation of the explicit formulas for ARL on the EEWMA con-
trol chart for the autoregressive AR(p) process has not previously been reported.
The aim of the article is to derive explicit formulas of ARL using a Fredholm inte-
gral equation of the second kind on EEWMA control chart for Autoregressive
process, as AR(2) and AR(3) processes with exponential white noise. The accu-
racy of the solution obtained with the EEWMA control chart was compared to the
numerical integral equation (NIE) method and extended to compare performance
with Cumulative Sum (CUSUM) and Exponentially Weighted Moving Average
(EWMA) control charts. The results show that the ARL obtained by the explicit
formula and the NIE method are hardly different but ARL of explicit formula is
less the computational (CPU) time than ARL of NIE method. The performance
of EEWMA control chart is better than the CUSUM and EWMA control charts
for all situations except when the large shift sizes the EEWMA control chart per-
formed as well as the EWMA control chart for AR(2) and AR(3) processes. And
then, the EEWMA control chart is also extended to compare efficiency of EEW-
MA control chart with various λ. An exponential smoothing parameter of 0.05 is
recommended. In addition, the simulation study, and efficacy illustration with real
data on new COVID-19 cases in Thailand and Vietnam provided similar results.

Keywords: Extended EWMA control chart; autoregressive process; average run
length; explicit formula

1 Introduction

Currently, the statistical process control (SPC) is very important in the manufacturing industry for
monitoring, controlling, and improving processes. Control charts are one of the efficient tools of SPC and
have been applied in many fields such as finance [1], health [2], and medicine [3]. The Shewhart control
chart was the first to be reported and is widely used for detecting large changes in a process mean [4].
Subsequently, the Cumulative Sum (CUSUM) chart [5] and the Exponentially Weighted Moving Average
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(EWMA) chart [6] have been widely employed to monitor a process mean due to their excellent performance
in detecting small to moderate mean shifts. In addition, Patel et al. [7]-proposed the Modified Exponentially
Weighted Moving Average (Modified EWMA) chart that is effective at detecting small size shift quickly for
observations both autocorrelation and independently normally distribution. Later, Neveed et al. [8] proposed
the Extended Exponentially Weighted Moving Average (EEWMA) chart that performed better than other
control charts for detecting small shifts in the mean of a monitored process.

The performance of the chart is measured by Average Run Length (ARL). The ARL0 denote the average
number of observations before an in-control process is taken to signal to be out of control and should be large
whereas the ARL1 denote the average number of observations taken from out of control and should be as
small as possible.

Many methods for evaluating ARL for control charts have been studied. For example, Monte Carlo
simulations (MC), Markov Chain approach (MCA), Martingale approach (MA) and Numerical Integral
Equation approach (NIE) and explicit formulas. Mastrangelo et al. [9] evaluated ARL of the traditional
EWMA chart for serially correlated processes by using the Monte Carlo simulation method. Zhang et al.
[10] proposed the ARL of the multivariate exponentially weighted moving average (MEWMA) chart and
the combined control chart were evaluated with Monte Carlo simulation. Sukparungsee [11]
approximated the ARL with optimal parameters of one and two-sided EWMA control chart using by
Martingale approach. Chananet et al. [12] evaluated the ARL of EWMA and CUSUM control charts with
Markov Chain approach based on the zero-inflated negative binomial (ZINB) model.

Many literatures for evaluating the ARL using NIE method and explicit formula have been studied.
Areepong et al. [13] proposed the ARL using the numerical integral equation approach of the EWMA
chart and compared the results with the Monte Carlo simulation method. Khoo et al. [14] presented a
Markov chain approach for computing the ARL of EWMA charts. Moreover, Phanyaem et al. [15]
derived the ARL for ARMA processes via explicit formula and numerical integral equation (NIE) method
of EWMA chart. Petcharat et al. [16] investigated the derivation of the ARL for moving average order q
process with exponential white noise by explicit formula. After that, Peerajit et al. [17] studied the NIE
method of ARL on CUSUM chart. Supharakonsakun et al. [18] evaluated the ARL by NIE method on
modified EWMA and compared efficiency with EWMA control chart. Sunthornwat et al. [19] derived
explicit formulas of ARL on CUSUM chart for seasonal and non-seasonal moving average processes with
exogenous variables and evaluated against the NIE method. Later, Anwar et al. [20] proposed modified-
mxEWMA chart that performs very well for the monitoring of small to moderate shifts in the process and
show the implementation of the wood industry. Saghir et al. [21] proposed modified EWMA chart and
the performance is evaluated by ARL. Aslam et al. [22] proposed new Bayesian Modified-EWMA chart
and its applications in mechanical and sport industry. Karoon et al. [23] developed the numerical integral
equation (NIE) methods for evaluating the ARL on Extended EWMA chart for AR(p) process.
Supharakonsakun et al. [24] presented the exact average run length based on explicit formula the
observations are from moving average process with exponential white noise for modified EWMA chart.
Phanthuna et al. [25] proposed the explicit formula for evaluating the ARL on a two-sided modified
EWMA chart under the observations of AR(1) process. Recently, Phanthuna et al. [26] presented explicit
formula of ARL for modified EWMA chart with autoregressive model involving exponential white noise.

However, the derivation of the explicit formulas for ARL on the EEWMA chart for autoregressive AR(p)
process has not previously been reported. Therefore, the aim of this study is to derive explicit formulas of the
ARL on the EEWMA control chart for AR(p) process, as AR(2) and AR(3) processes with exponential white
noise. The explicit formulas for ARL were compared with the (NIE) method as the benchmark. Besides, the
performance of the explicit formulas for deriving the ARL on the EEWMA chart was compared with those on
the CUSUM and EWMA charts for both simulated data and real-world data reported.
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2 Materials and Methods

2.1 Cumulative Sum (CUSUM) Control Chart

The CUSUM control chart was originally introduced by Page [5] in quality control to detect small
changes in process mean, as an extension of Shewhart control chart. The CUSUM control chart can be
expressed by the recursive equation below.

Ct ¼ maxð0; Ct�1 þ Xt � aÞ; t ¼ 1; 2; . . . (1)

where a is non-zero constant, C0 is the initial value of CUSUM statistics with u∈ [0, b], C0 = u.

The stopping time of the CUSUM control chart is given by

sb ¼ infft . 0; Ct . bg; b . u (2)

where τb is the stopping time, b is upper control limit (UCL).

2.2 Exponentially Weighted Moving Average (EWMA) Control Chart

The EWMA control chart was initially proposed by Robert [6]. It is usually used to monitor and detect
small changes in process mean. The EWMA control chart can be expressed by the recursive equation below.

Zt ¼ ð1� kÞZt�1 þ kXt; t ¼ 1; 2; . . . (3)

where Xt is a process with mean, λ is an exponential smoothing parameter with 0 < λ < 1 and Z0 is the initial
value of EWMA statistics, Z0 = u. The upper control limit (UCL) and Lower control limit (LCL) of EWMA
control charts are given by

UCL ¼ l0 þ Qr

ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
; (4)

LCL ¼ l0 � Qr

ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
; (5)

where μ0 is the target mean, σ is the process standard deviation, and Q is suitable control limit width.

The stopping time of the EWMA control chart is given by

sh ¼ infft � 0 : Zt . hg; h . u (6)

where τh is the stopping time, h is UCL.

2.3 Extended Exponentially Weighted Moving Average (Extended EWMA or EEWMA) Control Chart

The EEWMA control chart was proposed by Neveed et al. [8]. It is developed from the EWMA control
chart. This is effective to monitored and detected small changes in process mean. The EWMA control chart
can be expressed by the recursive equation below.

Et ¼ k1Xt � k2Xt�1 þ ð1� k1 þ k2ÞEt�1; t ¼ 1; 2; . . . ; (7)

where λ1 and λ2 are exponential smoothing parameters with (0 < λ1 ≤ 1) and (0 ≤ λ2 < λ1) and the initial value
is a constant, E0 = u. The upper control limit (UCL) and Lower control limit (LCL) of the EEWMA control
charts are given by
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UCL ¼ l0 þ Lr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 � 2k1k2ð1� k1 þ k2Þ

2ðk1 � k2Þ � ðk1 � k2Þ2
s

; (8)

LCL ¼ l0 � Lr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 � 2k1k2ð1� k1 þ k2Þ

2ðk1 � k2Þ � ðk1 � k2Þ2
s

; (9)

where μ0 is the target mean, σ is the process standard deviation, and L is suitable control limit width.

The stopping time of the EEWMA control chart is given by

sh0 ¼ infft � 0 : Et . h0g; h0 . u (10)

where sh0 is the stopping time, h′ is UCL.

3 Explicit Formulas of ARL on the EEWMA Control Chart for AR(p) Processes

Let L(u) denote the ARL for the autoregressive process, to define function L(u) as

ARL ¼ LðuÞ ¼ EhðsbÞ � T (11)

where Ehð�Þ is the expectation under the assumption that the change point occurs at time θ and θ is the change
point time.

The equation of observations for autoregressive (AR(p)) process in the case of an exponential while
noise denoted can be described by

Xt ¼ gþ f1Xt�1 þ f2Xt�2 þ . . .þ fpXt�p þ et (12)

where Xt (t = 1, 2, 3, …) is a sequence of random variables, η is a suitable constant, f is an autoregressive
coefficient (− 1 ≤ f ≤ 1), and ɛt is white noise sequence of exponential (ɛt∼ Exp(α)). The probability density
function of ɛt is given by f ðxÞ ¼ 1

a e
�x

a where x ≥ 0.

Let L(u) denote ARL for AR(p) process, the EEWMA statistics Et can be written as:

Et ¼ ð1� k1 þ k2ÞZt�1 þ ðk1f1 � k2ÞXt�1 þ k1f2Xt�2 þ k1f3Xt�3 þ . . .þ k1fpXt�p þ k1gþ k1et

where (0 < λ1 ≤ 1), (0 ≤ λ2 < λ1) and the initial value E0 = u, and Xt−1, Xt−2, …, Xt−p.

Consequently, the EEWMA statistics Et can be written as

Et ¼ ð1� k1 þ k2Þuþ ðk1f1 � k2ÞXt�1 þ k1f2Xt�2 þ k1f3Xt�3 þ . . .þ k1fpXt�p þ k1gþ k1et

If ɛt = 0 LCL = 0 and UCL = h′, respectively. Then

0 � Et � h0

0 � ð1� k1 þ k2Þuþ ðk1f1 � k2ÞXt�1 þ k1f2Xt�2 þ k1f3Xt�3 þ . . .þ k1fpXt�p þ k1gþ k1et � h0

0� ð1� k1 þ k2Þu� ðk1f1 � k2ÞXt�1 � k1f2Xt�2 � k1fpXt�p

k1

� g � et �
h0 � ð1� k1 þ k2Þu� ðk1f1 � k2ÞXt�1 � k1f2Xt�2 � k1fpXt�p

k1
� g

Let L(u) denote the ARL on the EEWMA control chart. The function L(u) can be derived by Fredholm
integral equation of the second kind, L(u) is defined as follows:
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LðuÞ ¼ 1þ
Z

LðE1Þf ðe1Þde1 (13)

Therefore, the function L(u) is obtained as follows:

LðuÞ ¼ 1þ
Zh0�ð1�k1þk2Þu�ðk1f1�k2ÞXt�1�k1f2Xt�2�k1fpXt�p
k1

�g

0�ð1�k1þk2Þu�ðk1f1�k2ÞXt�1�k1f2Xt�2�k1fpXt�p
k1

�g

Lðð1� k1 þ k2Þuþ ðk1f1 � k2ÞXt�1 þ k1f2Xt�2 þ . . .þ k1fpXt�p þ k1gþ k1yÞf ðyÞdy
If k = (1 − λ1 + λ2)u + (λ1f1 − λ2)Xt−1 + λ1f2Xt−2 +… + λ1fpXt−p + λ1η + λ1y is defined for changing the

integration variable, the function L(u) is given by

LðuÞ ¼ 1þ 1

k1

Zh0
0

LðkÞf k � ð1� k1 þ k2Þu� ðk1f1 � k2ÞXt�1

k1
� f2Xt�2 � . . .� fpXt�p � g

� �
dk (14)

The L(u) is Fredholm integral equation of the second kind. If ɛt∼ Exp(α), then

LðuÞ ¼ 1þ 1

k1a

Zh0
0

LðkÞe� k
k1ae

ð1�k1þk2Þuþðk1f1�k2ÞXt�1
k1a

þf2Xt�2þ...þfpXt�pþg

a dk

LðuÞ ¼ 1þ e
ð1�k1þk2Þuþðk1f1�k2ÞXt�1

k1a
þf2Xt�2þ...þfpXt�pþg

a

k1a

Zh0
0

LðkÞe� k
k1adk (15)

When GðuÞ ¼ e
ð1�k1þk2Þuþðk1f1�k2ÞXt�1

k1a
þf2Xt�2þ...þfpXt�pþg

a ; F ¼
Zh0
0

LðkÞe� k
k1adk;

Consequently; LðuÞ ¼ 1þ GðuÞ
k1a

F: (16)

Consider the constant F and take turn L(k) with Eq. (16), then

F ¼
Zh0
0

LðkÞe� k
k1adk

¼ 1þ
Zh0
0

1þ GðkÞ
k1a

F

� �
� e� k

k1adk

¼
Zh0
0

e�
k

k1adk þ
Zh0
0

GðkÞ
k1a

F � e� k
k1adk
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¼ �k1aðe�
h0
k1a � 1Þ � F

k1 � k2
� e

ðk1f1�k2ÞXt�1
k1a

þf2Xt�2þ...þfpXt�pþg

a � ðe�
ðk1�k2Þh0

k1a � 1Þ

F ¼ �k1aðe�
h0
k1a � 1Þ

1þ 1

k1 � k2
� e

ðk1f1�k2ÞXt�1
k1a

þf2Xt�2þ...þfpXt�pþg

a � ðe�
ðk1�k2Þh0

k1a � 1Þ
(17)

Finally, substituting constant F form Eq. (17) into Eq. (16), then L(u) can be written as

LðuÞ ¼ 1� ðk1 � k2Þe
ð1�k1þk2Þu

k1a � ðe� h0
k1a � 1Þ

ðk1 � k2Þe
� ðk1f1�k2ÞXt�1

k1a
þf2Xt�2þ...þfpXt�pþg

a

n o
þ ðe�

ðk1�k2Þh0
k1a � 1Þ

: (18)

The process is “in-control” with the exponential parameter α = α0, the explicit formula of the ARL0 for
AR(p) process on the EEWMA control chart can be written as follows:

ARL0 ¼ 1� ðk1 � k2Þe
ð1�k1þk2Þu

k1a0 � ðe� h0
k1a0 � 1Þ

ðk1 � k2Þe
� ðk1f1�k2ÞXt�1

k1a0
þf2Xt�2þ...þfpXt�pþg

a0

n o
þ ðe�

ðk1�k2Þh0
k1a0 � 1Þ

: (19)

Meanwhile, the process is “out-of-control” with the exponential parameter α = α1 and then α1 = (1
+ δ)α0, where α1 > α0 and δ is the shift size, the explicit formula of ARL1 for AR(p) process on the
EEWMA control chart can be written as follows:

ARL1 ¼ 1� ðk1 � k2Þe
ð1�k1þk2Þu

k1a1 � ðe� h0
k1a1 � 1Þ

ðk1 � k2Þe
� ðk1f1�k2ÞXt�1

k1a1
þf2Xt�2þ...þfpXt�pþg

a1

n o
þ ðe�

ðk1�k2Þh0
k1a1 � 1Þ

: (20)

while (− 1 ≤ f ≤ 1) is the autoregressive coefficient, (0 < λ1 ≤ 1), (0 ≤ λ2 < λ1) are the smoothing
parameters, the initial value E0 = u, and Xt−1, Xt−2, …, Xt−p and h′ is the upper control limit.

4 Numerical Integral Equation Method of ARL on the EEWMA Control Chart for AR(p) Processes

The NIE method is used to solve the ARL for the AR(p) process on the EEWMA control chart in Eq.
(14). The ARL solution or ~LðuÞ is approximated with the m linear equation systems over the interval [0,
h′]. A quadrature rule is used to approximate the integral by a finite sum of areas of rectangles with base
h′/m and heights chosen as the values of f(aj) at the midpoints of intervals of length beginning at zero
with a set of constant weights wj ¼ h0

m ; j ¼ 1; 2; . . . ; m and aj ¼ h0
m j� 1

2

� �
(see [24]).

Therefore, the approximating NIE method for the ARL on the EEWMA control chart is evaluated as
follows:

Zh0
0

LðkÞf ðkÞdk �
Xm
j¼1

wjf ðajÞ (21)

The system of m linear equation is showed as:

Lm×1 = 1m×1 + Rm×mLm×1 or (Im − Rm×m)Lm×1 = 1m×1 or Lm×1 = (Im − Rm×m)
−11m×1

Lm×1 = (Im − Rm×m)
−11m×1 where Lm�1 ¼ ½~Lða1Þ; ~Lða2Þ; . . . ; ~LðamÞ�T , Im = diag(1, 1,…, 1) and 1m×1 =

[1, 1, …, 1] T.
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Let Rm×m be a matrix, the definition of the m to mth element of the matrix R is given by

½Rij� � 1

k1
wjf

aj � ð1� k1 þ k2Þai � ðk1f1 � k2ÞXt�1

k1
� f2Xt�2 � . . .� fpXt�p � g

� �

Finally, the numerical approximation for the function ~LðuÞ is as follows:

~LðuÞ ¼ 1þ 1

k1

Xm
j¼1

wjLðajÞf aj � ð1� k1 þ k2Þu� ðk1f1 � k2ÞXt�1

k1
� f2Xt�2 � . . .� fpXt�p � g

� �
(22)

5 Existence and Uniqueness of ARL

The solution of ARL shows that there uniquely exists the integral equation for explicit formulas by the
Banach’s Fixed-point Theorem. In this study, let T be an operation in the class of all continuous functions
defined by

TðLðuÞÞ ¼ 1þ 1

k1

Zh0
0

LðkÞf k � ð1� k1 þ k2Þu� ðk1f1 � k2ÞXt�1

k1
�f2Xt�2 � . . .�fpXt�p � g

� �
dk (23)

According to Banach’s Fixed-point Theorem, if an operator T is a contraction, and then the fixed-point
equation T(L(u)) = L(u) has a unique solution. To show that Eq. (23) exists and has a unique solution, theorem
can be used as follows below.

Theorem 1 Banach’s Fixed-point Theorem: Let (X, d) be a complete metric space and T: X→ X be a
contraction mapping with contraction constant 0 ≤ r < 1 such that ‖T(L1) − T(L2)‖ ≤ r‖L1 − L2‖, 8L1; L2 2 X .
Then there exists a unique L( ⋅ )∈ X such that T(L(u)) = L(u), i.e., a unique fixed-point in X.

Proof: Let T defined in Eq. (23) is a contraction mapping for L1, L2∈G[0, h′], such that ‖T(L1) − T
(L2)‖ ≤ r‖L1 − L2‖, 8L1; L2 2 G½0; h0� with 0 ≤ r < 1 under the norm kLk1 ¼ sup

u2½0;h0�
jLðuÞj, so

kTðL1Þ � TðL2Þk1 ¼ sup
u2½0;h0�

1

k1a
e
ð1�k1þk2Þuþðk1f1�k2ÞXt�1

k1a
þf2Xt�2þ...þfpXt�pþg

a

Zh0
0

ðL1ðkÞ � L2ðkÞÞe�
h0
k1adk

						
						

� sup
u2½0;h0�

kL1 � L2k 1

k1a
e
ð1�k1þk2Þuþðk1f1�k2ÞXt�1

k1a
þf2Xt�2þ...þfpXt�pþg

a � ð�k1aÞðe�
h0
k1a � 1Þ

				
				

¼ kL1 � L2k1 sup
u2½0;h0�

e
ð1�k1þk2Þuþðk1f1�k2ÞXt�1

k1a
þf2Xt�2þ...þfpXt�pþg

a

				
				 1� e�

h0
k1a

			 			
� rkL1 � L2k1

where r ¼ sup
u2½0;h0�

e
ð1�k1þk2Þuþðk1f1�k2ÞXt�1

k1a
þf2Xt�2þ...þfpXt�pþg

a

				
				 1� e�

h0
k1a

			 			; 0 � r, 1:
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6 Numerical Results

The absolute percentage relative error (APRE) to measure the accuracy of the ARL is defined as

APREð%Þ ¼ jLðuÞ � ~LðuÞj
LðuÞ � 100 (24)

where L(u) is the explicit formulas of the ARL on the EEWMA control chart for AR(p) process shows that Eq.
(18) , which ARL0 and ARL1 are Eqs. (19) and (20), respectively, and ~LðuÞ in Eq. (22) is the NIE method of
the ARL using the Gauss-Legendre quadrature rule on the EEWMA control chart for AR(p) with the number
of division points m = 500 nodes. The numerical results were computed by MATHEMATICA. The initial
parameter values are studied at ARL0 = 370 on the EEWMA control chart for AR(p) process, referred to
as AR(2) and AR(3) processes with exponential white noise and given λ1 = 0.05, 0.10, λ2 = 0.01, 0.02,
0.03. The ‘in-control’ process had parameter value as α = α0 with shift size (δ = 0). On the other hand, the
‘out-of-control’ process was presented with parameter values as α1 = (1 + δ)α0 with shift sizes (δ) equals
0.001, 0.003, 0.005, 0.010, 0.030, 0.050, 0.100, 0.500 and 1.000 were determined. Furthermore, the
coefficient parameters of the process f1 = 0.2, f2 = 0.2, − 0.2 were used for the AR(2) process, and f1

= f2 = 0.2, f3 = 0.2, − 0.2 were used for the AR(3) process. In addition, the speed test results
were computed by the CPU time (PC System: windows10, 64-bit, Intel® Core™ i5-8250U 1.60 GHz
1.80 GHz, RAM 4 GB) in seconds.

In Tabs. 1 and 2, the ARL results by using the explicit formula (Eqs. (19) and (20)) and the NIE method
(Eq. (22) then the absolute percentage relative error named APRE(%) show that Eq. (24). It showed that the
ARL values derived from the explicit formulas give results close to those from the NIE method both AR(2)
and AR(3) process. AR(2) process, Tab. 1 showed that the analytical results agree with NIE approximations
with APRE(%) less than 0.000239% and CPU time of approximately 2.7–3.5 s whereas the CPU time of the
explicit formulas is not much. AR(3) process in Tab. 2 showed that the analytical results agree with NIE
approximations with APRE(%) less than 0.000216% and CPU time of approximately 2.8–3.5 s whereas
the CPU time of the explicit formulas is not much. The entries inside the parentheses are the CPU time in
seconds.

Table 1: Comparing ARL values on the EEWMA control chart for the AR(2) process using explicit formulas
against the NIE method given λ1 = 0.05, 0.10, λ2 = 0.01, η = 0 for ARL0 = 370

λ1 Shift size (δ) f1 = f2 = 0.2* f1 = 0.2, f2 = −0.2**

Explicit NIE (CPU time) APRE (%) Explicit NIE (CPU time) APRE (%)

0.05 0.000 370.321304 370.321192 (2.891) 0.000030 370.388734 370.388600 (3.266) 0.000036

0.001 234.777706 234.777647 (3.047) 0.000025 239.110276 239.110204 (3.001) 0.000030

0.003 135.885390 135.885362 (3.406) 0.000021 140.253416 140.253381 (3.079) 0.000025

0.005 95.8318800 95.8318615 (2.906) 0.000019 99.4478549 99.4478320 (3.032) 0.000023

0.010 55.4896135 55.4896039 (3.047) 0.000017 57.8903579 57.8903459 (2.875) 0.000021

0.030 21.2886283 21.2886251 (3.125) 0.000015 22.2934984 22.2934945 (2.907) 0.000018

0.050 13.5344720 13.5344701 (2.921) 0.000014 14.1755969 14.1755945 (3.187) 0.000016

0.100 7.48364935 7.48364848 (3.172) 0.000012 7.82854173 7.82854066 (3.078) 0.000014

0.500 2.45093356 2.45093345 (2.999) 0.000004 2.53934226 2.53934213 (2.719) 0.000005

1.000 1.77981293 1.77981290 (3.016) 0.000002 1.83156186 1.83156182 (3.016) 0.000002

(Continued)
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Table 1 (continued)

λ1 Shift size (δ) f1 = f2 = 0.2* f1 = 0.2, f2 = −0.2**

Explicit NIE (CPU time) APRE (%) Explicit NIE (CPU time) APRE (%)

0.10 0.000 370.042850 370.042130 (2.812) 0.000195 370.069839 370.068954 (3.235) 0.000239

0.001 258.305964 258.305590 (2.844) 0.000145 265.398874 265.398393 (3.157) 0.000181

0.003 161.332490 161.332326 (3.093) 0.000101 169.772828 169.772610 (2.967) 0.000128

0.005 117.496757 117.496661 (2.890) 0.000082 124.992900 124.992771 (3.203) 0.000103

0.010 70.2760299 70.2759877 (3.062) 0.000060 75.6205876 75.6205304 (3.063) 0.000076

0.030 27.5853972 27.5853864 (3.203) 0.000039 29.9372209 29.9372064 (3.204) 0.000048

0.050 17.5425526 17.5425468 (3.000) 0.000033 19.0425702 19.0425625 (2.891) 0.000041

0.100 9.60903193 9.60902943 (2.985) 0.000026 10.3968364 10.3968331 (2.875) 0.000032

0.500 2.94823486 2.94823458 (3.172) 0.000009 3.11870875 3.11870839 (3.171) 0.000012

1.000 2.05578182 2.05578173 (3.109) 0.000004 2.14628399 2.14628388 (3.156) 0.000005

Notes: *h′ = 0.0488991 for λ1 = 0.05 and h′ = 0.1376787 for λ1 = 0.10. **h′ = 0.0530625 for λ1 = 0.05 and h′ = 0.1499641 for λ1 = 0.10.

Table 2: Comparing ARL values on the EEWMA control chart for the AR(3) process using explicit formulas
against the NIE method given λ1 = 0.05, 0.10, λ2 = 0.01, η = 0 for ARL0 = 370

λ1 Shift size
(δ)

f1 = f2 = f3 = 0.2* f1 = f2 = 0.2, f3 = −0.2**

Explicit NIE (CPU time) APRE (%) Explicit NIE (CPU time) APRE (%)

0.05 0.000 370.152690 370.152587 (3.250) 0.000028 370.369025 370.368902 (3.187) 0.000033

0.001 232.684141 232.684088 (3.063) 0.000023 236.904912 236.904847 (3.298) 0.000027

0.003 133.850860 133.850835 (2.953) 0.000019 138.011528 138.011496 (3.219) 0.000023

0.005 94.1665824 94.1665658 (3.095) 0.000018 97.5864564 97.5864358 (3.126) 0.000021

0.010 54.3952320 54.3952233 (3.063) 0.000016 56.6510616 56.6510508 (3.079) 0.000019

0.030 20.8336361 20.8336333 (3.125) 0.000014 21.7738180 21.7738144 (3.015) 0.000016

0.050 13.2442206 13.2442189 (2.907) 0.000013 13.8440442 13.8440422 (3.203) 0.000015

0.100 7.32712291 7.32712213 (3.030) 0.000011 7.65034375 7.65034278 (2.827) 0.000013

0.500 2.41014802 2.41014793 (3.125) 0.000004 2.49392222 2.49392210 (3.234) 0.000005

1.000 1.75574743 1.75574740 (3.093) 0.000002 1.80505114 1.80505111 (3.484) 0.000002

0.10 0.000 370.144195 370.143544 (3.265) 0.000176 370.111076 370.110277 (3.015) 0.000216

0.001 255.145929 255.145598 (3.172) 0.000130 261.759999 261.759576 (3.093) 0.000162

0.003 157.658228 157.658085 (3.140) 0.000090 165.370557 165.370369 (3.015) 0.000114

0.005 114.276687 114.276603 (3.171) 0.000073 121.058937 121.058826 (3.328) 0.000092

0.010 68.0136145 68.0135780 (3.265) 0.000054 72.7984472 72.7983982 (3.141) 0.000067

0.030 26.6006234 26.6006140 (3.281) 0.000035 28.6897880 28.6897755 (3.063) 0.000044

0.050 16.9144058 16.9144007 (3.141) 0.000030 18.2468150 18.2468084 (3.140) 0.000037

0.100 9.27732544 9.27732323 (3.312) 0.000024 9.97959567 9.97959280 (3.218) 0.000029

0.500 370.144195 370.143544 (3.265) 0.000176 370.111076 370.110277 (3.015) 0.000216

1.000 255.145929 255.145598 (3.172) 0.000130 261.759999 261.759576 (3.093) 0.000162

Notes: *h′ = 0.0469439 for λ1 = 0.05 and h′ = 0.1319420 for λ1 = 0.10. **h′ = 0.0509374 for λ1 = 0.05 and h′ = 0.1436815 for λ1 = 0.10.
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7 Performance Comparing the ARL Results

For Tabs. 3 and 4, the EEWMA control chart is compared for various λ1 = 0.05, 0.10 and λ2 = 0.01, 0.02,
0.03 at ARL0 = 370, η = 0, f1 = f2 = 0.2 (as an AR(2) process) and f1 = f2 = f3 = 0.2 (as an AR(3) process).
The ARL values are indicated that the ARL1 on the EEWMA (λ2 = 0.03) or EEWMA_03 control chart was
reduced more sensitively than on the EEWMA with either λ2 = 0.01 (EEWMA_01) or λ2 = 0.02
(EEWMA_02) for all magnitudes of changes both AR(2) and AR(3) processes. Moreover, the ARL1 on
the EEWMA control chart with λ1 = 0.05 was reduced more sensitively than on the EEWMA control
chart with λ1 = 0.10 for all situations running AR(2) and AR(3) processes. The exponential smoothing
parameter 0.05 is recommended. Tab. 5 showed that the comparison of ARL values for the AR(2) process
on CUSUM, EWMA and EEWMA control charts, the results presented that the ARL1 on the EEWMA
control chart with λ2 = 0.03 was reduced the ARL1 more than the CUSUM, EWMA, EEWMA with either
λ2 = 0.01 or λ2 = 0.02 control charts for all shift sizes and all exponential smoothing parameter values.
Similarly, the ARL results of AR(3) process in Tab. 6, the results presented that the ARL1 on the EEWMA
control chart with λ2 = 0.03 was reduced the ARL1 more than the CUSUM, EWMA, EEWMA with either
λ2 = 0.01 or λ2 = 0.02 control charts for all shift sizes and all exponential smoothing parameter values as
same as the ARL results of AR(2) process. Therefore, the performance of the EEWMA control chart with
λ2 = 0.03 is more efficient than the performance of the CUSUM, EWMA, EEWMA with either λ2 =
0.01 or λ2 = 0.02 control charts for all situations except when the large shift sizes (δ ≥ 0.5), the EEWMA
control chart with λ2 = 0.03 was reduced as well as the EWMA, EEWMA with either λ2 = 0.01 or λ2 =
0.02 control charts.

Table 3: Comparing ARL on the EEWMA control chart for AR(2) process with various λ when given η = 0,
f1 = f2 = 0.2 for ARL0 = 370

Shift
size
(δ)

λ1 = 0.05 λ1 = 0.10

k2 ¼ 0:01

h0 ¼ 0:0488991

k2 ¼ 0:02

h0 ¼ 0:0265188

k2 ¼ 0:03

h0 ¼ 0:0144770

k2 ¼ 0:01

h0 ¼ 0:1376787

k2 ¼ 0:02

h0 ¼ 0:0997870

k2 ¼ 0:03

h0 ¼ 0:0728639

0.000 370.3213 370.6220 370.1861 370.0429 370.1648 370.2258

0.001 234.7777 209.5365 190.2497 258.3060 237.4070 222.4548

0.003 135.8854 112.4374 96.80430 161.3325 138.5722 124.0426

0.005 95.83188 77.04483 65.11853 117.4968 98.05656 86.21334

0.010 55.48961 43.40275 36.07534 70.27603 56.96144 49.21775

0.030 21.28863 16.33608 13.43369 27.58540 21.89414 18.68865

0.050 13.53447 10.37563 8.532907 17.54255 13.91433 11.87089

0.100 7.483649 5.770465 4.769831 9.609032 7.680046 6.578097

0.500 2.450934 1.989591 1.716927 2.948235 2.491119 2.203938

1.000 1.779813 1.504181 1.342614 2.055782 1.799900 1.630912

Table 4: Comparing ARL on the EEWMA control chart for AR(3) process with various λ when given η = 0,
f1 = f2 = f3 = 0.2 for ARL0 = 370

Shift
size
(δ)

λ1 = 0.05 λ1 = 0.10

k2 ¼ 0:01

h0 ¼ 0:0469439

k2 ¼ 0:02

h0 ¼ 0:0254704

k2 ¼ 0:03

h0 ¼ 0:0139076

k2 ¼ 0:01

h0 ¼ 0:1319420

k2 ¼ 0:02

h0 ¼ 0:0957177

k2 ¼ 0:03

h0 ¼ 0:0699340

0.000 370.1527 370.0058 370.2755 370.1442 370.0809 370.0634

0.001 232.6841 207.9606 189.1197 255.1459 235.2129 220.7210

(Continued)
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Table 4 (continued)

Shift
size
(δ)

λ1 = 0.05 λ1 = 0.10

k2 ¼ 0:01

h0 ¼ 0:0469439

k2 ¼ 0:02

h0 ¼ 0:0254704

k2 ¼ 0:03

h0 ¼ 0:0139076

k2 ¼ 0:01

h0 ¼ 0:1319420

k2 ¼ 0:02

h0 ¼ 0:0957177

k2 ¼ 0:03

h0 ¼ 0:0699340

0.003 133.8509 111.2001 95.92305 157.6582 136.3804 122.4781

0.005 94.16658 76.10072 64.45710 114.2767 96.24664 84.96887

0.010 54.39523 42.82084 35.67538 68.01361 55.76243 48.42211

0.030 20.83364 16.10460 13.27734 26.60062 21.39311 18.36408

0.050 13.24422 10.22846 8.433957 16.91441 13.59477 11.66399

0.100 7.327123 5.690395 4.716288 9.277325 7.508189 6.465857

0.500 2.410148 1.967488 1.702598 2.873554 2.447154 2.173623

1.000 1.755747 1.490908 1.334281 2.015192 1.774239 1.612790

Table 5: Comparing ARL values for the AR(2) process on CUSUM, EWMA and EEWMA control charts
when given λ1 = 0.05, λ2 = 0.01, 0.02, 0.03, η = 0 for ARL0 = 370

f1 f2 Shift size
(δ)

CUSUM
(a = 2)

EWMA
(λ2 = 0)

EEWMA

EEWMA_01
(λ2 = 0.01)

EEWMA_02
(λ2 = 0.02)

EEWMA_03
(λ2 = 0.03)

0.2 0.2 b = 3.579 h = 0.0914794 h′ = 0.0488991 h′ = 0.0265188 h′ = 0.0144770

0.000 370.1644 370.0520 370.3213 370.6220 370.1861

0.001 367.7875 284.1654 234.7777 209.5365 190.2497

0.003 363.0933 194.2544 135.8854 112.4374 96.80430

0.005 358.4773 147.7005 95.83188 77.04483 65.11853

0.010 347.2692 92.59445 55.48961 43.40275 36.07534

0.030 306.7755 37.68188 21.28863 16.33608 13.43369

0.050 272.2869 23.98603 13.53447 10.37563 8.532907

0.100 205.9789 12.95413 7.483649 5.770465 4.769831

0.500 43.83369 3.616823 2.450934 1.989591 1.716927

1.000 15.80483 2.397395 1.779813 1.504181 1.342614

−0.2 b = 3.471 h = 0.0994968 h′ = 0.0530625 h′ = 0.0287478 h′ = 0.0156870

0.000 370.2999 370.2746 370.3887 370.5370 370.6751

0.001 367.9426 296.0073 239.1103 212.3404 192.7199

0.003 363.2867 211.3611 140.2534 114.8813 98.65484

0.005 358.7077 164.4419 99.44785 78.95453 66.49796

0.010 347.5872 105.9012 57.89036 44.60220 36.90566

0.030 307.3817 44.05912 22.29350 16.81948 13.75746

0.050 273.0998 28.06060 14.17560 10.68373 8.737752

0.100 207.0696 15.01612 7.828542 5.938363 4.880706

0.500 44.50081 3.955546 2.539342 2.036011 1.746727

1.000 16.06022 2.550454 1.831562 1.532108 1.360015
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8 Application to Real Data

The performance of the ARL constructed using explicit formulas for the EEWMA control chart for λ1 =
0.05 and various λ2 = 0.01, 0.02, 0.03 was compared with those of CUSUM and EWMA (λ2 = 0) control
charts using data on new COVID-19 cases in Thailand and in Vietnam from March 30th to July 7th, 2021.
Lately, Areepong et al. [27] investigated monitoring COVID-19 outbreaks in Thailand, Singapore,
Vietnam, and Hong Kong using by the EWMA control chart. There are 100 observations of daily. This
data is a stationary time series. By looking at the autocorrelation function (ACF) and partial
autocorrelation function (PACF). Both countries are the worst affected in Southeast Asia. For λ1 =
0.05 and λ2 = 0.01, 0.02, or 0.03, the settings for the Thailand dataset are that it is an AR(2) process with
ARL0= 370; the significance of the mean and standard deviation are 2.774663 and 1.663941, respectively;
process coefficients f1 = 0.343110, f2 = 0.527991; the error is exponential white noise (α0 = 0.665927)
whereas the settings for the Vietnam dataset are it is an AR(3) process with ARL0 = 370; the significance

Table 6: Comparing ARL values for the AR(3) process on CUSUM, EWMA and EEWMA control charts
when given λ1 = 0.05, λ2 = 0.01, 0.02, 0.03, η = 0 for ARL0 = 370

f1 = f2 f3 Shift size
(δ)

CUSUM
(a = 2)

EWMA
(λ2 = 0)

EEWMA

EEWMA_01
(λ2 = 0.01)

EEWMA_02
(λ2 = 0.02)

EEWMA_03
(λ2 = 0.03)

0.2 0.2 b = 3.635 h = 0.0877273 h′ = 0.0469439 h′ = 0.0254704 h′ = 0.0139076

0.000 370.1955 370.1327 370.1527 370.0058 370.2755

0.001 367.8070 279.1179 232.6841 207.9606 189.1197

0.003 363.0902 187.3070 133.8509 111.2001 95.92305

0.005 358.4522 141.0997 94.16658 76.10072 64.45710

0.010 347.1919 87.53147 54.39523 42.82084 35.67538

0.030 306.5263 35.32701 20.83364 16.10460 13.27734

0.050 271.9131 22.48317 13.24422 10.22846 8.433957

0.100 205.4330 12.18450 7.327123 5.690395 4.716288

0.500 43.48171 3.478614 2.410148 1.967488 1.702598

1.000 15.67118 2.331644 1.755747 1.490908 1.334281

0.2 −0.2 b = 3.524 h = 0.0953998 h′ = 0.0509374 h′ = 0.0276106 h′ = 0.0150698

0.000 370.0741 370.0517 370.3690 370.4431 370.2123

0.001 367.7086 289.7383 236.9049 210.8827 191.4205

0.003 363.0365 202.1826 138.0115 113.6314 97.70710

0.005 358.4420 155.3759 97.58646 77.98044 65.79521

0.010 347.2848 98.61321 56.65106 43.99142 36.48428

0.030 306.9602 40.53274 21.77382 16.57357 13.59355

0.050 272.5951 25.80669 13.84404 10.52704 8.634091

0.100 206.4616 13.87987 7.650344 5.852996 4.824608

0.500 44.16430 3.774240 2.493922 2.012414 1.731631

1.000 15.93231 2.469918 1.805051 1.517905 1.351188
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of the mean and standard deviation are 0.214103 and 0.259871, respectively; process coefficients f1 =
0.269717, f2 = 0.572229, f3 = 0.219039; the error is exponential white noise (α0 = 0.129397).

The results for the ARL of CUSUM, EWMA and EEWMA with various λ2 = 0.01, 0.02, 0.03 control
charts on AR(2) process for the Thailand dataset in Tab. 7 are agreement to the simulation results in
Tab. 5. Similarly, These control charts on AR(3) process for the Vietnam dataset in Tab. 8 are agreement
to the simulation results in Tab. 6. ARL1 on an EEWMA control chart with λ2 = 0.03 was reduced more
sensitively than CUSUM, EWMA, EEWMA with λ2 = 0.01 and EEWMA with λ2 = 0.02 control charts for
all magnitudes of changes except when the large shift sizes (δ ≥ 0.5), the EEWMA control chart with λ2 =
0.03 was reduced as well as the EWMA, EEWMA with λ2 = 0.01 and EEWMA with λ2 = 0.02 control
charts both AR(2) and AR(3) processes. The results indicate that the performances of the control charts
were, in ascending order, EEWMA for λ2 = 0.03, EEWMA for λ2 = 0.02, EEWMA for λ2 = 0.01, EWMA,
and CUSUM, as illustrated in Figs. 1 and 2.

As mentioned above, the EEWMA (λ2 = 0.03) and EWMA (λ2 = 0) control charts are plotted by
calculating Et and Zt for the two datasets for λ1 = 0.05. The detecting the process with real data of the
new cases COVID-19 data in Thailand (as an AR(2) process) and Vietnam (as an AR(3) process) are
shown in Figs. 3 and 4, respectively. In Fig. 3, the ARL of the AR(2) process for the Thailand COVID-
19 data on the EEWMA control chart for λ2 = 0.03 indicates that the process was signaled as out-of-
control at the 6th observation whereas on the EWMA control chart, it was detected at the 11th

observation. In Fig. 4 for the EEWMA (λ2 = 0.03) control chart, the ARL of AR(3) process for the
Vietnam COVID-19 data on the EEWMA control chart for λ2 = 0.03 was signaled as out-of-control
process at the 9th observation whereas on the EWMA control chart, it was detected as out-of-control at
the 20th observation. Therefore, the EEWMA control chart can detect shift more quickly than the EWMA
control chart.

Table 7: Comparing ARL values for the AR(2) process on CUSUM, EWMA and EEWMA control charts
with COVID-19 data in Thailand when given ARL0 = 370, α0 = 0.665927, η = 3.445847, f1 = 0.343110, f2 =
0.527991, λ1 = 0.05 and λ2 = 0.01, 0.02, 0.03

Shift size
(δ)

CUSUM
(a = 1.5)

EWMA
(λ2 = 0)

EEWMA

EEWMA_01
(λ2 = 0.01)

EEWMA_02
(λ2 = 0.02)

EEWMA_03
(λ2 = 0.03)

b = 2.8223 h = 0.0307285 h′ = 0.00149023 h′ = 0.0000738797 h′ = 0.00000366589

0.000 370.0535 370.0669 370.0996 370.1763 370.2019

0.001 367.5050 232.2021 145.5442 102.3868 78.57510

0.003 362.4756 133.3967 66.08133 42.17770 30.84456

0.005 357.5350 93.79691 42.92652 26.73477 19.36131

0.010 345.5633 54.15912 23.10964 14.16717 10.22973

0.030 302.5634 20.73229 8.508357 5.271144 3.884294

0.050 266.2953 13.17821 5.444146 3.446960 2.600501

0.100 197.6295 7.289428 3.120606 2.083703 1.655609

0.500 38.98113 2.397793 1.304992 1.094978 1.032944

1.000 14.08608 1.747635 1.116857 1.024074 1.005267
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Figure 1: ARL values of the AR(2) process on CUSUM, EWMA and EEWMA control charts with new
cases COVID-19 data in Thailand when given ARL0 = 370

Table 8: Comparing ARL values for the AR(3) process on CUSUM, EWMA and EEWMA control charts
with COVID-19 data in Vietnam when given ARL0 = 370 a0 ¼ 0:129397; g ¼ 0; f1 ¼ 0:269717;
f2 ¼ 0:572229; f3 ¼ 0:219039, λ1 = 0.05 and λ2 = 0.01, 0.02, 0.03

Shift size
(δ)

CUSUM
(a = 0.2)

EWMA
(λ2 = 0)

EEWMA

EEWMA_01
(λ2 = 0.01)

EEWMA_02
(λ2 = 0.02)

EEWMA_03
(λ2 = 0.03)

b = 0.7101 h = 0.0085715 h′ = 0.0017763 h′ = 0.000376829 h′ = 0.0000802665

0.000 370.0149 370.0735 370.3624 370.1065 370.0699

0.001 366.7198 253.6347 189.3055 151.1184 123.8997

0.003 360.2121 155.7430 95.87017 69.39629 53.37970

0.005 353.8458 112.5812 64.38790 45.22358 34.19629

0.010 338.5372 66.84116 35.63176 24.40944 18.23388

0.030 284.9166 26.10418 13.25846 8.989864 6.728492

0.050 241.4673 16.60412 8.421038 5.743410 4.342770

0.100 164.3741 9.121001 4.708184 3.278241 2.545492

0.500 24.28932 2.848698 1.699288 1.341181 1.181372

1.000 10.04217 2.005967 1.332079 1.135106 1.058714

Figure 2: ARL values of the AR(3) process on CUSUM, EWMA and EEWMA control charts with new
cases COVID-19 data in Vietnam when given ARL0 = 370
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9 Discussions and Conclusions

In the study, the performances of control charts were evaluated by using ARL. The explicit formulas
comprise a good alternative to the NIE method for constructing the ARL. The analytical results agree with
the NIE approximations for AR(2) and AR(3) processes with absolute percentage relative errors of less
than 0.000239% and 0.000216%, respectively. The CPU time to calculate the ARL by using the NIE
methods were approximately 2.7–3.5 and 2.8–3.5 s for the AR(2) and AR(3) processes, respectively,
whereas they were almost instantaneous when using the explicit formulas. The performance comparison
of the ARL using explicit formulas on the EEWMA with various λ performed better than on the CUSUM
and EWMA control charts running AR(2) or AR(3) processes for most cases except for large shift sizes
(δ ≥ 0.5) when even then, the EEWMA control chart with various λ performed as well as the EWMA
control chart. The EEWMA control chart with λ2 = 0.03 performed better than the EEWMA with either

Figure 3: The detecting the AR(2) process with the Thailand COVID-19 data when given ARL0 = 370; (a)
EWMA control chart and (b) EEWMA control chart at λ2 = 0.03

Figure 4: The detecting the AR(3) process with the Vietnam COVID-19 data when given ARL0 = 370; (a)
EWMA control chart and (b) EEWMA control chart at λ2 = 0.03
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λ2 = 0.01 or λ2 = 0.02, CUSUM, or EWMA control charts for most magnitudes of changes except for a large
shift sizes (δ ≥ 0.5) when it performed at least as well as the others for AR(2) and AR(3) processes. Besides,
an exponential smoothing parameter value of 0.05 is recommended. In addition, the simulation study, and the
efficacy illustration with real data of new COVID-19 cases in Thailand and Vietnam provided similar results.
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