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Abstract: This paper proposes a fused methodology based upon convolutional
neural networks and a shallow classifier to diagnose and differentiate breast can-
cer between malignant lesions and benign lesions. First, various pre-trained con-
volutional neural networks are used to calculate the features of breast
ultrasonography (BU) images. Then, the computed features are used to train the
different shallow classifiers like the tree, naïve Bayes, support vector machine
(SVM), k-nearest neighbors, ensemble, and neural network. After extensive train-
ing and testing, the DenseNet-201, MobileNet-v2, and ResNet-101 trained SVM
show high accuracy. Furthermore, the best BU features are merged to increase the
classification accuracy at the cost of high computational time. Finally, the feature
dimension reduction ReliefF algorithm is applied to address the computational
complexity issue. An online publicly available dataset of 780 BU images is uti-
lized to validate the proposed approach. The dataset was further divided into
80 and 20 percent ratios for training and testing the models. After extensive test-
ing and comprehensive analysis, it is found that the DenseNet-201 and Mobile-
Net-v2 trained SVM has an accuracy of 90.39% and 94.57% for the original
and augmented BU images online dataset, respectively. This study concluded that
the proposed framework is efficient and can easily be implemented to help and
reduce the workload of radiologists/doctors to diagnose breast cancer in female
patients.

Keywords: Artificial intelligence; machine learning; soft computing; breast cancer
detection; classification

1 Introduction

Cancer is a term related to a group of disordered dysregulated cells growth, leading to the tumor’s
development [1]. Among women, one of the most frequently diagnosed cancers is breast cancer
worldwide. According to World Health Organization (WHO), nearly 10 million deaths were reported in
2020 due to cancer and is the second leading cause of death [2]. Thus, women’s breast cancer is one of
the leading causes of death globally (685,000 deaths in 2020). In 2020, 2.26 million new cases of breast
cancer were reported, which were highest compared to other causes of cancer [2]. Therefore, early
detection and differentiation between benign and malignant breast cancer lesions are important for patient
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treatment [3]. In case of delayed detection of breast cancer may lead lower chance of survival. Therefore, it is
vital for both the treatment and the prognosis to detect breast cancer at early stages, enabling more effective
treatments and significantly improving survival rates. The most established modality for early detection of
breast cancer is mammography, but it has low sensitivity in detecting breast cancer in young women with
dense breasts [4].

On the other hand, Breast Ultrasonography (BU) is most widely used as a primary imaging modality for
early breast cancer diagnosis [5,6]. It is because BU offers the benefits like non-invasiveness, non-
radioactive, and cost-effectiveness compared to others. However, despite its aforementioned advantages, it
is still difficult to interpret BU images due to considerable intra-reader variability, leading to increased
false-positive findings with low specificities and low positive predictive values, unnecessary biopsies, and
significant discomfort patients [7]. Therefore, fast computer-aided methods are required for automatic
detection of breast cancer with high accuracy [8,9].

The excellent performance of machine learning and deep learning methods in the various image
recognition applications has been gaining massive attention in recent years [10–12]. Recently, several
deep learning-based frameworks were developed and employed for mass breast differentiation in clinical
practice [13]. In a recent study [14], the authors comprehensively discussed the developed deep learning-
based automated breast cancer detection approaches. They also provided a deep insight into available
online public datasets. Kwon et al. [15] evaluated the performance of two view scan techniques (2-VST)
and three-view scan techniques (3-VST). They found that the 2-VST model works better as compared to
others. In another study [16], CNN models were developed to classify the BU images into two classes
(i.e., benign and malignant). The area under the curve (AUC) of 95% for their classifier was noted. In a
subsequent study [17], an optimized deep learning model was constructed to classify the BU images. The
dataset of 3739 images was used to validate their proposed model. The accuracy of their proposed model
was 92.86%. Zhang et al. [18] proposed a hybrid model by combining the graph convolution network
and CNN. The proposed model shows promising results and has a high accuracy of 96.10%, but the
authors still think more research is needed to implement their proposed model for real-time application.
In another study [19], the authors used a pre-trained network (InceptionV3, VGG16, ResNet50, and
VGG19) to classify the BU images into two classes. The results show the high accuracy of pre-trained
networks. However, the main shortcoming of the pre-trained model is the high computational time for the
training of the predictors. Furthermore, the authors only classify the BU images into two classes (benign
and malignant). However, the classifier must classify the BU images in real-time scenarios into three
categories (normal, benign, and malignant). Moon et al. [20] proposed a 3-D convolution neural network
model to classify the BU images. Their proposed model shows a very high accuracy of 94.62% at the
cost of increased training time. To overcome the issue related to training time, shallow classifiers such as
support vector machines (SVM) are also trained using morphological features of the BU images [21]. The
authors only classify the BU images into benign and malignant; normal BU images were neglected for
classification. Araújo et al. [22] calculated the deep features using CNN and utilized it for SVM training
for four and two classes. The accuracy of 77.8% and 83.3% was noted for four and two classes,
respectively. Recently Shia et al. [23] calculated the features for SVM training using the pre-trained
ResNet-101 network. The AUC is utilized as an accuracy measurement metric. The reported AUC of
0.938 for the classification of BU images into two classes. A similar drawback of two-class categorization
is also noted for this trained model. Therefore, more research is needed to reduce the training time with
high accuracy for all three classes (benign, malignant, and normal) for real-time identifications.

In this work, BU images are utilized to diagnose cancer by fusing the advantages of convolution neural
networks and shallow classifiers. BU images features are extracted by using the various pre-trained
convolutional neural network layers such as AlexNet, DarkNet-19, DarkNet-53, DenseNet-201,
EfficientNet-b0, GoogLeNet365, GoogLeNet, Inception-ResNet-v2, Inception-v3, MobileNet-v2,
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NASNet-Mobile, NASNet-Large, ResNet-18, ResNet-50, ResNet-101, ShuffleNet, SqueezeNet, and
Xception. The different shallow classifiers like tree, naïve Bayes (NB), SVM, k-nearest neighbors (KNN),
ensemble, and neural network (NN) are trained using extracted features to classify the BU images into
three classes (benign, malignant, and normal). The relief-based filter feature selection method is used to
reduce the feature dimensionality and to increase the accuracy. After comprehensive training, testing, and
analysis best feature are fused to train the shallow classifier to predict the BU images.

2 Methodology

2.1 BU Images Dataset

The online available BU images dataset is used to train and validate the models in this work [24]. The
dataset contained 780 ultrasound images of 500 × 500 pixels of 600 women aged 25–75 years and was
collected at Behaye hospital, Cairo, Egypt. Details about the dataset are provided in Tab. 1. Further
information about the dataset can be found in [24].

Table 1: Details about datasets [24]

Type Number of images Images

Benign 437

Malignant 210

(Continued)
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2.2 Pre-Trained Convolutional Neural Network Model’s Feature Extraction

Features are the variables that vary from one class image to second class image and so on. The selection
of the most prominent, i.e., highly varying characteristics of images, increases the classification accuracy.
Relevant features extraction from images is the most important, which can be done manually or using
convolutional neural networks layers. The manual feature extraction is a time-consuming task, and
accuracy depends on the variation in the images. On the other hand, the convolutional neural network is a
class of deep neural networks. It uses various convolutional, pooling, and fully connected layers to build
the architect of the model. The convolutional neural network shows high accuracy in the presence of a
large dataset. When the training data size is small, then some of the pre-trained networks, such as
AlexNet, DarkNet-19, DarkNet-53, DenseNet-201, EfficientNet-b0, GoogLeNet365, GoogLeNet,
Inception-ResNet-v2, Inception-v3, MobileNet-v2, NASNet-Mobile, NASNet-Large, ResNet-18,
ResNet-50, ResNet-101, ShuffleNet, SqueezeNet, and Xception can be used for the extraction of the
features. In various medical imaging applications, pre-trained models are used to classify images [25,26].
The Initial letter of each notional word in all headings is capitalized.

2.3 Dimensionality Reduction: ReliefF Based Feature Selection Method

In all machine learning algorithms, the quality of attributes or features is one of the most crucial
concerns. Likewise, in all learning applications, thousands of potential features are used to describe the
object. Unfortunately, most learning methods cannot perform accurately in these circumstances because of
irrelevant and noisy features, which provide very little information for the class. So, the feature selection
is a critical task to choose a small subset of features, which contains a small set of most relevant features,
used to describe the target class.

In 1992, Kira et al. [27] inspired by instance-based learning, presented a Relief algorithm as a feature
selection method to train the machine learning algorithm for two-class problems. Then, Kononenko [28]
introduced the extension/variant of the Relief algorithm known as ReliefF to address the issues related to
the binary classification problem. It works robustly in the presence of perturbated and incomplete data.
The ReliefF algorithm is illustrated in Fig. 1.

To understand the concept of working of ReliefF algorithm, randomly initialize the instance (Ri). Then, it
will search for k to its nearest neighbor for the same class (known as nearest hits (Hj)) and also for each of

Table 1 (continued).

Type Number of images Images

Normal 133
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other classes (known as nearest misses Mj(C)). Finally, it will update the equations presented at points 7, 8,
and 9 of Fig. 1; further details related to the ReliefF algorithm can be found in [29,30].

3 Proposed Framework

In this work, the ultrasonography machine is utilized to capture the images of a woman’s breasts. These
captured images are fed to the pre-trained deep neural networks (AlexNet, DarkNet-19, DarkNet-53,
DenseNet-201, EfficientNet-b0, GoogLeNet365, GoogLeNet, Inception-ResNet-v2, Inception-v3,
MobileNet-v2, NASNet-Mobile, NASNet-Large, ResNet-18, ResNet-50, ResNet-101, ShuffleNet,
SqueezeNet, and Xception) to compute the related features. These features are fed to shallow classifiers
like the tree [31], NB [32], SVM [33], KNN [34], ensemble, and NN for the categorization. Before
feeding these features to the classifiers, the ReliefF filter is used for dimensionality reduction. The effect
of the feature dimension reduction ReliefF method on the prediction accuracy is also investigated. The
ReliefF algorithm is separately applied for both models because each model calculated the deep features
in different feature spaces. If the algorithm is applied after merging features, one model’s features are
neglected due to changes in the dimensions of the feature. After the extensive testing and comprehensive
analysis of all the trained models, the proposed framework for cancer diagnosis is illustrated in Fig. 2.

4 Results

In this work, the available online dataset of breast cancer is used to validate the proposed method [24].
The details about the dataset are already presented in Section 2.1. The MATLAB 2021® environment is used
to implement all the models. The personal computer has the following specifications: Intel(R) Core (TM) i7-
10700 CPU @ 2.90 GHz processor with 32 GB RAM, 1 TB SSD, and a 64-bit Windows 10 Pro operating
system (OS). The dataset for each class is equally divided into 80% and 20% for all the models’ training and
testing, respectively.

Figure 1: ReliefF algorithm [29,30]

IASC, 2022, vol.33, no.2 1325



All the shallow classifier models are trained using all the features of 18 pre-trained networks. The
features are collected before the SoftMax layer of each pre-trained network. The total number of features
of each network is shown in Fig. 3.

Figure 2: Proposed framework for the diagnostic of breast cancer

Figure 3: Total number of the feature of each pre-trained model for BU images
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After these features computation, all the features are fed to the shallow classifiers. The validation
accuracy is used as a comparison metric for all the models. The accuracy of all the trained models with
each pre-trained model feature using 5-fold cross-validation are presented in Fig. 4.

After carefully analyzing the training and testing results, it is found that the SVM trained networks show
the highest accuracy compared to a tree, NB, KNN, Ensemble, and NN models. Furthermore, although the
training time of each model was not taken into account for comparison, the SVMmodel is trained in the least
time compared to others. It also noted that the SVM model trained with DenseNet-201, MobileNet-v2, and
ResNet-101 shows the accuracy of 86.92%, 85.51%, and 85%, respectively. The performance of all these
three SVM-trained models is presented in Tab. 2. The grid search algorithm is utilized to optimize the
hyperparameters of the SVM. The true positive rate (TPR), false-negative rate (FNR), positive predictive
value (PPV), and false discovery rate (FDR) are utilized to evaluate the models further. The details about
calculating the TPR, FNR, PPV, and FDR are given in Eqs. (1)–(4).

TPR ¼ True positive

No: of real positive
(1)

FNR ¼ False negative

No: of real positive
(2)

PPV ¼ True positive

True positive þ False positive
(3)

FDR ¼ False positive

True positive þ False positive
(4)

The result presented in Tab. 2 reveals that the DenseNet-201 trained SVMmodel correctly predicted the
409 out of 437 benign BU images, whereas ResNet-101 trained SVM most correctly predicts the normal BU
images. All the models have the same classification accuracy for the malignant BU images. The training time
of the model is considered one of the essential factors for real-time applications. It is evident from the results
that as the training features size increases, the training time of the model increases (see Fig. 3 and Tab. 2).
MobileNet-v2 has the least training time as it has the smallest feature subset (1280 features per image) among
these three (see Fig. 3).

Figure 4: Accuracy of each trained model against every pre-trained network feature
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After analyzing the accuracies of the entire feature subset of each network, the ReliefF algorithm is
applied to each model feature subset to determine the best-related features using cross-validation. The
performance of each model for the first 200 and 400 features subset is presented in Tabs. 3 and 4.

After carefully analyzing Tabs. 2–4, the accuracy of the model trained with the ReliefF feature
reduction method is changed compared to the full feature trained model. It is important to note that the
200 DenseNet-201 features trained SVM model correctly predicted the 413 out of 437 benign images
(see Tab. 3). However, its TPR decreases in the case of malignant class compared to the complete feature
set. The accuracy of the 200 MobileNet-v2 trained SVM model is similar to full trained features, but the
TPR of the malignant class is increased compared to the full features trained model. It means that the
hybridization/fusion of the features of different models may result in better accuracy. The accuracy of all
the models decreased when trained with the ReliefF feature reduction method using 400 features of each
pre-trained model (see Tab. 4).

Table 2: Performance of SVM model against DenseNet-201, MobileNet-v2, and ResNet-101 features

Network Class Classified as TPR FNR PPV FDR Training
time (s)

Accuracy
(%)

Benign Malignant Normal

DenseNet-
201

Benign 409 15 13 93.59 6.41 85.74 14.26 3.6295 86.92

Malignant 43 162 5 77.14 22.86 91.01 8.99

Normal 25 1 107 80.45 19.55 85.6 14.4

MobileNet-
v2

Benign 396 31 10 90.62 9.38 86.65 13.35 2.8513 85.51

Malignant 41 162 7 77.14 22.86 82.23 17.77

Normal 20 4 109 81.95 18.05 86.51 13.49

ResNet-
101

Benign 392 25 20 89.7 10.3 85.59 14.41 4.9657 85

Malignant 43 162 5 77.14 22.86 86.17 13.83

Normal 23 1 109 81.95 18.05 81.34 18.66

Table 3: Performance of SVM model against DenseNet-201, MobileNet-v2, and ResNet-101 after applying
ReliefF dimension reduction method (200 features)

Network Class Classified as TPR FNR PPV FDR Training
time (s)

Accuracy
(%)

Benign Malignant Normal

DenseNet-
201

Benign 413 15 9 94.51 5.49 86.04 13.96 0.99689 87.05

Malignant 43 160 7 76.19 23.81 89.89 10.11

Normal 24 3 106 79.7 20.3 86.89 13.11

MobileNet-
v2

Benign 396 29 12 90.62 9.38 87.8 12.2 1.0724 85.90

Malignant 36 168 6 80 20 81.95 18.05

Normal 19 8 106 79.7 20.3 85.48 14.52

ResNet-
101

Benign 394 29 14 90.16 9.84 86.78 13.22 1.0225 85.90

Malignant 44 163 3 77.62 22.38 83.16 16.84

Normal 16 4 113 84.96 15.04 86.92 13.08
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The results of the fused/hybrid full features set and ReliefF based feature set (200 features/model)
trained model are presented in Tabs. 5 and 6.

It is evident from Tabs. 5 and 6 that the accuracy of the hybrid/fused features trained model increased as
compared to the single feature trained model. The maximum efficiency of all hybrids features trained model
(DenseNet-201 + MobileNet-v2 + ResNet-101) is 87.56% (see Tab. 5). In the case of the ReliefF feature
reduction trained model, the DenseNet-201 + MobileNet-v2 trained model shows the highest accuracy of
90.39%. This model correctly predicts the 417 BU images out of 437. The TPR of the malignant and
normal classes is also increased in this case.

Table 4: Performance of SVM model against DenseNet-201, MobileNet-v2, and ResNet-101 after applying
ReliefF dimension reduction method (400 features)

Network Class Classified as TPR FNR PPV FDR Training
time (s)

Accuracy
(%)

Benign Malignant Normal

DenseNet-
201

Benign 410 13 14 93.82 6.18 86.13 13.87 1.00996 86.54

Malignant 44 157 9 74.76 25.24 90.75 9.25

Normal 22 3 108 81.2 18.8 82.44 17.56

MobileNet-
v2

Benign 399 24 14 91.3 8.7 86.36 13.64 1.0034 84.74

Malignant 47 156 7 74.29 25.71 81.68 18.32

Normal 16 11 106 79.7 20.3 83.46 16.54

ResNet-
101

Benign 386 31 20 88.33 11.67 84.28 15.72 1.1329 83.33

Malignant 49 157 4 74.76 25.24 82.2 17.8

Normal 23 3 107 80.45 19.55 81.68 18.32

Table 5: Performance of SVM model against full hybrid features

Network Class Classified as TPR FNR PPV FDR Training
time (s)

Accuracy
(%)

Benign Malignant Normal

DenseNet201 +
MobileNet-v2

Benign 407 17 13 93.14 6.86 85.68 14.32 8.5741 86.28

Malignant 46 160 4 76.19 23.81 87.91 12.09

Normal 22 5 106 79.7 20.3 86.18 13.82

DenseNet201 +
ResNet-101

Benign 400 22 15 91.53 8.47 87.34 12.66 10.118 87.18

Malignant 35 171 4 81.43 18.57 88.14 11.86

Normal 23 1 109 81.95 18.05 85.16 14.84

MobileNetv2 +
ResNet-101

Benign 401 25 11 91.76 8.24 86.24 13.76 8.7585 85.89

Malignant 41 161 8 76.67 23.33 85.64 14.36

Normal 23 2 108 81.2 18.8 85.04 14.96

DenseNet-201 +
MobileNet-v2 +
ResNet-101

Benign 411 16 10 94.05 5.95 86.89 13.11 15.768 87.56

Malignant 41 162 7 77.14 22.86 90 10

Normal 21 2 110 82.71 17.29 86.61 13.39
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The classification accuracy of the benign class is high compared to others because the malignant and
normal class has fewer images (210 and 133, respectively). In addition, augmentation techniques can be
applied to increase the model accuracy [35]. This study applies the rotation operation to balance
malignant and normal classes images. After augmentation, each class contains 350 BU images,
augmented images are used to train the model, and the models are validated using original images. The
results of augmented dataset images for DenseNet-201 + MobileNet-v2 ReliefF features trained SVM
model are presented in Tab. 7.

5 Discussion

Women BU imaging is an indispensable technique to evaluate breast lesions in the presence of a
palpable mass or pain in the breast. The most established modality for early detection of breast cancer is
mammography, but it has low sensitivity in detecting breast cancer in young women with dense breasts.
Additionally, to prevent the risk of radiation in mammography, the BU is the most preferred diagnostic
method for female patients [36]. According to a report [37], the BU imaging has a 100% accuracy for
detecting palpable breast masses in 30–39 years old female patients, compared to mammography. In
addition to this, BU imaging provides complete information related to solid lesions. Cysts are the primary
benign lesion of the women’s breast. In BU imaging, the anechoic, thin-walled, and well-circumscribed
lesions can easily be seen. Besides the non-invasiveness, non-radioactive, and cost-effectiveness of BU

Table 6: Performance of SVM model for ReliefF hybrid features (200 features/model)

Network Class Classified as TPR FNR PPV FDR Training
time (s)

Accuracy
(%)

Benign Malignant Normal

DenseNet201 +
MobileNet-v2

Benign 417 13 7 95.42 4.58 90.46 9.54 1.4244 90.39

Malignant 32 173 5 82.38 17.62 90.1 9.9

Normal 12 6 115 86.47 13.53 90.55 9.45

DenseNet-201 +
ResNet-101

Benign 409 15 13 93.59 6.41 88.34 11.66 1.3832 88.85

Malignant 36 170 4 80.95 19.05 91.4 8.6

Normal 18 1 114 85.71 14.29 87.02 12.98

MobileNet-v2 +
ResNet-101

Benign 404 24 9 92.45 7.55 88.79 11.21 1.4014 88.08

Malignant 35 170 5 80.95 19.05 85.86 14.14

Normal 16 4 113 84.96 15.04 88.98 11.02

DenseNet-201 +
MobileNet-v2 +
ResNet-101

Benign 403 24 10 92.22 7.78 87.8 12.2 1.6716 87.30

Malignant 37 167 6 79.52 20.48 86.08 13.92

Normal 19 3 111 83.46 16.54 87.4 12.6

Table 7: Performance of proposed model against the augmented dataset

Network Class Classified as TPR FNR PPV FDR Training
time (s)

Accuracy
(%)

Benign Malignant Normal

DenseNet-201 +
MobileNet-v2

Benign 325 15 10 92.86 7.14 93.66 6.34 1.8194 94.57

Malignant 13 329 8 94 6 95.09 4.91

Normal 9 2 339 96.86 3.14 94.96 5.04
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imaging, it can also be easily tolerated by women patients. With the advancement of deep learning
methodologies, it has become a tool to assist the doctors for diagnosis of breast cancers [38–40].

In a study [41], the concept of transfer learning is utilized for training the pre-trained model for the
classification of BU images. The ResNet-50 and MobileNet pre-trained models showed 97.03% and
94.42% accuracy and took almost 114.57 and 192.4 min for training, respectively. Zhang et al. [42] also
proposed a deep learning model for breast cancer diagnosis using BU images. Their proposed models
shows the accuracy of 92.86%. In this work, a hybrid feature reduction methodology is proposed to
classify the BU images correctly. Various convolution neural network models’ features are used to train
the shallow classifier model to check the classification accuracy. The SVM trained model shows the best
results among all (see Tab. 2). Furthermore, the ReliefF dimension reduction method is applied to reduce
the size of the feature set. It is noted that the features set with 200 sizes show better results compared to
the feature set with 400 lengths (see Tabs. 3 and 4). It is because the first 200 features are more relevant
for the categorization of each class. The next 200 features reduce the model’s accuracy because these
features have some similarities, which reduce the classification accuracy. After that, full features are fused
to increase the accuracy. It was noted that all three full feature hybrid model (DenseNet-201 +
MobileNet-v2 + ResNet-101) has the accuracy of 87.56% with the training time of 15.768 s. It is noted
that as the size of the feature set increases, the computational complexity of the system also increases (see
Tab. 5). The ReleifF feature reduction trained model shows the best accuracy of 90.39% against the
DenseNet-201 + MobileNet-v2 trained SVM model. The size of the training features dataset is only 400,
which is thirteen times lesser than the full feature hybrid dataset (1920 + 1280 + 2048 = 5248), resulting
in ten times lesser computational complexity. As the BU images of malignant and normal classes are
lesser in quantity, the data augmentation technique is applied to balance the data resulted in high accuracy
of 94.57% (see Tab. 7). As discussed in Section 1, most of the studies found in literature only worked for
benign and malignant images classification. This work shows a high accuracy of 94.57% for all three
classes. It concluded that the proposed methodology is robust and has high accuracy for detecting breast
cancer in women as compared to [20,41]. It means that it can be implemented for real-time applications
to reduce the workload and help the doctor diagnose breast cancer. However, further research is still
needed to optimize the size of feature vector by applying optimization algorithm.

6 Conclusion

Due to advancements and high efficiency in medical imaging, machine learning methodologies get so
much attention to manage doctors’ workload, save money and time in the hospital. In this work, the BU
images-based framework is designed using deep neural networks feature trained shallow classifier (SVM)
to diagnose breast cancer in women. The proposed model computed the features of BU images using the
DenseNet-201 and MobileNet-v2 networks. Furthermore, the ReliefF dimension reduction algorithm is
employed to reduce the computational complexity and enhances classification accuracy to the SVM
model. As a result, the proposed model shows a high classification accuracy to classify the BU images in
benign, malignant, and normal classes. With this high true positive rate of 94.57%, the proposed
approach is suitable for diagnosing breast cancer in females.
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