Intelligent Automation & Soft Computing K Tech Science Press

DOI:10.32604/iasc.2022.023753
Article

A Convolutional Neural Network for Skin Lesion Segmentation Using Double
U-Net Architecture

Iqra Abid', Sultan Almakdi’, Hameedur Rahman®, Ahmed Almulihi*, Ali Alqahtani?,
Khairan Rajab”°, Abdulmajeed Alghatani*" and Asadullah Shaikh”

"Institute of Southern Punjab, Multan, 32100, Pakistan
2College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia
3 Department of Creative Technology, Air University, Islamabad, 44200, Pakistan
“Department of Computer Science College of Computers and Information Technology, Taif University, Taif, 21944, Saudi Arabia
>College of Computer Science and Engineering, University of South Florida, Tampa, 33620, United States
*Corresponding Author: Abdulmajeed Alghatani. Email: aaalghatani3@gmail.com
Received: 20 September 2021; Accepted: 20 December 2021

Abstract: Skin lesion segmentation plays a critical role in the precise and early
detection of skin cancer via recent frameworks. The prerequisite for any compu-
ter-aided skin cancer diagnosis system is the accurate segmentation of skin malig-
nancy. To achieve this, a specialized skin image analysis technique must be used
for the separation of cancerous parts from important healthy skin. This procedure
is called Dermatography. Researchers have often used multiple techniques for the
analysis of skin images, but, because of their low accuracy, most of these methods
have turned out to be at best, inconsistent. Proper clinical treatment involves sen-
sitivity in the surgical process. A high accuracy rate is therefore of paramount
importance. A generalized and robust model is needed to accurately assess and
segment skin lesions. In this regard, a novel approach named Double U-Net
has been proposed to provide necessary strength and Robustness. This process
uses two U-Net architectures stacked upon each other with ASPP which is used
to squeeze out a high resolution and redundant information. In this paper, we
trained the proposed architecture on the PH? dataset and the model was evaluated
on the PH? test, ISIC-2016 and HAM datasets. Evaluation of information shows
the model achieved a DSC of 0.9551 on the PH? test dataset, 0.8104 on ISIC-
2016 and 0.7645 on the HAM dataset. Analyses show results comparable to
the most recently available state-of-the-art techniques.
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1 Introduction

The most common cause of death from diseases of the skin is malignant growth. This is generally seen
when the cells that make up the skin follow a pattern of growth that is different from the normal. The growth
takes the form of unnatural and rapid progress whereby some character of the native tissue may be retained or
the new growth may be completely different from the native tissue. In Skin tumors, there are generally three
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types of malignant growth which are Squamous cell carcinoma, Basal cell carcinoma and Melanoma. The
most common types of skin cancer are Squamous cell carcinoma and Basal cell carcinoma. These are
also known as “Non-Melanoma skin cancer” [1]. The most dangerous form of these three types is
Melanoma. If this is caught in a late-stage, or, if left untreated, Melanomas can spread to other body
organs, increasing significantly, the chances of death. Non-Melanoma skin cancer is the 5th [2] most
common tumor, whereas Melanoma of the skin is the 19th most common cancer worldwide. Fortunately,
detection of skin cancer particularly Melanoma in its early stages can result in excellent outcomes [3].
With the help of proper diagnosis and treatment, survival rates from malignant skin conditions can easily
be improved. The earlier the disease is diagnosed the better the management and the better the outcome.
Computer-assisted technology in medical imaging has been of vital importance in the diagnosis and
management of skin cancer [4]. This technique has been widely used as a tool for separating and
identifying cancerous parts of the skin from normal skin [1]. Early detection is important for proper
treatment to be programmed accordingly. Usually a macroscopic, followed by a microscopic examination
is done [5]. Microscopic images are obtained through the use of a magnifying lens or a specialized
microscope which is used to examine the compromised area more closely, a process called
Dermatoscopy. This is a non-intrusive strategy for imaging used to capture skin lesions by removing the
surface layers, to get to the deeper layers [6]. Different medical image analysis techniques have been
proposed to help delineate the suspicious area with images obtained through dermatoscopy. For medical
image segmentation, there are two types of methodologies, traditional and Semi-Automated and/or
Automated. Traditional methods relate to a visual inspection of the suspicious area by a physician. Semi-
automated and automated methods involve point-based pixel intensity operations [7,8], pixel clustering
methods [9—11], level set methods [12], deformable models [13] and deep-learning-based methods [14].

In medical imaging, segmentation is a challenging and exigent task. Segmentation is used to label pixels
of the diseased segment through medical images, a procedure that helps the clinician get detailed information
of the affected area and to separate diseased cancerous parts from healthy skin [15]. Medical Image
segmentation may prove to be very demanding and taxing as it has to deal with many variables such as
difficulty in acquiring high-quality images, unavailability of annotated masks and variation in imaging
data of different patients [16]. In Semantic Image Segmentation, machine learning plays a vital role,
especially in the deep learning-based approaches [17]. For Robotic Medical Image segmentation,
Convolution neural networks have proven to be the best-in-class execution [18]. In machine learning-
based methodologies, pixel-wise prediction for picture segmentation is performed to fully chart out neural
architecture, stressing the need for semantic segmentation of images [19]. Another recognized method
used for segmentation is U-Net architecture. Accordingly, two main functionalities are performed by the
two parts of U-Net architecture called Analysis and Synthesis. These are used for feature learning and
segmenting based on inherent data. U-Net is a Fully Convolutional Network (FCN) that works with the
concept of skipping layers in between parts which allows deep supervision to improve network
performance [20]. Robustness and Generalization are two main objectives that are important across
diverse biomedical applications. Generalization centers around the capacity of the model to perform on a
free dataset that is utilized to prepare the model, whereas Robustness centers on the capacity of the model
to play out the difficult assignment [21]. Working on this principle, another architecture named Double
U-Net design has been proposed to provide a baseline for achieving these objectives. This technique uses
modified U-Net and VGG19 as encoders in the network that allow deep learning networks to produce
improved segmented masks which optimize the overall segmentation performance compared to U-Net alone.

Our endeavor, therefore, was to use the Double U-Net design to segment the cancerous area from normal
skin to check the Generalization and Robustness of the architecture over U-Net. The role of this paper is to
examine the accuracy of the proposed Double U-Net architecture in comparison with other methods to
semantically segment skin lesions in medical images. This method has been benchmarked with other
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techniques via results through different statistics like Accuracy, Dice score and other performance indicators,
that aid in measuring with other similar segmentation processes.

The rest of this paper is structured as follows. Section 2 presents related work. Section 3 focuses on
materials and methods and Section 4 explores the implementation and performance evaluation of the
proposed model. Section 5 presents the benchmark. Finally, Section 6 provides conclusions and future
directions.

2 Related Work

Many methods have been developed over the past few years to achieve better and higher accuracy in
precisely identifying the segmented area of a skin lesion in Dermatoscopic images. Deep learning has
played a vital role in Medical Image segmentation. Recently a new deep learning architecture has been
proposed named NABLA-N. This provides a variety of combination procedures through deciphering
units to help in better division assignments of dermatographic images. A blend of low-level and
undeniable level feature maps is provided in this model. This ensures better feature representation for
segmentation and essentially impacts with better qualitative and quantitative results when tested on
International Skin Imaging Collaboration 2018 (ISIC-2018) [22,23]. Another system, which is a modified
form of U-Net, has been proposed for semantic segmentation. This includes two branches known as
Semantic and Detail branches that extract information from the Deep and Shallow layers. A Malblock
module is used that capitalizes on the idea of collective knowledge and Class Activation MAP (CAM) to
reduce the redundant feature [24]. Another modification in U-Net is made on paper [25]. This utilizes
nearby binary Convolution on U-Net rather than standard Convolution and replaces the encoder part of
the U-Net with Local Binary Convolutional Neural Network (LBCNN) layers to naturally learn and
fragment highlights. Multi-scale context-guided architecture called Multi-Scale Context-Guidednet
(MSCGnet) has been proposed to address the difficulties of low contrast and varieties of shading across
space and fluffiness. Context space attention structures are used in the down-sampling part to reduce the
loss. MSCGnet network with iteration has been proposed to boost performance in what is known as
Iterative Multi-Scale Context-Guidednet (IMSCGnet) [26].

An efficient fully convolutional neural network, named DermoNet, an FCN, has been proposed to
productively section skin cancer. This architecture reuses the data of past layers due to thickly associated
Convolutional squares and Skip associations, with accurate extraction of the segmentation [27]. Another
Framework named Dual Objective Networks (DONet) has been proposed. This utilizes two symmetric
decoders using different loss functions for approaching different objectives. It is then aggregated to
deliver a final prediction. Furthermore, the purpose of the Recurrent Context Encoding Module (RCEM)
is to deal with challenges of size and shape [28]. TMD-UNET is the successor to U-Net architecture. This
has been proposed with some modifications which include dilated Convolution instead of regular
Convolution, coordination of multi-scale input highlights on the info side of the model and dense Skip
association rather than customary Skip association [29]. Another architecture named I-Net has been
proposed to get accurate semantic segmentation without losing any spatial information. This augments the
responsive field by expanding the kernel size of Convolutional layers rather than down-sampling and by
co-relating with the featured map of previous layers. It uses two overlapping max-pooling to extract the
sharpest features. Multiple shortcuts can be added because of a fixed size and fixed number of channels
[30]. Another modification has been made in U-Net which combines dilated Convolution and Pyramid
Pooling Module. Dilated Convolution computes High Spatial Resolution feature maps and Pyramid
Pooling obtains more contextual information [31]. For automatic Semantic segmentation, a method has
been proposed called the DSNet. In this model, researchers utilized Profundity Shrewd Distinct
Convolution to project learned features onto the pixel space of the encoder at various stages to make the
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architecture lightweight [32]. To add to this, a neutrosophic graph cut algorithm using an optimized
clustering estimation algorithm for Dermatoscopic skin lesion segmentation has been proposed. Here,
researchers have used Histogram Based Clustering Estimation (HBCE) to obtain the initial number of
clusters with the corresponding centroid. Results of this novel approach when compared to traditional
HBCE, have achieved an accuracy of 97% [33]. Another approach that uses a fully automatic deep
learning ensemble method to segment the skin lesion boundary of demographic images and evaluates the
performance on the ISIC-2017 data set has been completed. This has achieved a Jacquard index of
79.58% showing out-performance over Full Resolution Convolutional Network (FrCN), FCN, U-Net and
SegNet by achieving an accuracy of 97.6% [34]. For automatic segmentation of skin lesions in
dermatographic images, an architecture based on a fully deep Convolutional-deConvolutional Neural
Network (CDNN) has been proposed that specifically focuses on effective network architecture and
appropriate training strategies [35]. Similar work for skin lesion segmentation named FrCN has been
accomplished. This methodology improves the segmentation of skin lesions by learning full resolution
features of every pixel of every input image without considering the need for pre/post-processing. This
methodology was tested on the International Symposium on Biomedical Imaging (ISBI 2017) and the
PH? dataset. Accuracy of 94.03% and 95% have been achieved respectively. This has outperformed FCN,
U-Net and SegNet [36]. In 2019, a skin lesion segmentation approach along with deep CNN and named
“You Only Look Once” (YOLO) and grab cut algorithm was established. This performed skin lesion
segmentation in 4 steps including detection, segmentation, removal and post-processing. This was tested
on the PH? dataset and ISBI 2017. It achieved results similar to other deep learning methods in terms of
the Dice coefficient and metrics of accuracy [34].

During the last few years, different deep learning methods have been proposed to segment skin lesions
and have been tested on different publicly available datasets. The recent development of artificial intelligence
systems requires both Generalizations, which is the model's ability to execute on independent datasets and
Robustness, which is the model's ability to tackle challenging images, to provide standardization. It was
therefore deemed crucial to develop a model that was both Robust and Generalizable [21]. An
architecture was therefore introduced for image segmentation named Double U-Net architecture. This
uses two-unit architectures stacked upon each other. The first one includes VGG-19 as the encoder. It
also uses Atrous Spatial Pyramid Pooling (ASPP) for contextual information. This was tested on Medical
Image Computing and Computer-Assisted Intervention (MICCAI) automatic polyp detection, CVC-clinic
DB and Data Science Bowl 2018 boundary segmentation datasets. This has shown better results than U-
Net architecture alone. In this paper, we have shown that the Double U-Net architecture can be a strong
baseline for medical image segmentation as it provides both Generalization and Robustness [37].

Other researchers have also used techniques for image segmentation based on the CNN U-Net
architecture, modified by ResNet in the decoder and Convolutional layer. This architecture has been
applied to three scenarios of skin damage. Experimental results show an improvement in image
segmentation with 89% accuracy compared to the original U-Net, which achieves 84% and 81% accuracy
for the RelayNet. Another related work by Dash et al. [38] has reported effective performance for image
segmentation in detecting the Psoriasis skin lesion using a modified U-Net-based full Convolutional
network (PsLSNet). The reported results were measured by different evaluation metrics to show the
novelty of their proposed method and achieved a Dice coefficient (DSC) of 93.03%, accuracy (ACC) of
94.80%, Jaccard index (JI) of 86.40%, Sensitivity of 89.60% (SE) and Specificity of 97.60% (SP).
Mishra et al. [39] proposed CNN architecture for lesion segmentation based on U-Net and GPU
acceleration and compared it with other research work in the ISBI challenge. Their proposed method
achieved 84% of the JC index whereas; the other four researchers achieved an accuracy below 77% of
the JC index.
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2.1 Atrous Spatial Pyramid Pooling

Atrous Partial Pyramid Pooling (Fig. 1) known as ASPP [40] helps to extract a high-resolution feature
map that will assist in the segmentation process [41]. It is used in obtaining multi-scale context information
by applying parallel Convolutions with different Atrous rates which handle the segmentation of the object at
different scales [42]. The parallel results are concatenated one by one. Convolution is applied to get the
output. This process helps in Semantic Segmentation [43]. Researchers, which include Long et al. [44]
have shown that multi-scale context information can be aggregated without the loss of resolution through
Atrous Convolution, which is generally applied to one or two-dimensional input data x[i]. After
categorizing, w[k], Output y[i] is attained as follows:
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Figure 1: Atrous spatial pyramid pooling

where 1 is the area of the pixels, the atrous convolution dilated value is r and the dimension of the
Convolution kernel is k. A special Atrous Convolution with a dilated rate of 1 is standard Convolution.
Diverse dilated rates can be set to change the scope of the amenable field. Additional time is required for
training if the rate is slower, a more thorough division of the rough feature map is required. The stride
can be further classified into the following for standard & x & Convolution operations.

1. The dimension of the feature map obtained by Convolution will diminish if S > 1 which represents
down-sampling while performing Convolution.
2. S=1, denotes the Convolution of the standard step size of 1.

3. 0<S<1, shows the fractional stride Convolution, which is comparable to up-sampling the
illustration.

The dimension of the feature map acquired by Convolution will show a rise, such as S= 0.5 which
denotes putting an empty pixel at the back of each pixel of the illustration making the resulting feature
map two times as large as the Convolution of S=/ in the same circumstances. Alternatively, Atrous
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Convolution does not insert empty pixels between normal pixels but misses some of the native pixels, or
retains the information, increasing weights of 0 to expand the receptive field of the Convolution kernel.
Understandably, the Convolution with S > [ has the same consequence but there is a down-sampling of
the Convolution which reflects in a reduction in the dimension of the feature map. The size of the
receptive field F' can be achieved if the size of the Convolution nucleus is £ and the void rate of the void
Convolution is 7.

F=@r-Dk-1)+k ()

Fig. 1 shows the Atrous Convolution layers in parallel with variable dilated rates in the pyramid model to
secure multifaceted data. The higher rate relates to long-range pixels while the lower rate correlates to the
closest pixels. Nevertheless, due to the image boundary effect, some of the remote boundary data cannot
be captured correctly. This pattern is separate from the typical pooling output of the feature map recorded
directly into the pyramid model by ICNet. More exhaustive information can be acquired to enhance
segmentation accuracy even though criteria and training time are enhanced in this model.

2.2 Squeeze and Excite Block

Squeeze and Excitation blocks were introduced by Hu et al. [45]. The idea of Squeeze and Excitation
blocks is to attain global information of every channel with the help of global average pooling. This
squeezes the feature map into a single numeric value. Further on, information passes through the fully
connected neural network, Relu and Sigmoid functions. The reason behind using the Squeeze and
Excitation block is to reduce redundant information and pass out more relevant information [46].

3 Materials and Methods
3.1 Dataset

To test the Generalizability and Robustness of Double U-Net, three different datasets relating to the skin
lesion were used. The summary is given in Tab. 1.

Table 1: Summary of Skin Lesion datasets used in the experiment

Datasets No. of images Input size Application

PH? dataset 900 765 x 572 Dermoscopy
ISIC-2016 dataset 2000 1022 x767 Dermoscopy
HAM dataset 10015 600 x 450 Dermoscopy

e The first dataset is the PH® dataset. Here, the information comprises 200 Dermatoscopic images
obtained from hospital Pedro Hispano. These are 8-bit color images containing pictures of
different types of Cancer. The database contains the annotated images of all the Dermatoscopic
lesion images [47].

e The second dataset is the ISIC-2016 challenge dataset. The first part of the challenge is called lesion
segmentation which contains 900 images of skin cancer and their related annotated masks for the
training of the data. The training data here will be used for testing purposes [48].

e The third dataset used to test the architecture is the HAM dataset. This dataset contains 10015 images
of common pigmented skin lesion disease with the ground truth of the images [49].
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3.2 Proposed Method

The proposed network architecture to segment skin cancer in Dermatoscopic images is the Double
U-Net. This architecture contains two different U-Net architectures which are stacked upon each other to
produce better results than a single U-Net architecture. This is shown in Fig. 2. An input image of the
skin lesion is fed to the first part of architecture which performs necessary operations and produces a
resulting image Fig. 3. This image is then combined with the input image and fed to the second part of
the architecture as shown in Fig. 4. This produces the final segmented image. The displayed output
contains four parts: the original image, annotated mask, the output produced by the first part of the
Network and the output produced from the second part respectively. Fig. 2 shows the architecture of the
Double U-Net. The architecture contains two U-Net networks, the first of which contains VGG-19 as an
encoder that makes it different from the original U-Net architecture. It also includes ASPP which helps in
extracting high-resolution feature maps that assist in the segmentation process and lead to better results.
In addition to this, there is a Decoder block that includes a Squeeze and Excitation block. These blocks
help to reduce redundant information and pass out more relevant information. The result produced from
one network is then combined with the input image by element-wise multiplication. Following this, the
information goes through the second architecture to produce the final segmented results.

Network 11 L———outpu

Figure 2: Double U-Net architecture

Figs. 3 and 4 explain the proposed architecture in detail. Initially, the input image is fed to the encoder of
Network 1. The encoder includes a Convolutional operation of 3 X 3 to program the information of the input
image and then performs Batch normalization to regularize the model and reduce the Shift to internal co-
variants. It then performs Rectified Linear Function (Relu) to introduce non-linearity and finally the
Squeeze and Excitation block. Max pooling is then performed with steps 2 and 2 x2 windows to
decrease the window of the feature maps. Two decoders are used in each network. They provide up-
sampling of 2x2 on given features that are used to widen the window of the feature map. Skip
connections are then used from an encoder. In the first network, connection feature maps of the first
encoder are used to the resulting feature map. In the second network, the skip connection feature map
from both the encoders is used to enhance the quality of the image. After that, the Convolution operation
is performed which is followed by batch normalization, activation functions and Squeeze and Excitation
block respectively. Finally, the Convolutional layer is applied along with the Sigmoid Function to
generate a mask for the modified networks. Understandably, it is essential to realize where the skin lesion
boundaries exist. Once this is defined, the necessary object must be adjusted into this area. Concerning
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this, additional decoders for contour generation and distance map regression have to be accommodated. Here
the multitask learning methodology makes the model aware of the boundaries of the affected area.
Consequently, this has a bearing on the results as affected and healthy tissues are more clearly defined.
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Figure 3: Network I of proposed architecture

3.3 Experiments

In this section, evaluation methods, experimental setup with configuration, data augmentation methods
and comparisons are presented to test the Generalizability and Robustness of Double U-Net architecture.

The evaluation of Double U-Net architecture is performed on three datasets based on four statistics
which include, Dice Sorensen coefficient (DSC), mean Intersection over Union (mloU), Precision and
Recall. A comparison between the datasets shows how well the model performs. Through this evaluation,
the Generalizability and Robustness of the model are tested. Here, mloU, is the official evaluation
method from the official challenge site.
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Figure 4: Network II of proposed architecture

This model has been trained on the PH? dataset which contains 900 images. Here, data augmentation is
performed which includes cropping, rotation, transposition and transformation, etc, a process that modifies
one image into 26 images. Work on this model was carried out utilizing the Keras Framework with tensor
flow 2. 1. 0, as backend. This is pure Python work, the training of which was performed on Tesla
T4 with the compute capability of 7.5, a core clock of 1.5 GHz and a core count of 40. It has a device
memory size of 14.73 GiB and a device memory bandwidth of 298.08 GiBs. During training, the original
image size for the smaller dataset, the PH? ISIC-2016 and HAM segmentation dataset were used. The
training time and complexity are optimized to help the Lesion Boundary segmentation challenge dataset
once the images are resized to 384 x 512. The size of ETIS-Larib was amended accordingly to the PH>.
The Nadam optimizer and its dimensions along with binary cross-entropy were also significant factors to
be considered. For the lesion boundary segmentation and Nuclei segmentation datasets, where Dice loss
and Adam optimizer performed slightly better, Batch sizes 8 and learning rate trained for 100 epochs
with early stopping and ReduceLROnPlateau. The trained accuracy of this model is 0.99186. This
outperforms DSC and 0.983868 in mloU U-Net [50] and multi-ResUNet [50]. The image size accepted
by the model is 192 x 256. Preprocessing is performed to resize the image to the required size.
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4 Results

In this section, the Generalizability and Robustness of the model are tested on different datasets to judge
whether the model can be used as a baseline. Results are tabulated in Tab. 2 and are shown in both the statistic
and image format.

Table 2: Results of double U-Net Architecture on different datasets

Datasets DSC Precision Recall
PH? dataset 0.9551 0.9377 0.9719
ISIC-2016 dataset 0.8104 0.8672 0.7867
HAM dataset 0.7645 0.8717 0.6701

The proposed architecture has been trained on a PH? dataset which contains 900 images. Augmentation
is performed on images that change one image into 26 images through different operations like cropping,
zooming and transposing, etc. A training accuracy of 0.9649 was achieved. Preprocessing is performed
before feeding the images to the architecture that changes the image size to the required 192 x 256. Data
augmentation is performed to eliminate the problem of high-quality images with labeled information.

As shown in Tab. 2, PH? with a DSC of 0.9551 showed that it performed well on this particular data set
and achieved better results. Fig. 5 shows the resulting images. The first image in Fig. 5 is input followed by
ground truth, with outputs 1 and 2 respectively. Output 1 is the output of network 1 used in this architecture
and output 2 is the final output after the second network. In Fig. 5, there are some resultant skin lesion images
segmented through Double U-Net architecture. In the second and third pictures, the difference between
output 1 and output 2 can be seen which justifies using two networks in this architecture.

Input Ground Truth Output 1 Output 2

JRe
soo

&4

Figure 5: Resulted images of PH? dataset
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ISIC-2016 and the HAM dataset containing 10050 images have been used for comparison Tab. 2.

5 Benchmark
5.1 Comparison with Other Frameworks

Various techniques have been employed for segmentation of the skin lesion. The expectation that the
Double U-Net exploration technique would section the cancerous regions with higher accuracy when
contrasted with other strategies has been justified. Tab. 3. shows the correlation of proposed architecture
with different architectures. The outcomes show that the Double U-Net architectures performed better
than the other best-in-class techniques.

Table 3: Skin Lesion segmentation performances of different architectures

Methods DSC Precision Recall
U-Net [51] 0.862 0.766 0.927
FCN-8 s [52] 0.783 0.701 0.823
II-FCN [53] 0.794 0.699 0.859
LIN [14] 0.839 0.775 0.899
Auto-ED [54] 0.824 0.711 0.814
Multi-ResUNet - - -

DoubleUNet (proposed) 0.899 0.8780 0.959

5.2 Evaluation Comparison of PH® Dataset

For the assessment of the Robustness and Generalizability of the proposed model, an evaluation of the
outcomes on the PH? dataset was made which compared it with other state-of-the-art methods. The outcomes
are recorded in Tab. 4. Our technique accomplished promising results.

Table 4: Comparison results with other methods using PH? dataset

Methods DSC
Yuan [55] 0.920
Res-Unet [56] 0.854
CNN( SGD + Nestrov) [57] 0.761
DoubleUNet (proposed) 0.959

The second top-ranked participant Yuan et al. [55] obtained a DSC (0.920) by employing a double U-Net
framework. Our technique achieved a DSC of 0.959 with the proposed technique stated earlier. Based on the
results, our model performed better than existing techniques used in the associative field of study.

6 Conclusions and Future Work

Skin cancer segmentation is a fundamental advance in building up a computer-aided diagnostic
framework for skin malignancy. In this paper, we built a skin cancer segmentation architecture using
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CNN with two U-Net models stacked upon each other, improving the Dice coefficient and precision
impressively. Our model engineering was tested against the PH?, ISIC-2016 and HAM datasets. The DSC
gained was 0.9551, 0.8104 and 0.7645 separately. The proposed methodology achieved high accuracy
results when compared to state-of-the-art strategies. Double U-Net has shown promising results. The
performance of DoubleU-Net is significantly better when compared to baselines and UNet on all four
datasets. Moreover, the proposed structural design is flexible which makes it possible to integrate other
CNN blocks into the Double U-Net architecture. In the future, a new network model based on an
improvement with interconnections of the nodes needs to be modified to take advantage of the
segmentation process more effectively. In addition, research should focus more on designing low Dice
coefficients on experimental cases by Triple U-Net with a multi-scale loss for skin lesion segmentation
while retaining its ability.
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