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Abstract: Convolutional Neural Network (ConNN) implementations on Field
Programmable Gate Array (FPGA) are being studied since the computational cap-
abilities of FPGA have been improved recently. Model compression is required to
enable ConNN deployment on resource-constrained FPGA devices. Logarithmic
quantization is one of the efficient compression methods that can compress a
model to very low bit-width without significant deterioration in performance. It
is also hardware-friendly by using bitwise operations for multiplication. However,
the logarithmic suffers from low resolution at high inputs due to exponential prop-
erties. Therefore, we propose a modified logarithmic quantization method with a
fine resolution to compress a neural network model. In experiments, quantized
models achieve a negligible loss of accuracy without the need for retraining steps.
Besides this, we propose a resource-efficient hardware accelerator for running
ConNN inference. Our design completely eliminates multipliers with bit shifters
and adders. Throughput is measured in Giga Operation Per Second (GOP/s).
The hardware utilization efficiency is represented by GOP/s per block of Digi-
tal Signal Processing (DSP) and Look-up Tables (LUTs). The result shows that
the accelerator achieves resource efficiency of 9.38 GOP/s/DSP and
3.33 GOP/s/kLUTs.

Keywords: Convolutional neural network; logarithmic quantization; FPGA;
resource efficiency

1 Introduction

Edge devices such as low-end FPGA have limited resources, but ConNN models require large amounts
of multipliers and extensive storage [1]. Resource utilization is challenging in deploying the ConNN model
to FPGA devices. Several works have proposed a quantization for neural networks to address this issue.
Compressing a model to low bit-width precision greatly improves resource utilization. In quantization
scheme, ConNN models can be transformed from 32-bit to lower precision, for example 8-bits [2],
binary-bits [3] or fixed-point format [4]. A resource efficiency can also be improved by replacing the
complexity of multiplication with bitwise operations such as XNOR-Net [5,6].
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However, compressing a model from 32-bits to lower precision suffers accuracy degradation. The
quantized model needs to be retrained to recover accuracy close to the original accuracy. But the
retraining process can be time-consuming and require additional computations. Moreover, some of
the original training datasets are not accessible due to privacy or ownership. For example, the data in
healthcare systems and user data in applications collected by companies.

A Post-training scheme has been introduced to address the issue by quantizing the model without
retraining [7,8]. Recent works relied on linear quantization which provides an equal quantization level.
However, linear quantization still requires multiplication to compute model inference. On the other hand,
base-2 logarithmic encoding scheme is more hardware-friendly since multiplication can be replaced with
a bit shift operation. But, using non-uniform quantization as a logarithmic method without retraining may
not achieve the optimal accuracy.

For this reason, we investigate a modified logarithmic quantization to overcome the issues mentioned
above. We then propose an efficient hardware architecture for running model inference on resource-
constrained device. The main contributions of this work consist of following features:

� We present a modified logarithmic quantization for compressing a ConNN model to very low bit-
width. We use different quantization methods for weights and activations to fit different
distributions. Our design achieves to convert models to lower bit-width without the retraining.

� We also propose a resource-efficient accelerator for running the ConNN inference on Zynq XC7Z020.
The proposed processor uses only adders and shifters for computing convolution. Experiment results
show that our work achieves resource efficiency of 9.38 GOP/s/DSP and 3.33 GOP/s/kLUTs.

2 Related Work

This section provides a review of related work in literature. Quantization has been proposed in many
works to address the computational complexity and high memory requirement issues of neural network
model by compressing an original 32-bit model to a lower precision. Logarithmic quantization is one of
the efficient methods that can compress models to very low bit-width precision without significant
deterioration in performance. Logarithmic quantization was proposed in [9] to quantize activations and
weights to 4 bit-width. The results show that logarithmic quantization outperforms linear quantization and
only a few accuracies degradation.

To improve the quantization levels, the logarithmic base-
ffiffiffi
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p
was proposed in [10]. The fine-grained

base-
ffiffiffi
2

p
performs better than base-2 when the input is high. Further study on log-base is presented

in [11]. The authors proposed different logarithmic scales including base-2, base-
ffiffiffi
2

p
and base

ffiffiffi
24

p
.

Accuracy results were improved using a combination of quantization base-
ffiffiffi
2

p
for the weights and base-

2 for the activations.

The logarithmic scheme is non-uniform quantization with a low resolution at high-level input. To
address this issue [12,13] proposed a logarithmic-based quantization for weights and activations through
the addition of power-of-two values with scalable parameters. To address the resolution issue, [14]
proposed a method to present quantized value using real numbers instead of rounding them to integers.
This design decreases the step-size resulting in higher resolution. The authors [15] presented the fixed-
point quantization into logarithmic method for activations to reduce the step-size when the bit-width
increases.
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3 Motivation

Several works have shown that the weights in layers of the neural networks follow a bell-shaped and
long-tailed distribution. A large number of weights are around the mean and a few of weights have high
absolute values. This is well motivated to use a logarithmic quantization because it has a high number of
quantization levels around the mean. In other words, the logarithmic quantization provides high
resolution at low-level input. Due to unequal quantization levels, logarithmic scheme on the other hand
has a low resolution at high input. In the logarithmic scheme, quantized values are represented using
integers in the log domain. The step-size increases exponentially from low to high-level input. Although
the distribution of weights indicates that a few weights have a high value, but high value weights can
have a strong connection and have a high impact on accuracy.

To address the unbalanced quantization levels issue, we propose a modified logarithmic quantization
that uses real numbers for quantization levels in the log domain. This method reduces the spacing
between integers in log domain. Therefore, it provides a greater number of quantization levels at high
inputs. Since logarithmic method has a high resolution at low input, we therefore continue to use integers
for quantization levels at low-level input. In this way, our method provides high resolution across all
input levels.

Fig. 1 shows the weight distribution after applying a naive logarithmic (Log.) and the proposed
logarithmic with Qset (LogQ.) using 4 and 6 bit-width respectively. The proposed method offers fine-
grained quantization levels at the tail area as shown in Fig. 1b. Moreover, Fig. 1c shows that increasing
bit-width can improve the resolution. This method can also be used to quantize the activations. However,
defining the interval for the set of real numbers requires a sample of data. Our goal is to quantize
activations and weights without involving sample data. Therefore, we adopt the fixed-point into
logarithmic method from [15]. This method is similar to our design but using a fixed-point number to
represent the quantized value. These quantization methods are then proposed together to quantize models
without a retraining process. Additionally, the advantage of logarithmic quantization is that it is hardware-
friendly as multiplications can be replaced with addition and bit-shift operations. In this context, we also
present a resource-efficient processor for running neural networks inference on low-end FPGA devices.

4 Background

4.1 Quantization Methods

4.1.1 Linear Quantization
This approach is mostly used in previous work to map a 32-bit floating-point to a lower bit-width such as

binary, ternary, and fixed-point formats. This method is uniform quantization which the quantization levels
are equally spaced. The quantization parameters are full scale range (FSR) and word length (W). The fixed-
point quantization function (Fixed �ð Þ) is defined as:

Figure 1: Logarithmic and the proposed logarithmic quantization. The naive logarithmic quantization has
high resolution around the mean only (a) The proposed method provides a more reasonable resolution (b)
In addition, the resolution can be higher by increasing the bit-width (c)
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Fixed xð Þ ¼ ClipðRoundÞ x

D

� �
:D;�2FSR; 2FSR � D (1)

D ¼ 2FSRþ1�W (2)

where the clip function (Clip(.)) is defined as:

Clip x; min; maxð Þ ¼
min; x � min
x; min, x , max
max; x � max

8<
: (3)

Fixed-point format is denoted by ap_fixed (W, FL), where W is the total bit-width including an integer-
bit (IL) and a fractional bit (FL). To quantize 32-bit floating-point to fixed-point format using linear
quantization, the parameters are defined as: 2FSR ¼ 2IL�1 and D ¼ 2�FL.

The quality of the quantization depends upon the number of bit-width. Increasing the bit-width linearly
increases the number of quantization level and gives a higher resolution. However, it requires more memory
space, and the cost of computation is expensive. On the other hand, using the lower bit-width takes less
memory but the accuracy degradation is a trade-off.

4.1.2 Logarithmic Quantization
This method converts a floating-point number to lower bit-width by mapping a number in log domain.

Logarithmic quantization is non-uniform quantization in which the quantization levels are unequal and
involves the logarithm to represent a quantized value. The logarithmic quantization parameters are full
scale range and total bit-width (W). With w-bit representation, the logarithmic quantization function
(Log �ð ÞÞ is defined as:

Log xð Þ ¼ Sign xð Þ � 2~x (4)

where

~x ¼ Clip Round log2 xj jð Þ; 2FSR � 2w ; 2FSR
� �

(5)

Unlike fixed-point quantization, the logarithmic scheme gives a high number of quantization levels
(high resolution) around the mean and lower resolution for other regions. The weights in a layer of the
neural network can be considered a bell-shaped distribution. Therefore, the logarithmic quantization
performs better than the fixed-point scheme when quantizing using very low bit-width. Moreover, the
advantage of logarithmic quantization is that it is hardware-friendly as multiplications can be replaced
with a bit-shift operation. For instance, given quantized weights (~w) and activations (a). The
multiplication can be done without multiplier as follows.

a� 2~w ¼
a � ~w; ~w. 0
a 	 ~w; ~w, 0
a; ~w ¼ 0

8<
: (6)

where � is a bit-left shifter and 	 is a bit-right shifter.

5 Methodology

5.1 Weights Quantization

Applying logarithmic quantization directly to weights can result in a loss of accuracy. Obviously, the
weights in the layers of the neural network have different effects on accuracy. Larger absolute values
affect accuracy more than smaller ones. The disadvantage of logarithmic scheme is the use of integer
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format in log domain. Because of the exponential property, the number of quantization levels decreases for
high-value inputs. In other words, logarithmic scheme does not work well when absolute input is large. To
address the quantization levels issue, we take the inspiration from this work [14] that uses real numbers to
represent quantized values instead of rounding to an integer in the log domain. We further improve this
method by using both integers and real numbers for quantization levels. The logarithmic quantization
with Qset function (LogQ �ð Þ) is defined as follows.

LogQ wð Þ ¼ Sign wð Þ � 2~w (7)

where

~w ¼ Qset Index½ 
 (8)

The quantized weight ~w is the element in Qset nearest to log2 xj j. Qset works as rounded value but is a
real number. The set consists of two subsets (p1, p2) to represent the quantized value. The set p1 consists of
evenly spaced real numbers within a given interval. The set p2 consists of sequence of integer numbers. The
Qset parameters are bit-width (n), quantization range (R) and maximum representation level of set p1 (m).
Qset can be defined as follows.

Qset ¼ p1f g; p2f gf g (9)

where

p1 ¼ 0; � R

2n
; � 2R

2n
; . . . ;� kR

2n

� �
(10)

p2 ¼ � kR

2n

	 

þ 1

� �
; � kR

2n

	 

þ 2

� �
; . . . ;� kR

2n

	 

þM � k þ 1ð Þ

� �� �
(11)

where M = 2n � 1 and k =
log2 sð Þ

R
� 2n

	 

.

The idea of Qset is to represent the quantized value using real numbers or integers. Absolute weights
greater than s takes real numbers for the representation levels, otherwise the quantized value is
represented by integers. In the set p1, the interval starts from 0 to � kR

2n using a small step size. In this
way, higher resolutions are available for high-value inputs. However, using only set p1 limits the
quantization range due to the small step-size. In addition, the logarithmic scheme provides high resolution
for low input levels. It is not necessary to present quantized values using real numbers. Additionally,
smaller absolute weights have less impact on accuracy than larger ones. Therefore, in set p2 we use a
sequence of integers starting from the last element of set p1. In this way, the quantization range is
increased to cover more values. This works in the same way as rounding to integers in naive logarithmic
quantization.

The parameter S is used to define the range of set p1. In our experiments, we set S to 0.01 to provide a
high resolution quantization levels for absolute weights of 1 to 0.01. The parameter R is a positive real
number and is used to set the step-size of representation levels. A larger R provides a wider
representation range but will reduce the resolution. Parameter R must be greater than log2 xj j to create p2.
To illustrate the proposed Qset, given R = 8, n = 6 and S = 0.01. Thus, the p1 set is 0; �0:125;f
�0:25; . . . ; �6:75g and the p2 set is �7; �8; �9; . . . ; �15f g. Therefore, this Qset provides the
quantization range of 20; 2�15½ 
:
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Fig. 2 shows a comparison of quantization levels using naive logarithmic and the proposed logarithmic
quantization. The proposed logarithmic scheme has a more reasonable resolution at high values. In addition,
the proposed method shows that increasing bit-width can reduce the step-size and provides higher number of
quantization levels.

5.2 Activation Quantization

There are challenges in applying logarithmic quantization to activations when the activations of each
layer has a different shape of the distribution. Using the quantization with Qset may lead to sub optimal
because the activations value is not constant and depend on the input. Thus, we cannot determine the
optimal parameter R for the range of Qset. For this reason, we use another method for quantizing
activations. We adopt this [15] to compress the activations using a fixed-point into logarithmic
quantization. This method uses fixed-point numbers to represent the quantized value instead of integers.
The fixed-point into logarithmic quantization function (Flog �ð Þ) can be expressed as:

Flog að Þ ¼ Sign að Þ � 2~a (12)

where

~a ¼ Clip Round
log2 aj j

D

� �
:D;�2FSR; 2FSR � D

� �
(13)

The quantization step D is set to 2�FL where FL is length of bit fraction of the fixed-point format. In this
way, the step-size can be reduced by increasing bit-width for fraction. For instance, given FL = 2, the
quantization step D is 0.25. Therefore, the step-size is 4� less than naive logarithmic quantization. To
illustrate the performance of this quantizer, Fig. 3 presents the histogram of activations and a comparison
between naive logarithmic and the fixed-point into logarithmic quantization. The results show that using
fixed-point into logarithmic quantization provides reasonable resolution compared to naive logarithmic
method. To fully accommodate hardware, we use this method to quantize all activations of each layer
including the output activations of the first convolutional layer.

6 Evaluation

6.1 Performance of Quantization

This section presents the performance of quantization method. The goal of quantization is to compress
values into smaller bit-width with less distortion. We use the signal-to-quantization-noise (SQNR) to evaluate
each quantization method. Let xi be the original value, and i ¼ 1 . . . n denotes the total n elements.

Figure 2: Quantization of unsigned inputs to 4 and 6 bit-width using naive logarithmic and logarithmic with
Qset. The naive logarithmic quantization (left) suffers from quantizing large inputs with low resolution. The
proposed method (middle) provides higher resolution at high values. The quantization level becomes more
fine-grained by increasing the bit-width quantization (right)
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Therefore, the performance of quantization can be expressed as follows.

SQNR ¼
E

PN
i¼1 xi

� �

E
PN

i¼1ðxi � Q xið Þ
� �2

Þ
(14)

where Q xið Þ is quantized value of xi.

Fig. 4 shows the SQNR of different quantization methods in each layer of ResNet-18. In this result, we
apply the function 10log10 �ð Þ to describe the SQNR value. We implement naive logarithmic (Log.) and
proposed quantization (LogQ.) to observe the improvement. Fig. 4a shows that the logarithmic
quantization with Qset gives better results compared to naive logarithmic method when using the same
4 bit-width. Increasing bit-width for the naive logarithmic method gives the same result as 4 bit-width.
On the other hand, increasing bit-width can improve the performance of the proposed quantizer. This
result also shows that the proposed quantization method works well in early layers. This is because the
weights distribution in early layers has a long-tailed distribution. On the other hand, the weight
distribution in deeper layers is short-tailed and high peak around the mean. Thus, the proposed quantizer
does not very well perform.

The performance of quantization for activations is shown in Fig. 4b. We compare the proposed fixed-
point into logarithmic (Flog.), naive logarithmic (Log.) and fixed-point quantization (Fixed.) using
different bit-width. The results show that the proposed quantization (Flog.) outperforms other methods
when using 4 bit-width activations. Fixed-point quantization gives better results when increasing bit-
width. In the experiment, we have to increase bit-width for fixed-point quantization to 8 bits to achieve
acceptable accuracy. On the other hand, fixed-point into logarithmic quantization using only 6 bit-width
can produce better results in most layers compared to the fixed-point scheme using 8 bit-width.

Figure 3: The histogram of activations of convolutional layer 2 in ResNet-18. The order from top to bottom
is: (original activations, after naive logarithmic quantization, after fixed-point into logarithmic quantization)
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6.2 Quantized Models Accuracy Results

We evaluate the proposed quantization method on different models and datasets. To present the
improvement, we apply only naive logarithmic method and the proposed logarithmic quantization to
weights. We also implement naive logarithmic and fixed-logarithmic quantization for activations. Tab. 1
shows the performance of quantized models using 3 different combinations. Log(.) denotes the use of
naïve logarithmic quantization. LogQ(.) denotes the use of logarithmic quantization with Qset. Flog(.)
denotes the use of fixed-point into logarithmic quantization. W-bits represents the bit-width of weights.
We evaluate different models using a Top-1 score for the image classification on ImageNet dataset. In
addition, we apply the proposed quantization to an object detection model named TinyYOLOv2 and
evaluate it using mean Average Precision (mAP) on Pascal Visual Object Classes 2007 (VOC2007) dataset.

Figure 4: Performance of quantization for weights and activations in ResNet-18 on imageNet dataset. (a)
SQNR of weight quantization (b) SQNR of activations quantization

Table 1: Top-1 accuracy and mAP score of different quantized models. The activations bit is fixed at 6 bits
and the weights bits is changed

Model W-bits Log (w, a) LogQ(w), Log(a) LogQ(w), Flog(a)

ResNet-18
(70.7)

6 36.29 50.92 69.44

5 36.29 49.65 68.57

4 32.46 40.79 60.52
(Continued)
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For the weights compression, using LogQ(w) with Flog(a) can increase almost 2� over the naive
logarithmic method in ResNet. In naive logarithmic quantization results, bit-width greater than 4 bits do
not improve accuracy because the resolution does not change. The result in LogQ(w), Log(a) shows that
applying logarithmic scheme with Qset for weights provides significant improvement. Furthermore, the
result shows that increasing bit-width can increase accuracy further. All models achieve highest accuracy
by using proposed logarithmic quantization with 6 bit-width for weights and activations.

The results of quantization for activations are shown in Tab. 2. A-bits represent the bit-width of
activations. Using Flog(a) quantization significantly improves accuracy compared to naive logarithmic
method. With 6 bit-width weights, using Flog(a) scheme for 4 bit-width activations can result in a loss of
around 2% of original accuracy. Unlike weight quantization, increasing bit-width in Flog(a) quantization
can slightly increase the accuracy. The 5 bits activations models have approximately 1%–2% higher
accuracy than 4 bits activations. This is because weights quantization has a greater impact on accuracy
than activations quantization.

Table 2: Top-1 accuracy and mAP score of different quantized models. The weights bit is fixed at 6 bits and
the activations bits is changed

Model A-bits Log (w, a) LogQ(w), Log(a) LogQ(w), Flog(a)

ResNet-18
(70.7)

6 36.29 50.92 69.44

5 36.29 50.92 69.3

4 32.46 47.2 67.44

ResNet-34
(72.4)

6 33.52 49.95 71.11

5 33.52 49.95 70.67

4 29.8 47.88 69.95

AlexNet
(57.22)

6 44.7 54.77 56.4

5 44.6 54.77 56.25

4 40.81 52.84 55.04
(Continued)

Table 1 (continued)

Model W-bits Log (w, a) LogQ(w), Log(a) LogQ(w), Flog(a)

ResNet-34
(72.4)

6 33.52 49.95 71.11

5 33.52 47 69.96

4 29.8 37.95 59.97

AlexNet
(57.22)

6 44.7 54.77 56.4

5 44.6 54.02 56.4

4 40.81 50.83 53.34

Tiny YOLOv2*
(45.84)

6 32.4 41.07 45.73

5 32.4 40.93 44.75

4 32.38 37.92 40.23

Note: *mAP score of models on VOC2007.
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6.3 Comparison to Previous Implementations

Tab. 3 shows a comparison of the performance of our design with other existing works. The results show
that our work performs better than [7] with lower bit-width weights. Our work achieves accuracy 2% lower
than mixed-precision quantization for weights [8] and around 3% lower accuracy than this work [13] that
requires a retraining process. In 5 bit-width precisions, our work outperforms this [15] which uses both
logarithmic and fixed-point quantization for activations. Our work achieves 1.3% less accuracy than [16].
However, their method requires retraining process.

7 Neural Network Accelerator

7.1 Integrated System Design

This section presents the hardware accelerator for running quantized neural networks inference on
FPGA. The Zedboard Zynq7000 based FPGA is used as an edge device for the hardware experiment.
This board includes a dual-core ARM Cortex A9 and a Zynq XC7Z020-based FPGA chip. The trained
weights are stored on the SD card. The accelerator is implemented in the programmable logic (PL) part.
Fig. 5 illustrates a hardware-integrated design for the accelerator in FPGA. The details of each
component are described in the following section:

� Zynq Processor: We use this processor to control the workflow of ConNN inference. To start ConNN
inference, the processor initializes the necessary peripherals. After that, the processor loads the trained
weights from the SD card to the DRAM memory using DDR control module. When the framework
requires convolutional computation, zynq processor will send configuration parameters, weights and
activations addresses in DRAM and then enable the accelerator to perform convolution.

� Logarithmic Accelerator: This is the hardware core for running neural network inference. The
accelerator consists of a processing element (PE) for multiplication and accumulation. There are

Table 2 (continued)

Model A-bits Log (w, a) LogQ(w), Log(a) LogQ(w), Flog(a)

Tiny YOLOv2*
(45.84)

6 32.4 41.07 45.73

5 32.4 41.07 45.07

4 32.39 41.01 45.04

Note: *mAP score of models on VOC2007.

Table 3: Comparison with previous works with quantized ResNet-18 model on imageNet dataset

Model W-bits A-bits Top-1 Retraining

ACIQ [7] 8 4 65.80 No

ZeroQ [8] 2–8 4 69.05 No

MSQ [13] 4 4 70.27 Yes

(This work) 6 4 67.44 No

MXQN [15] 8 8 67.61 No

PACT [16] 5 5 69.8 Yes

(This work) 5 5 68.5 No
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multiple PEs in a single accelerator and all PEs runs simultaneously to support parallel computation.
The details of this module are described in the next section.

� Internal memory: Typically, FPGA does not have enough on-chip memory to store all parameters.
Therefore, we design memory buffer for weights and activations. These buffers are generated by
36 Kb block RAM (36 Kb-BRAM) resource in FPGA.

� Advanced eXtensible Interface (AXI): The AXI is used for sending configurations parameters from
the processor to the accelerator. The Memory AXI (M_AXI) is built for the accelerator to access
external memory. Thus, the accelerator can control load/store instructions.

We implement the convolution computation based on the General Matrix Multiplication (GEMM). The
activations and weights are stored in the DRAM by Zynq. The runtime workflows start with loading the input
activations and the weights of the first layer into the on-chip memory in the accelerator. The processing
elements then compute the convolution and stores the output activations in the output buffer. After
completing the convolution, the accelerator writes output activations back to the DRAM memory. Then
the accelerator starts the process again for computing convolution for the next layer.

7.2 Logarithmic Accelerator

In general, a processor for computing convolution consists of a set of multipliers and adders. In this
work, the quantized value is expressed as the power of base 2. Therefore, we can replace the multiplier
with bit-shift operator in convolution. We simplify the multiplication of quantized activations and weights
on the log domain. The algorithm can be expressed as:

w� a ¼ LogQ wð Þ � Flog að Þ
¼ 2~w � 2~a

¼ 2~wf þ ~wi � 2~af þ ~ai

¼ ð2~wf � 2~af Þ � 2~wi þ ~ai

¼ Bitshift LUTs a� bð Þ; ~wi þ ~aið Þ (15)

Figure 5: Block diagram of the proposed hardware accelerator for neural networks inference in FPGA
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where a ¼2~wf , b ¼2~af , ~ai and ~af are integer and fractional values of quantized activations. The ~wi and ~wf are
integer and fractional values of quantized weights. Bitshift (a, b) is a function of shifting a by b bits. LUTs (k)
is the look-up tables entries of k.

In the hardware-level implementation, we avoid using multipliers by storing all multiplications a� bð Þ
in a look-up table with 2N entries. N is the bit-width of parameter ~wf and ~af . For instance, given bit-width of
2 for ~af and bit-width of 6 for the weights, thus all possible outcomes of a� bð Þ are 26 � 22 ¼ 256 values.
The architecture of logarithmic accelerator for running the convolution is shown in Fig. 6. We present the
hardware with quantization for 6 bit-width weights and activations. The processing element (PE) consists
of adders, bit shifters and look-up tables. The adder connects to the integer part of quantized activations
(~ai) and the integer part of quantized weights (~wi). The shifter requires a� b as the operand and the
result of the adder to determine the number of places the bits are shifted. The results are stored in the
output buffer.

Since weights are stored as indexes of Qset, we use look-up table to convert the index to integer part of
quantized weights (~wi) before entering the adder. For the result of a� b, the multiplier is replaced by a look-
up table that stores all multiplication results. We define a new index that combines index of weights and bits
of activations (A [2:0]) to map the multiplication result. Thus, the new index can represent 2 6þ3ð Þ values. The
look-up table has 512 elements, and each index is mapped to the result of a� b.

To accelerate the computation, we implement multiple PEs to support parallel computation. The
maximum number of PEs is Sn � Sk (Dimension of inputs and weights). In addition, memory access
operations are also a factor in the computation time since load and store operations are time-consuming.
We constraint total on-chip memory size that (Sm � Sn) + (Sn � Sk) + (Sm � Sk) < Threshold where
threshold is the total available storage which define by user. We adjust these parameters according to the
structure of model to minimize the total memory access and maximize the parallel level.

7.3 Hardware Utilization

FPGA devices consist of Digital Signal Processing (DSP) blocks, Look-up Tables (LUTs), Flip-Flops
(FFs) and Block RAM memory (BRAM). These resources, particularly DSP and LUTs, are very limited
in edge FPGA devices. For this reason, we constraint the resource usage by setting the amount of storage
available. This defines the structure of the accelerator as mentioned in section 7.2. We instantiate the

Figure 6: The architecture of proposed logarithmic accelerator for running the quantized model inference
when using 6 bit-width weights and activations
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structure of the accelerators as: Sn = 16, Sk = 16 and Sm = 256. Therefore, the accelerator has 256 PE in
parallel. The available blocks of on-chip memory for inputs, outputs and weights are 256, 4096 and
4096 respectively.

The size of parameter is another important factor in mapping ConNN to hardware. A larger bit-width
requires a high number of resources. However, bit-width and accuracy are trade-off. The quantized model
evaluation results show that weight quantization has a high impact on accuracy. Therefore, we focus on
using 6 bit-width for weights quantization, whereas bit-width for activations is changed. Tab. 4 shows the
results of resource requirements for the accelerator core using different bit-width. Below the column
name displays the number of available resources on the device. We present resource usage in terms of
amount and percentage. In addition, we present an accelerator for computing fixed-point convolution to
observe improvements in resource utilization.

Using a multiplier requires DSP and LUTs, whereas a bit shifter requires only LUTs. Therefore, the
proposed hardware significantly reduces the number of DSP 20� less than the fixed-point accelerator
which uses general multiplication. In fact, the accelerator did not require DSP resources for computation.
But 4 DSP blocks are used for address generation. Due to one extra adder operation in logarithmic
convolution, the proposed accelerator consumes approximately 1.4� higher number of LUTs compared to
the fixed-point accelerator. Consequently, the number of FFs is slightly increased to accommodate parallel
adders. Although the logarithmic accelerator requires more LUTs and FFs, a significant reduction in DSP
is essential because DSP resources are limited and costly. In addition to this, the fixed-point
ResNet-18 using 8 bit-width achieves Top-1 accuracy of 62.5 on ImageNet but the logarithmic-based
ResNet-18 gives 69.44 accuracy.

7.4 Hardware Accelerator Comparison

This section presents a performance comparison with other prior designs. In this implementation, the
Zynq XC7Z020-based FPGA is used under 150 MHz operating frequency. We run different neural
network models on the device to evaluate the proposed accelerator. Our goal is to run complex neural
networks on a resource-constrained FPGA device. We therefore concentrate on the efficient use of
resources. The throughput is also a key factor for running the model in a real-world environment. We
capture the actual execution time of the accelerator and calculate the throughput using Giga Operation
Per Second (GOP/s) metric. However, the throughput and resource usage are trade-off. For this reason,
we evaluate the performance of the accelerator using resource efficiency metrics, which are the ratio of
GOP/s per number of DSP and GOP/s per number of LUTs.

The performance of the proposed accelerator and its comparison with other prior works are presented in
Tab. 5. The results show that our proposed hardware significantly reduces the number of DSP and achieves

Table 4: Hardware utilization of the accelerators on Zynq XC7Z020 FPGA

Accelerator Bit-width (w,a) #BRAM 18 K
(280)

#FFs
(106400)

#LUTs
(53200)

#DSP
(220)

Fixed-point 8,8 56 (20%) 7732 (7.27%) 7444 (13.99%) 80 (36.36%)

Logarithmic 6,6 64 (22.5%) 8140 (7.65%) 11248 (21.14%) 4 (1.8%)

6.5 64 (22.5%) 8139 (7.65%) 11234 (21.11%) 4 (1.8%)

6,4 64 (22.5%) 7077 (7.24%) 10497 (19.73%) 4 (1.8%)

IASC, 2022, vol.33, no.2 693



about 9� better DSP efficiency than other works. Our design also improves the resource efficiency of LUTs
compared to other designs except for this work [17]. However, their work relies heavily on DSP resource.

8 Conclusions

This article presents a modified logarithmic quantization to compress convolutional neural networks
without retraining process. We propose a simple but effective method for solving low resolution at high-
level input issues of logarithmic quantization. Different logarithmic-based methods are performed for
quantizing weights and activations. As a result, quantized models achieve comparable accuracy to
floating-point models. Additionally, we propose an efficient hardware accelerator for ConNN inference on
low-end FPGA devices. With the advantages of logarithmic compression, we present the hardware
processor that computes convolution using bit shifters and adders. The proposed hardware design is
resource efficient and suitable for use on embedded devices. For future work, we recommend to further
study the optimal bit-width quantization for each layer in ConNN, as each layer has a different distribution.
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