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Abstract: Traffic flow forecasting is the need of the hour requirement in Intelli-
gent Transportation Systems (ITS). Various Artificial Intelligence Frameworks
and Machine Learning Models are incorporated in today’s ITS to enhance fore-
casting. Tuning the model parameters play a vital role in designing an efficient
model to improve the reliability of forecasting. Hence, the primary objective of
this research is to propose a novel hybrid framework to tune the parameters of
Multilayer Perceptron (MLP) using the Swarm Intelligence technique called Par-
ticle Swarm Optimization (PSO). The proposed MLP-PSO framework is designed
to adjust the weights and bias parameters of MLP dynamically using PSO in order
to optimize the network performance of MLP. PSO continuously monitors the gra-
dient loss of MLP network while forecasting the traffic flow. The loss is reduced
gradually using Inertia Weight (denoted as ω) which is the critical parameter of
PSO. It is used to set a balance between the local and global search possibilities.
The Inertia Weight has been varied in order to dynamically adjusts the network
parameters of MLP. A comparison has been carried out among MLP and MLP-
PSO models with variants of Inertia Weight Initializations. The results obtained
justifies that, the proposed MLP-PSO framework reduces the forecasting error
and improves reliability and accuracy than MLP model.

Keywords: Multilayer perceptron; evolutionary computing; particle swarm
optimization; swarm intelligence; forecasting

1 Introduction

There are rapid advances in Intelligent Transportation Systems (ITS) due to its high potential to improve
safety and mobility in transportation. The main motivation behind the implementation of ITS is the effective
and efficient forecasting of traffic flow on roads thus facilitating a safer and smarter use of traffic networks.
The implementation of such systems aims in forecasting with negligible error rates. A traffic flow forecasted
from multilayer perceptron output depends on the input and parameters of the network. The performance of
the network can be optimized by Bio-inspired computer optimization algorithms.
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Bio-inspired computer optimization algorithms are a novel way to developing new and robust
competing approaches that is based on the ideas and inspiration of biological evolution. In recent years,
bio-inspired optimization algorithms have gained popularity in machine learning for solving challenging
issues in science and engineering. However, these problems are typically nonlinear and constrained by
many nonlinear constraints in determining the best solution. Recent advances tend to utilize bio-inspired
optimization algorithms to solve the issues of traditional optimization methods, which provide a potential
technique for solving complex optimization problems.

Various population-based nature inspired metaheuristic optimization algorithms are used with the
Machine learning models in order to train the parameters of the model. Some of the algorithms used are
Ant Colony optimization (ACO) [1], Particle swarm optimization (PSO), Firefly Algorithm (FA) [2],
Moth flame Optimization (MFO), Chicken Swarm Optimization (CSO) [3], Elephant Herding
Optimization (EHO) [4], Cuckoo Search (CS) [5] etc.

Particle SwarmOptimization (PSO) is utilized in this study to improve the performance of the Multilayer
Perceptron and to find the optimal solution for forecasting traffic flow. With this forecasting model the error
rate is reduced and hence the prediction accuracy is improved.

2 Related Work

Garg et al. used PSO to train Artificial Neural Network (ANN) for drilling flank wear detection. The
network parameters are tuned using the PSO. The results show that the PSO trained ANN performs much
better than Back Propogation Neural Network (BPNN).

The main feature of PSO is to provide minimum velocity constraint. This feature avoids premature
convergence in MLP network parameter tuning. It also reduces the impact of increasing the dimensions
of MLP. These improvements in network tuning [6] provides reduced error rate in prediction as stated by
Pu et al.

A combined scheme using PSO and Newton’s law of motion named as centripetal accelerated particle
swarm optimization (CAPSO) was proposed by Beheshti et al. CAPSO is applied to MLP to optimize the
network parameters. The CAPSO applied on MLP was able to classify diseases in various medical
datasets efficiently that the nature inspired algorithms such as PSO [7], imperialist competitive algorithm
and GSA on MLP.

Dang et al. applied PSO and Firefly algorithms to ANN to estimate the scour depths. The result prove
Firefly [8] on ANN was effective compared to PSO on ANN. Guofeng Zhou et al. applied Artificial Bee
Colony (ABC) Optimization and Particle Swarm Optimization (PSO) on MLP for estimating the usage of
heating and cooling loads of the energy in the residance. The R2, MAE and RMSE metrics are used to
measure the performance of the models. The results show that PSO on MLP works efficient than ABC on
MLP [9].

Multimean particle swarm optimization is a novel optimization approach introduced by Mehmet et al.
This algorithm was used to train a multilayer feed-forward ANN. On multilayer feed-forward ANN training,
the technique was found to generate superior results than multiple swarm optimization (MSO) on benchmark
datasets [10].

In cognitive research, the acquired data for training contains uncertain information. This uncertain data
is termed as fuzziness. Training the MLP with this fuzzy data is called as Fuzzy MLP model [11] by Dash
et al. MLP normally suffers from local minima problem. To overcome this, three metaheuristic algorithms
particle swarm optimization, genetic algorithm and gravitational search are used to optimize the
parameters of FMLP.

1336 IASC, 2022, vol.33, no.3



To optimize the operation of the thermal producing units, Thang et al. suggested an updated firefly
method. At various levels, three fundamental modifications to the firefly algorithms were presented. The
improved algorithm was applied on the five different benchmarks and attained better performance than
the firefly algorithm [12].

Khatibi et al. proposed hybrid algorithms. One is MLP with Levenberg–Marquardt (LM)
backpropagation algorithm [13] and the other is MLP with Fire-Fly Algorithm. These algorithms were
used to predict the directions of stream flow and the result show MLP with Fire-Fly Algorithm performs
better.

Emad et al. use the swarm intelligence Firefly method as a classifier. The suggested technique has three
stages [14]. The first stage is feature selection, the second stage is model construction using FA to classify the
class labels and the last stage is prediction of the classes. The classifier performance was proved to be
effective by applying to seven different datasets.

Aboul et al. [15] employed Moth flame optimization to optimize the parameters of the support vector
machine in detecting tomato diseases. The fitness function in MFO captures the dependency in the
features more efficiently and thereby maximized the classification accuracy. Xiaodong et al. proposed a
modified Ameliorated Moth Flame Optimization (AMFO) algorithm [16] in which the flames are
produced with Gaussian mutation and thereby the moth postions are updated. This enables the MFO to
attain the global minimum faster. On 23 separate benchmarks, this algorithm was compared to 9 state-of-
the-art models and achieved good results with 0.0542 mean square error.

The hybrid algorithm combining the Deep Neural Network and Chicken Swarm Optimization is
proposed by [17] Sengar et al. The DNN was initially trained with 24 h wind energy data. The error rate
during training the DNN model is reduced using CSO. Later the wind energy forecast was carried out
using the DNN-CSO algorithm. This algorithm showed better performance when compared with DNN
and ANN models.

Saghatforoush et al. predicted the flyrock and back break in order to minimize the environmental
impacts due to back break, flyrock and ground vibration [18]. The Artificial Neural Network (ANN)
algorithm was used in flyrock and back break prediction. In order to increase prediction accuracy, the
parameters of the ANN were fine-tuned effectively utilising Ant Colony Optimization (ACO).

Hossein et al. presented a hybrid approach that combines elephant herding optimization (EHO) and
MLP [19] to optimize the cooling loads in heating, ventilation, and air conditioning. ACO with MLP and
Harris hawks optimization (HHO) with MLP were used to compare the outcomes. The proposed EHO
with MLP outperformed the other two metaheuristic algorithms in terms of accuracy.

The performances of Feed forward neural networks was improved by optimizing its parameters. In this
paper, Ashraf et al. [20] compared the effectiveness of various single objective and multi objective
optimization algorithms. AbdElRahman et al. proposed a strategy to refine the cell structure of Long
Short Term Memory (LSTM) Reccurent Neural Networks (RNN) using Ant Colony Optimization (ACO)
[21]. The ACO optimized LSTM RNNs performed better than the traditional algorithms.

A simple matching-grasshopper new cat swarm optimization algorithm (SM-GNCSOA) was proposed
by [22] Bansal et al. in order to select the relevant featyres efficiently. It was used to optimize the performance
of Multilayer Perceptron (MLP). This gives better results when applied to various datasets and very efficient
to avoid local minima problems. Monalisa et al. used Elephant Herding Optimization algorithm [23] for
tuning the network parameters of ANN. This resulted in diagnosis of cancer with good classification
accuracy of about 0.9837.

One of the most important topics in Particle Swarm Optimization (PSO) [24] is determining the inertia
weight w. The inertia weight was created by PSO to balance its global and local search capabilities. Initially, a
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method was proposed for adjusting the inertia weight adaptively based on particle velocity data. Second,
Zheng et al. propose that both position and velocity data be used to adaptively modify the inertia weight.

Martins et al. developed the linear decreasing inertia weight (LDIW) technique [25] to increase the
performance of the initial particle swarm optimization. However, when dealing with big optimization
problems, the linear decreasing inertia weight PSO (LDIW-PSO) algorithm is known to have the defect
of premature convergence due to a lack of momentum for particles to execute exploitation as the
programme approaches completion.

Particle swarm optimization (PSO) is a well-known swarm intelligence-based optimization technique
[26]. PSO’s inertia weight is a crucial parameter. During the last 20 years, many methodologies for
determining inertia weight have been proposed by Kushwah et al. This study proposes a Dynamic Inertia
Weight method. In the suggested method, probability-based inertia weights are applied to PSO. This
paper demonstrates the potential of particle swarm optimization for tackling many types of optimization
problems in chemometrics by providing a full description of the method [27] as well as several worked
examples in diverse applications is proposed by Marini et al.

Shang et al. present a novel hybrid prediction model based on combination kernel function-least squares
support vector machine and multivariate phase space reconstruction [28] to increase traffic prediction
accuracy. PSO is used to optimize the parameters of the given model. Cong et al. proved that the least
squares support vector machine (LSSVM) [29] has a lot of potential in forecasting issues, particularly
when it comes to selecting the values of its two parameters using appropriate heuristic approaches.
However, the difficulty in understanding and obtaining the global optimal solution with these meta-
heuristics. The fruit fly optimization algorithm (FOA) is a novel heuristic method that is easy to learn and
quickly converges to the global optimal solution.

An upgraded PSO-BP (particle swarm optimization-back propagation) prediction model is built to
estimate total vessel traffic flow in a particular port location. The SAPSO-BP neural network is a
prediction model presented by Zhang et al. [30] that updates the parameters of a BP neural network using
the SAPSO (self-adaptive particle swarm optimization) algorithm.

In this work, the researcher’s ideas motivated in optimizing the performance of MLP using Particle
Swarm Optimization.

3 Multilayer Perceptron (MLP) Framework

Multilayer Perceptron is a fully connected feedforward back propagation network. There can be three or
more layers consisting of an input layer, an output layer and one or more hidden layers forming a deep neural
network. In a fully connected network, the node in one layer connects to every node in the next layer with a
certain weight w. The model is trained by changing the connection weights after each iteration based on the
amount of error in the output. Figs. 1 and 2 shows the MLP framework and the weight and bias initialization.

Algorithm 1 is an implementation of multilayer perceptron with backpropogation for time series
forecasting. X, Y are the input and the target time series data points which is fed as input data to
multilayer perceptron algorithm. Initialize the two main parameters in perceptron algorithm namely: the
learning rate (η) and the number of times to perform back propagation (epoch). Later, initialize the following:

� Wh-weight between the input layer and hidden layer

� Wout-weight between the hidden layer and output layer

� Bh-bias to hidden layer neurons

� Bout-bias to output layer neurons

1338 IASC, 2022, vol.33, no.3



Algorithm 1: Multilayer Perceptron with Backpropagation

Data: X, Y

Result: �Y

Initialize epoch and η;

Initialize Wh, Wout, Bh, Bout;

for each epoch do

Forward Propagation

Hi = (Y . Wh) + Bh;

Ha = sigmoid (Hi);

Oi = (Ha . Wout) + Bout;

Yout = sigmoid (Oi);

Back Propagation

E = �Y -Yout;

gout = sigmoid-derivative (Yout);

gh = sigmoid-derivative (Ha);

dout = E × gout;

Eh = dout . Wout;

dh = Eh × gh;

Wout = Wout + (Ha . dout) × η;

Wh = Wh + (X . dh) × η;

Bout = Bout + (dout × η);

Bh = Bh + (dh × η);

Figure 1: Multilayer perceptron
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The following are computed for forward propagation:

1. Hidden layer input (Hi) which is the dot product of Y and Wh added to Bh

2. Hidden layer activation (Ha) obtained by applying sigmoid activation function to Hi

3. Output layer input (Oi) which is the dot product of Ha with Wout added to Bout

4. Predicted output (Yout) obtained by applying sigmoid activation function to Oi

After forward propagation, an output is predicted which may contain error. In order to minimize the error
rate, the network is back propagated by updating the weights and bias at all intermediate layers between
output and input layer. The following computations are done in backward propagation:

1. Error (E) which is the difference between original output (�Y ) and predicted output (Yout)

2. Slope or gradient of output layer (gout) and hidden layer (gout) which are obtained by applying
derivative of sigmoid function to Yout and Ha respectively.

3. Delta of the output layer (dout) is the product of E and gout
4. Error in hidden layer (Eh) is the dot product of dout and Wout

5. Delta of the hidden layer (dh) is the product of Eh and gh

4 MLP-PSO Framework

Particle Swarm Optimization (PSO) is a meta-heuristic optimization technique based on natural swarm
behaviour, such as fish and bird schools. PSO is a simple social system simulation. The PSO algorithm was
created with the goal of graphically simulating the elegant but unpredictable choreography of a flock of birds.

Each solution in PSO is a “bird” with in problem space which is known as “particle”. All particles have
fitness values that are evaluated by the fitness function in order to be optimized, as well as velocities that
direct the particles’ flight. The particles follow the current optimum particles through the search space.

This technique is a basic yet effective population-based, adaptive, and stochastic technique for tackling
simple and challenging optimization problems. Because it does not require the gradient of the problems to
work with, the technique can be used to a wide range of optimization problems. In PSO, a swarm of particles
(a collection of solutions) is scattered at random across the search space. The food at each particle’s location
is specified by the target function (which is the value of the objective function). Every particle is aware of its
initialization value, best value (locally best solution), swarm-wide best value (globally best solution), and
velocity as determined by the objective function.

A single static population is maintained by PSO whose particles are slightly adjusted due to variations in
search space. This method is referred as directed mutation. These particles never expire instead moved to
different space due to directed mutation.

A small number of different parameters, such as the number of particles in the swarm, the dimension of
the search space, the particle’s velocity and position, cognitive rate, social rate, inertia weight and other
random factors, control the PSO algorithm’s behaviour and usefulness in optimizing a given problem.
The versatility of PSO lies in tuning these parameters for optimal solution. To be more specific, handling
inertia weight has attracted many researchers’ interest. This is due to the fact that the parameter ω
controls the divergence or convergence of particles. The position and velocity in a d dimensional space of

Figure 2: Bias and weights representation in MLP
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the particles are represented by xi = xi1, xid and vi = vi1, . . . vid respectively. Particle movement is required to
find the best solution in the search space.

PSO starts with a set of random particles (solutions) and then updates generations to look for optima.
Each particle is updated in each iteration by comparing two “best” values. The first is the best solution
(fitness) obtained by the particle thus far which is called as PBest. The best value obtained so far by any
particle in the population is another “best” value recorded by the particle swarm optimizer. This best
value is referred to as GBest, which stands for “global best”.

Consider the following notations:

� f-MLP function to optimize

� ps-number of particles in the swarm

� d-dimension of the search space

� c1-cognitive coefficient
� c2-social coefficient
� ω-inertia
� vi-velocity of the ith particle

� xi-position of the ith particle

� PBesti-local best solution of the ith particle

� GBest-global best among other particles in the swarm

� r1 and r2-random values obtained from rand() function

For the next iteration, the velocity and position of the particles are updated as

viþ1 ¼ x � vi þ c1 � r1 � ðPBesti � xiÞ þ c2 � r2 � ðGBesti � xiÞ (1)

xiþ1 ¼ xi þ viþ1 (2)

Fig. 3 shows the proposed MLP-PSO framework for traffic flow forecasting. The objective of MLP-PSO
framework is to minimize the error rate compared to MLP. Hence, the objective function of PSO is to
minimize the Mean Square Error (MSE).

4.1 Parameter Selection in PSO

The inertia, cognitive coefficient and social coefficient are the parameters that control the behaviour of
the swarms. At each iteration, the random terms are used to accelerate the cognitive and social behavior. The
weights r1 and r2 are used to stochastically adjust the cognitive and social acceleration respectively. r1 and r2
are unique for each iteration and each particle. They are random values set in the range of [0, 1].

The c1 and c2 parameters defines the group’s capability to experience the best personal solutions and the
best global solution found over the iterations respectively. When c1 is high, there is no convergence since
each particle is focused on its own best solutions. When c2 is high, the optimal solution cannot be
reached. Most of the studies states that c1 + c2 >4.

For N iterations and for every i current iteration, c2 linearly increases from 0.5 to 3.5 whereas c1 linearly
decreases from 3.5 to 0.5. This ensures c1 + c2 =4 [25].

4.2 Variants of Inertia Weight (ω)

Particles’ ability to identify the best solutions found so far is known as exploitation. Particles’ ability to
evaluate the entire search space is referred to as exploration. A good balance on exploitation and exploration
likely has an impact on the convergence to optimum solution. The inertia weight is a critical parameter in the
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PSO process, since it influences convergence and the trade-off between exploration-exploitation. Some variants of
inertia weights are used that shows its impact on the forecasted traffic flows. Various studies states that ω can be
initially 0.9 (referred as ωstart) and converges down to 0.4 (referred as ωend) in the subsequent iterations.

4.2.1 Constant Inertia Weight (CIW)
A constant value is set for the inertia in all iterations. In this work, the constant value is set as

CIW ¼ xstart þ xend

2
(3)

4.2.2 Random Inertia Weight (RIW)
The Random Inertia Weight is fully determined by a random value. The generated random value is in the

range [0, 1] and the computed RIW is between [0.4, 0.9]

RIW ¼ 0:4þ randðÞ
2

(4)

4.2.3 Chaotic Inertia Weight (ChIW)
A dynamic nonlinear system that is highly dependent on its starting value is called a chaos. It possesses

the properties of ergodicity and stochasticity. The goal is to use the merits of chaotic optimization to prevent
PSO entering into local optimum in the problem search process.

zkþ1 ¼ l� zk � ð1þ zkÞ (5)

where zk is the k
th chaotic number in the range [0, 1] and μ = 4 such that, z0 ∈ (0, 1) and z0 ∉ (0, 0.25, 0.5,

0.75, 1)

ChIW ¼ ðxstart � xendÞ imax � i

imax

� �
þ xend � zkþ1 (6)

4.2.4 Linear Decreasing Inertia Weight (LDIW)
For every subsequent iteration, the inertia weight decreases linearly. In general, a large inertia weight is

advised for the initial phases of the search process to increase global exploration (finding new areas), whereas
the inertia weight is reduced for local exploration in the later stages in order to fine tune the current search
space. Considering imax and i are maximum and current iterations respectively, the Linear Decreasing Inertia
Weight (LDIW) is computed as follows:

LDIW ¼ ðxstart � xendÞ imax � i

imax

� �
þ xend (7)

5 Experimental Setup and Discussion

5.1 Metrics

In order to have a comprehensive evaluation of the model, three metrics are considered to validate the
models. Mean Square Error (MSE) is used to show the degree of variation in the results. Mean Absolute Error
(MAE) is used to show the variance in the result prediction. R2 is used to measure the degree of correlation
between the original value and the predicted value.

� At-the original traffic flow at time t

� Ā-average of the original traffic flows
� Ft-the predicted traffic flow at time t

� num-number of traffic flow data
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Algorithm 2: Optimize MLP using PSO

Data: X, Y

Result: �Y

Initialize ω, c1, c2, ps, d

for all particles in the search space do

Initialize position and velocity of the particles

Evaluate f(xi) for d variables

Get PBesti for all i = (1,…, ps)

for each iteration do

Calculate inertia weight ω

for all particles in the search space do

Update vi using Eq. (1)

Update xi using Eq. (2)

Evaluate f(xi) for d variables

Get PBesti for all i = (1,…, ps)

if f(xi) is better than PBesti then

PBesti = xi

if best of PBesti is better than GBest then

GBest = best of PBesti
�Y = GBest

Metrics are given by,

MSE ¼ 1

num

Xnum
t¼1

ðFt � AtÞ2 (8)

MAE ¼ 1

num

Xnum
t¼1

jFt � Atj (9)

R2 ¼ 1�
Pnum
t¼1

ðFt � AtÞ2

Pnum
t¼1

ðFt � �AÞ2
(10)

5.2 Data Acquisition

Time Series Traffic Flow dataset used in this paper is recorded from MIDAS Site-5825 at
M48 westbound between M4 and J1 (102022401)–UK [31]. The traffic flow data comprises of traffic
flow data for every 15 min interval of each day for every month. The model is trained and tested with
Monday 8 AM data in the year 2020. The data is preprocessed before training to obtain a stationary time
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series. 44 traffic flow values are available for Mondays in the dataset. In this, 39 data is used to train the
models. The forecast for last 5 Mondays in the year 2020 are predicted and tested with various models.

5.3 Parameter Initialization

The 1 × 10 × 6 × 1 MLP model is built. The model represents one node at input and output layer, 10 and
6 nodes in the first and second hidden layers respectively. The learning rate η is set as 0.1. After various runs
of the algorithm by varying the number of epochs, it has been identified that the gradient loss is minimized at
50 epochs. The weight and bias is initialised at random during the initial run of PSO. Later PSO generates the
weight and bias based on the loss from MLP which is stated in Algorithm 2. The position and velocity of the
particles are updated in the range 0–1. The size of search space is set as 100. Other parameter setting of PSO
is carried out as per the discussion in Section 4.1.

5.4 Results

Tab. 1 shows the result of training by various models. While training the models, the MLP-PSO with
Linear Decreasing Inertia Weight (LDIW) yields MSE of 0.182, MAE of 0.250 and R2 of 0.981, whereas
MLP yields MSE of 0.720, MAE of 0.640 and R2 of 0.882. Testing results of all the models are
displayed in Tab. 2. In the same way, during testing the models MLP-PSO (LDIW) yields MSE of 0.148,
MAE of 0.240 and R2 of 0.979 and MLP yields MSE of 0.666, MAE of 0.620 and R2 of 0.899.
The results show that MLP-PSO with variants of inertia provides better performance than MLP model.
Figs. 4–8 shows the comparison of actual and predicted forecast from all the models.

Table 1: Training performance

Model Inertia variants MSE MAE R2

MLP — 0.720 0.640 0.882

MLP-PSO CIW 0.690 0.650 0.922

MLP-PSO RIW 0.651 0.820 0.929

MLP-PSO ChIW 0.392 0.510 0.962

MLP-PSO LDIW 0.182 0.250 0.981

Table 2: Testing performance

Model Inertia variants MSE MAE R2

MLP — 0.666 0.620 0.899

MLP-PSO CIW 0.554 0.660 0.918

MLP-PSO RIW 0.646 0.780 0.925

MLP-PSO ChIW 0.373 0.450 0.955

MLP-PSO LDIW 0.148 0.240 0.979
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Figure 3: MLP-PSO framework for traffic flow forecasting

Figure 4: MLP forecast

Figure 5: MLP-PSO (CIW) forecast
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6 Conclusion

Traffic flow forecasting is research of estimating the number of vehicles in the future that may flow
through a particular lane at a specified period. The accurate estimation of future traffic flows is quite
challenging. Numerous machine learning models are prevalent in the forecasting of time series data. In
this paper, a novel approach of optimizing the MLP framework with PSO is proposed. The time series
traffic flow data of MIDAS highway is considered for forecasting in this study. The MLP and MLP-PSO
models with variants of Inertia Weight initialization are trained and tested to suggest a model with high
accuracy. The MLP-PSO with Linear Decreasing Inertia Weight (LDIW) provides better accuracy with
Mean Square Error (MSE) of 0.148, Mean Absolute Error (MAE) of 0.240 and R2 of 0.979 compared to

Figure 6: MLP-PSO (RIW) forecast

Figure 7: MLP-PSO (ChIW) forecast

Figure 8: MLP-PSO (LDIW) forecast
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MLP with MSE of 0.666, MAE of 0.620 and R2 of 0.899 in testing. Finally, the results obtained shows that
MLP-PSO with all variants of Inertia weight provides improved accuracy rate than MLP.
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