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Abstract: Flexibility and robust performance have made the FOPID (Fractional
Order PID) controllers a better choice than PID (Proportional, Integral, Deriva-
tive) controllers. But the number of tuning parameters decreases the usage of
FOPID controllers. Using synthetic data in available FOPID tuners leads to abnor-
mal controller performances limiting their applicability. Hence, a new tuning
methodology involving real-time data and overcomes the drawbacks of mathema-
tical modeling is the need of the hour. This paper proposes a novel FOPID con-
troller tuning methodology using machine learning algorithms. Feed Forward
Back Propagation Neural Network (FFBPNN), Multi Least Squares Support Vec-
tor Regression (MLSSVR) chosen to design Machine Learning based Optimal
Tuner (MLOT) can handle the interdependency between the controller parameters
and multiple outputs for multiple inputs.The proposed tuner finds application in
the control of power and energy systems. It can accomplish tracking, distur-
bance-rejection, and robustness controller performances, thus making FOPID
controller design easier and accurate. Comparisons with existing FOPID tuning
rules show better controller performances and easy tuning. Thus, this paper
addresses a unique, real-time, model-free, easily tunable FOPID tuning methodol-
ogy satisfying plant requirements.

Keywords: Machine learning; data analytics; support vector regression; controller
tuning rule; multi least squares support vector regression; fractional order PID
controller

1 Introduction

In most of the process control industries, control loops are of Proportional Integral Derivative (PID) type
[1]. A Greater number of failures encountered in industrial controllers are due to poor tuning of PID loops.
From literature, it is found that PIDs still provide underperformance in most of the process control loops
[2,3]. Fractional Order PID (FOPID) controllers introduced by Podlubny [4] in 1994 are more flexible
than PID controllers owing to the two additional parameters, the order of integrator ‘�’ and differentiator
‘l’ [5,6]. These parameters provide robust stability and a constant phase around the gain crossover
frequency. These advantageous features are seldom achieved in PID controllers.
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Due to design flexibility, the FOPID controllers find applications especially in systems having nonlinear
dynamics [7–10], systems with long-dead time [11], higher-order systems [12], and also unstable systems.

Even though the FOPID controller is found to outperform the conventional PID controllers, design of
FOPID controller can be more difficult as it involves five tuning parameters namely, proportional gain
constant ‘Kp’, integral time constant ‘Ti’, derivative time constant ‘Td’, order of integrator ‘�’ and order
of differentiator ‘l’. On the other hand, due to five tuning parameters, FOPID controller can satisfy five
different performance specifications with higher cost/benefit ratio. To increase the applicability of FOPID
controller, these parameters should be made easily accessible like PID controllers.

Determination of FOPID controller parameters is achieved using many optimization algorithms [13] and
artificial intelligence techniques such as fuzzy, neural networks. These techniques require algorithm
execution time and initial ground work like determining membership functions, training of algorithms. A
single tuning rule without the need of any mathematical calculations and algorithm execution exists; the
computation of controller parameters will be much easier.

In last two decades, tuning rules such as Ziegler-Nichols (ZN), Cohen-Coon and Kappa–Tau are the
classical empirical tuning rules for FOPID control parameters. FOPID tuning rules based on optimal load
disturbance rejection [14], followed by optimal set point tracking are given in [15,16]. The FOPID tuning
rules for integral and unstable processes are also available [17] based on statistical polynomial curve
fitting. The statistical polynomial curve fitting requires a representative model having accurate initial
estimate of the parameter set. These methods involve very small dataset followed by interpolation of data
for curve fitting. Also, these methods offer separate equation for each controller parameter which make
the controller design tedious.

In addition to the above said drawbacks, these FOPID tuning rules are devised using very little
information on system dynamics, also require prior assumptions, approximations and fail to include
robustness.Hence, a more accurate, flexible, easily accessible tuning rule, without the need of any
mathematical formulations or initial estimation of parameter set is need of the hour.

Hence to overcome the above-said drawbacks, Machine Learning based Optimal Tuner (MLOT) is
proposed in this paper. Machine Learning Algorithm (MLA) is advantageous since, it is the strongest
predictive modeling for linear as well as nonlinear patterns, with lesser assumptions supplying a single
predictive model [18–20].

In this proposed work, the optimal FOPID controller dataset is generated to achieve two-different
performance specifications, Set-Point Tracking (SPT) and Load Disturbance Rejection (LDR) for various
First Order Plus Dead Time (FOPDT) systems using Covariance Matrix Adaptive Evolutionary Strategy
(CMA-ES) [21].

Data analytics is performed on SPT and LDR datasets to remove outliers if any and to identify the most
suitable MLA. Thus, identified MLA accomplishes the task of MLOT. Two MLAs, Feed Forward Back
Propagation Neural Network (FFBPNN) [22,23] and Multi-output Least-squares Support Vector
Regression Machines (MLSSVR) [24,25] have been identified and MLOT-FFBPNN, MLOT-MLSSVR is
devised using the two algorithms. To test the proficiency of the chosen MLA, MLOT is also constructed
using Multi-Variate Regression (MVR) [26,27]. The proposed system can be applied to systems with long
dead time, higher order systems which is the advantage.

The proposed MLOT is justified in terms of performance specifications, statistical variations in
controller parameters obtained from MLAs by comparing with the Tuning Rules (TR) given by Padula
and Visioli.

The authors claim, the following points as the novelty of this proposed work.
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a) A Universal tuner for FOPID controllers using MLA is proposed.

b) Data analysis with R studio
®

is used to identify appropriate MLAs.

c) Among the two MLAs, MLSSVR is chosen and verified using statistical analysis.

d) Better tracking, disturbance rejection, and robustness performances were achieved.

e) Proposed MLOT is applicable to the FOPDT system and also to any higher-order systems.

The organization of the paper is as follows. Section 2 describes the proposed methodology. Results and
discussions are placed in Section 3 and conclusions are given in Section 4.

2 Materials and Methods

The flow diagram of the proposed methodology is given in Fig. 1. Initially, CMA-ES algorithm
generates dataset with SPT and LDR objectives constrained with Maximum Sensitivity (Ms). Optimal
SPT dataset and LDR dataset are obtained as Kp

sp, Ti
sp, Td

sp, λsp, μsp and Kp
ld, Ti

ld, Td
ld, λld, μld respectively.

The generated dataset is analyzed using R studio for removing outliers and identification of suitable
MLAs. MLOT-FFBPNN and MLOT-MLSSVR are formulated with the dataset from the data analysis
block which is applicable to any process control system.

2.1 Optimal FOPID Dataset Generation

Optimal FOPID dataset is generated by optimizing the FOPID controller design for a range of FOPDT
systems FOPDT1, FOPDT2, …FOPDTn. The CMA-ES algorithm is used for optimization with seven
different maximum sensitivity values, Ms = [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0] under two design objectives,
SPT and LDR. The FOPDT system is in the form of Gp as given in Eq. (1) with process gain ‘K’, time
constant ‘T’, dead time ‘L’ and also, normalized dead time, τ = L/ (L + T). The τ is associated with the
dynamic behavior of a FOPDT system.

Gp sð Þ ¼ K

Tsþ 1
e�Ls (1)

Data Analysis
(R studio®)

Optimal FOPID Dataset Generation
(CMA-ES)

CMB
Dataset

LDR
Dataset

SPT
Dataset

Kp
sp Ti

sp Td
sp

λ
sp µsp Kp

ld Ti
ld Td

ld
λ

ld µld

MLOT

Machine Learning Algorithm
(FFBPNN, MLSSVR)

Process Control

Kp Ti Td λ µ

Set Point Tracking
Load Disturbance Rejection
Robustness to Parametric 
Uncertainty

Figure 1: Flow diagram for design of MLOT
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Hence, the ‘n’ number of different FOPDT systems (FOPDT1, FOPDT2, … FOPDTn) are produced by
varying τ as τ1,τ2,…τn between the range [0.3, 0.8]. The structure of FOPID controller used is given in Eq. (2)
and Oustaloup approximation in Eq. (3)

Gc sð Þ ¼ Kp
Tis� þ 1

Tis�

� �
Tdsl þ 1
Td
N

sþ 1

0
B@

1
CA; 0 � �; l � 2 (2)

sv ffi k
YN

n¼1

1þ s

xz;n

1þ s

xp;n

; n > 0 (3)

The FOPID controller parameters are obtained for ‘n’ different FOPDT systems by minimizing the
Integral Absolute Error (IAE). CMA-ES [25,26] optimization algorithm is used to minimize IAE in Eq.
(4) for the two performance objectives namely, SPT to obtain minimum IAEsp and LDR to obtain
minimum IAEld as in Eq. (5).

min|{z}
h

IAEsp=ld ¼
Z 1

0
esp=ld tð Þ�� ��dt (4)

subject to; Ms ¼¼ M

where; M ¼ ½1:4; 1:5; 1:6; 1:7; 1:8; 1:9; 2:0�

Ms ¼ min|{z}
x

1

1þ L jxð Þ
����

����; (5)

The dataset generated from the optimization block will be of the form as given in Tab. 1. Both SPT and
LDR objectives are optimized for 160 numbers of different FOPDT systems and hence 160 numbers of SPT
and LDR data points are obtained respectively and this is provided in the last column of Tab. 1. The variables
[τ, Ms] are chosen as input parameters while [Kp, Ti, Td, λ, μ] are chosen as the output parameters.

2.2 Data Analysis of Generated Optimal FOPID Dataset

To design MLOT, an MLA that can handle many inputs with many output parameters is required. Before
using such MLA, the inter-variable correlation between the output parameters must be determined to obtain
an efficient machine learning model. Also, the dataset generated from the optimization block may contain
few data points that may differ from other observations termed outliers. Outliers may be due to
measurement error which must be discarded to avoid misleading of modeling. Data analysis using R
studio

®

is carried out in this work to check and discard any outliers, and also to analyze the relationship
between the output parameters of the generated dataset.

Table 1: Optimal FOPID dataset from optimization block

Dataset Input parameters Output parameters Number of data points

SPT ssp Msp
s½ � [Kp

sp, Ti
sp, Td

sp, λsp, μsp] 160

LDR sld Mld
s

� �
[Kp

ld, Ti
ld, Td

ld, λld, μld] 160
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2.2.1 Remove Outliers
For a multiple input multiple output model, some data may be suitable in a single dimension but they

may become an outlier in a multi-dimension. The Cook’s distance identifies the presence of outliers. These
outliers are then removed from the dataset by identifying the data points having standard deviations greater
than the mean value.

2.2.2 Cross-Correlation among Output Parameters
The SPT and LDR dataset contains four output variables. The cross-correlation matrix of these four

output variables for the SPT dataset after removing outliers is obtained. Positive/Negative large cross-
correlation values denote high linear interrelationship among the variables. A Smaller cross-correlation
value does not mean that the corresponding parameter is an independent one. For such cases, the cross-
correlation plots have to be examined for non-linear relations. Hence, in this work, both the cross-
correlation matrix values and the cross-correlation plots have been analyzed for determining the
interrelationship among the output parameters before modeling with MLAs.

The SPT and LDR dataset are combined together to obtain the third dataset, the CMB dataset from the
generated data points as given in Tab. 2. In the CMB dataset, τc = [τsp, τld] while Ms

c = [Ms
sp, Ms

ld]. Also,
Kp

c = [Kp
sp, Kp

ld], Ti
c = [Ti

sp, Ti
ld], Td

c = [Td
sp, Td

ld], λc = [λsp, λld], μc = [μsp, μld].

2.3 Development of MLOT

Data analysis results confirm a high cross-correlation among output parameters. Two MLAs, FFBPNN
and MLSSVR have been identified to support the highly correlated dataset. FFBPNN and MLSSVR are
employed to design the proposed MLOT using the three datasets obtained from the data analysis block.

In FFBPNN, the Levenberg-Marquardt function with Mean Square Error (MSE) minimization is
considered. In MLSSVR multi-tasking is achieved by using weight vector, wi = w0 + vi, where, wi ∈ R.
w0 is the regular weight vector that determines the output while vi is dedicated for correlation in output
variable. Radial basis function is used as the kernel function and grid search technique in conjunction
with Leave one out cross-validation is used to tune the parameters in MLSSVR.Additionally, a Multi-
Variate Regression (MVR) model which is an extension of the linear regression model is developed to
compare the performances of the developed MLOTs.

The three MLAs are compared based on their statistical parameters such as Correlation Coefficient (CC),
Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). The results
of MLOTs are also compared with the existing FOPID tuning rule. The MATLAB® program to evaluate
FOPID controller parameters using the proposed MLOT is available with the authors. This MATLAB®

program can be used to determine FOPID controller parameters for any FOPID and higher-order systems.

Table 2: Optimal FOPID dataset along with combined dataset

Dataset Input parameters Output parameters Number of data points
(Outliers discarded)

SPT [τsp, Ms
sp] [Kp

sp, Ti
sp, Td

sp, λsp, μsp] 150

LDR [τld, Ms
ld] [Kp

ld, Ti
ld, Td

ld, λld, μld] 144

CMB [τc, Ms
c] [Kp

c, Ti
c, Td

c, λc, μc] 294
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3 Results and Discussions

An Intel® Core™ i7-3632 QM CPU with 2.2 GHz speed and 8 GB RAM computer with 8 logical
processors is used to develop the proposed MLOT in this paper. The optimization is carried out with the
help of the MATLAB® toolbox while the data analysis is performed using R studio®.

3.1 Optimization/Dataset Generation

The FOPDTsystem parameters K and Tare set to 1. Different FOPDTsystems are considered for dataset
generation with different τ ϵ [0.3, 0.8].

The optimum values of IAEsp obtained from CMA-ES for various FOPDT sample systems are compared
with the results obtained from ZN rules and TR given by Padula and Visioliin Tab. 3. The comparison is
given for three example systems. It is observed from Tab. 3, IAEsp is minimum for the CMA-ES method,
in all three FOPDT sample systems.

The graphs in Fig. 2 confirm that the optimal controller parameters obtained using the CMA-ES
algorithm are found to vary smoothly for s in both the design objectives.

3.2 Data Analysis

The input and output variables of the SPT and LDR dataset are given in Table I for developing the
MLAs. Based on Cook’s distance, outliers present in the Kp parameter of the SPT dataset are identified
and denoted by the red colour ‘+’ (plus) symbol as shown in Fig. 3a data points after removing outliers
are given in Fig. 3b. Similarly, outliers are removed in LDR dataset also.

The cross-correlation matrix of the four output variables for the SPT dataset after removing outliers is
given in Tab. 4. The diagonal plots in Fig. 4 represent the histogram of the data distribution for each output
variable. The lower diagonal plots represent the variation between the output variables. The upper diagonal

Table 3: Comparison of IAEsp obtained from CMA-ES with ZN and TR

τ = 0.35

Sample system 1 Kp Ti Td � l IAE sp

ZN 0.5528 0.9536 0.3797 1.3607 1.0828 1.8327

TR 1.0281 0.9829 0.1698 1 1.2000 1.4736

CMA-ES 1.3571 1.0544 0.1701 1 1.1006 0.7868

Sample system 2 τ = 0.4212

Kp Ti Td � l IAE sp

ZN 0.6762 1.1426 0.3619 1.3198 1.0841 2.7109

TR 0.5534 0.9746 0.3566 1 1.2000 2.6390

CMA-ES 0.7867 1.1045 0.3150 1 1.1106 1.4562

Sample system 3 τ = 0.6710

Kp Ti Td � l IAE sp

ZN 0.9315 2.0084 0.4172 1.3244 0.9105 4.7749

TR 0.2911 0.9676 0.7492 1 1.2000 4.8330

CMA-ES 0.5107 1.2859 0.5364 1 1.1160 2.6707
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represents their cross-correlation values similar to that tabulated in Tab. 4. The font size is larger for large
cross-correlation values while font size is smaller for lower values of cross-correlation in Fig. 4. The red-
colored ‘***’ represents very large cross-correlation values among all.
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Figure 2: Parameter variation for various FOPDTs. (a) Kp
spVs τ for SPT (b) Td

ldVs τ for LDR
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Figure 3: Box plot for SPT dataset. (a) With outliers (b) without outliers

Table 4: Cross correlation matrix for SPT dataset

Output variables Ksp
p Tsp

i Tsp
d lsp

Ksp
p 1.0000 –0.6503 –0.7461 0.0666

Tsp
i –0.6503 1.0000 0.8020 0.0609

Tsp
d –0.7461 0.8020 1.0000 –0.0047

lsp 0.0666 0.0609 –0.0047 1.0000
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3.3 Development of MLOT Models

The three MLAs, MLOT-FFBPNN, MLOT-MLSSVR, MLOT-MVR algorithms for SPT, LDR, and
CMB datasets are used to develop totally nine MLOT models. The MLOT models are tested using
randomly generated data points named testing data points that are not involved in the training and
validation phase. Figs. 5a and 5b shows the variation of Td

ld, μld with respect to τld for MLOT-LDR.

Also, it can be observed that the results of testing data points in Fig. 6 follow the graphs of parameter
variations similar to the validation data points in Fig. 5. Also, the results from TR show that controller
parameters from FFBPNN and MLSSVR are closer to the optimum controller parameters than the results
from TR.

Figure 4: SPT dataset-cross correlation matrix
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In graph μldVsτld of Fig. 6b for Ms = 2.0, the point A indicates the value of μld from MLSSVR (blue
color) and point B from FFBPNN (green color) for the same value of τld = 0.15. But, point A and point
B clearly indicate that FFBPNN (green color) does not follow the pattern as given in Fig. 5b when
compared to MLSSVR (blue color). This indicates that the MLSSVR algorithm produces better results
than FFBPNN.

The statistical performances of proposed MLOTs are better than TR and MVR as given in Tab. 5 for Kp

and Tab. 6 for Td.
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Figure 6: Testing results of three MLOT models compared with results from TR. (a) Td
ldVsτld from MLOT-

LDR (b) μldVsτld from MLOT-LDR

Table 5: Statistical analysis of the proposed MLOTs for Kp

Variables Kp

Method TR MVR FFBPNN MLSSVR

MLOT-SPT

CC 0.6307 0.6992 0.9999 0.9999

MSE 1.6063 6.2 × 10−6 0.0003 0.0004

RMSE 1.2674 0.0056 0.0172 0.3522

MAE 0.8444 0.0033 0.0106 0.2801

MLOT-LDR

CC 0.6433 0.5974 0.9883 0.9966

MSE 0.6540 0.0339 0.0009 0.0003

RMSE 0.2584 0.1842 0.0292 0.0162

MAE 0.8125 0.1671 0.0168 0.0113

MLOT-CMB

CC – 0.6892 0.9914 0.9944

MSE – 0.0579 0.0015 0.0010

RMSE – 0.2406 0.0386 0.0311

MAE – 0.2049 0.0263 0.0236
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The statistical results of controller parameters are given as spider graphs in Figs. 7 and 8. For a better
machine learning model, the CC values must be very large and the MSE, RMSE, MAE values must be the
least. The CC values for all the output parameters in MLSSVR are larger compared to all other methods. This
is shown by the outermost web denoted by red colour in Fig. 7a. Also, the MSE values of MLSSVR results
are the least and it is given by the innermost web given in Fig. 7b denoted in red colour.

Table 6: Statistical analysis of the proposed MLOTs for Td

Variables Td

Method TR MVR FFBPNN MLSSVR

MLOT-SPT

CC 0.692 0.6956 0.9977 0.9981

MSE 0.093 0.0005 0.0009 0.0004

RMSE 0.305 0.0218 0.0302 0.2268

MAE 0.2061 0.009 0.0161 0.1818

MLOT-LDR

CC 0.7849 0.7501 0.9951 0.9969

MSE 0.0993 0.0171 0.0004 0.0002

RMSE 0.2650 0.1309 0.0202 0.0158

MAE 0.3561 0.1042 0.0128 0.0096

MLOT-CMB

CC – 0.7073 0.9888 0.9905

MSE – 0.0416 0.0016 0.0013

RMSE – 0.2039 0.0404 0.0365

MAE – 0.1676 0.0277 0.0227

Figure 7: MLOT-LDR dataset. (a) CC (b) MSE
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The CC values for the CMB dataset are compared among MLOT-MLSSVR, MLOT-FFBPNN, MLOT-
MVR models in Fig. 8a. The MLOT-MLSSVR takes the outermost spider web (red colour) denoting larger
correlations among the generated CMA-ES controller parameters and the controller parameters from
validation data. Similarly, the results from MLOT-MLSSVR have the least MSE while using the CMB
dataset. This is denoted by the innermost spider web given in red colour as shown in Fig. 8b.

4 Conclusion

This paper proposes a novel FOPID controller tuning methodology using machine learning algorithms.
Feed Forward Back Propagation Neural Network (FFBPNN), Multi Least Squares Support Vector
Regression (MLSSVR) chosen to design Machine Learning based Optimal Tuner (MLOT) can handle the
interdependency between the controller parameters and multiple outputs for multiple inputs. The
statistical analysis values reveal that, the CC values of MLSSVR is 0.999, 0.9966, 0.9944 for MLOT-
SPT, MLOT-LDR, MLOT-CMB for Kp. The MLOT-MLSSVR using the CMB dataset perfectly captures
variations among controller parameters. The graphical analysis of parameter variations and statistical
analysis confirms the better results for the proposed MLOT over the FOPID Tuning Rule (TR) given by
Padula and Visioli. The proposed MLOT is also applicable for dead time-dominated systems and
lag-dominated systems. Pre-processing with large amount of dataset consumes computational time which
can be overcome using cloud computing and big data analysis in future.
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Figure 8: MLOT-CMB dataset. (a) CC (b) MSE

IASC, 2022, vol.33, no.3 1797



References
[1] K. J. Åström and T. Hägglund, PID controllers: Theory, design, and tuning. In: Automatic Tuning of PID

Controllers, 2nd ed., Research Triangle Park, NC: Instrument society of America, pp. 1–354, 1995.

[2] A. O’Dwyer, Handbook of PI and PID controller tuning rules, 3rd ed., USA: Imperial college press, p. 624, 2009.

[3] P. Shah and S. Agashe, “Review of fractional PID controller,” Mechatronics, vol. 38, no. 7, pp. 29–41, 2016.

[4] I. Podlubny, “Fractional-order systems and fractional-order controllers,” Institute of Experimental Physics, Slovak
Academy of Sciences, Kosice, vol. 12, no. 3, pp. 1–18, 1994.

[5] C. A. Monje, Y. Chen, B. M. Vinagre, D. Xue and V. Feliu-Batlle, Fractional-order systems and controls:
Fundamentals and applications. In: Advances in Industrial Control. London: Springer Science & Business
Media, Springer, p. 415, 2010.

[6] S. Das, S. Saha, S. Das and A. Gupta, “On the selection of tuning methodology of FOPID controllers for the
control of higher order processes,” ISA Transactions, vol. 50, no. 3, pp. 376–388, 2011.

[7] R. V. Yohanandhan and L. Srinivasan, “Decentralised wide-area fractional order damping controller for a large-
scale power system,” IET Generation, Transmission & Distribution, vol. 10, no. 5, pp. 1164–1178, 2016.

[8] S. Debbarma and A. Dutta, “Utilizing electric vehicles for LFC in restructured power systems using fractional
order controller,” IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2554–2564, 2016.

[9] I. M. Mehedi, U. M. Al-Saggaf, R. Mansouri and M. Bettayeb, “Two degrees of freedom fractional controller
design: Application to the ball and beam system,” Measurement, vol. 135, no. 3, pp. 13–22, 2019.

[10] H. P. Ren, J. T. Fan and O. Kaynak, “Optimal design of a fractional-order proportional-integer-differential
controller for a pneumatic position servo system,” IEEE Transactions on Industrial Electronics, vol. 66, no. 8,
pp. 6220–6229, 2018.

[11] M. H. Khooban, M. ShaSadeghi, T. Niknam and F. Blaabjerg, “Analysis, control and design of speed control of
electric vehicles delayed model: Multi-objective fuzzy fractional-order PI λD μ PIλDμ controller,” IET Science,
Measurement & Technology, vol. 11, no. 3, pp. 249–261, 2017.

[12] A. Asgharnia, A. Jamali, R. Shahnazi and A. Maheri, “Load mitigation of a class of 5-MWwind turbine with RBF
neural network based fractional-order PID controller,” ISA Transactions, vol. 96, no. 8, pp. 272–286, 2020.

[13] D. S. Acharya and S. K. Mishra, “A multi-agent based symbiotic organisms search algorithm for tuning fractional
order PID controller,” Measurement, vol. 155, no. 9–10, p. 107559, 2020.

[14] Y. Chen, T. Bhaskaran and D. Xue, “Practical tuning rule development for fractional order proportional and
integral controllers,” Journal of Computational and Nonlinear Dynamics, vol. 3, no. 2, p. 021403, 2008.

[15] F. Padula and A. Visioli, “Optimal tuning rules for proportional-integral-derivative and fractional-order
proportional-integral-derivative controllers for integral and unstable processes,” IET Control Theory &
Applications, vol. 6, no. 6, pp. 776–786, 2012.

[16] F. Padula and A. Visioli, “Set-point weight tuning rules for fractional-order PID controllers,” Asian Journal of
Control, vol. 15, no. 3, pp. 678–690, 2013.

[17] F. Padula and A. Visioli, “Tuning rules for optimal PID and fractional-order PID controllers,” Journal of Process
Control, vol. 21, no. 1, pp. 69–81, 2011.

[18] I. H. Witten, E. Frank, M. A. Hall, C. J. Pal and M. Data, “Practical machine learning tools and techniques”. Data
Mining, vol. 2, pp. 4, 2005.

[19] B. J. Perry, Y. Guo, R. Atadero and J. W. van de Lindt, “Streamlined bridge inspection system utilizing unmanned
aerial vehicles (UAVs) and machine learning,” Measurement, vol. 164, p. 108048, 2020.

[20] R. Abdelaziz, M. Elhoseny, A. S. Salama and A. M. Riad, “A machine learning model for improving healthcare
services on cloud computing environment,” Measurement, vol. 119, no. 3, p. 117–128, 2018.

[21] N. Hansen, The CMA evolution strategy: A comparing review. In: Towards a New Evolutionary Computation.
Vol. 192. Berlin, Heidelberg: Springer, pp. 75–102, 2006.

[22] M. H. Beale, M. T. Hagan and H. B. Demuth, Neural network toolbox user’s guide. In: Math Works Inc. Natick,
MA: Ver. 4, 2011.

1798 IASC, 2022, vol.33, no.3



[23] D. Svozil, V. Kvasnicka and J. Pospichal, “Introduction to multi-layer feed-forward neural networks,”
Chemometrics and Intelligent Laboratory Systems, vol. 39, no. 1, pp. 43–62, 1997.

[24] S. Xu, X. An, X. Qiao, L. Zhu and L. Li, “Multi-output least-squares support vector regression machines,” Pattern
Recognition Letters, vol. 34, no. 9, pp. 1078–1084, 2013.

[25] X. Zhu and Z. Gao, “An efficient gradient-based model selection algorithm for multi-output least-squares support
vector regression machines,” Pattern Recognition Letters, vol. 111, no. 5, pp. 16–22, 2018.

[26] C. Chatfield and A. J. Collins, Introduction to Multivariate Analysis. In: Mathematics & Statistics, 1st ed., Boca
Raton: Routledge, pp. 1–248, 1980.

[27] V. Valério, D. Duarte and J. S. Da Costa, “Tuning of fractional PID controllers with Ziegler-Nichols-type rules,”
Signal Processing, vol. 86, no. 10, pp. 2771–2784, 2006.

IASC, 2022, vol.33, no.3 1799


	Tuning Rules for Fractional Order PID Controller Using Data Analytics
	Introduction
	Materials and Methods
	Results and Discussions
	Conclusion
	flink5
	References


