
Improve Representation for Cross-Language Clone Detection by Pretrain Using
Tree Autoencoder

Huading Ling1, Aiping Zhang1, Changchun Yin1, Dafang Li2,* and Mengyu Chang3

1Nanjing University of Aeronautics and Astronautics, Nanjing, 210008, China
2School of Management Science & Engineering, Nanjing University of Finance and Economics, Nanjing, 210000, China

3Mcgill University, Montreal, H3G 1Y2, Canada
*Corresponding Author: Dafang Li. Email: hdlingnuaa@163.com

Received: 15 January 2022; Accepted: 20 February 2022

Abstract: With the rise of deep learning in recent years, many code clone detec-
tion (CCD) methods use deep learning techniques and achieve promising results,
so is cross-language CCD. However, deep learning techniques require a dataset to
train the models. The dataset is typically small and has a gap between real-world
clones due to the difficulty of collecting datasets for cross-language CCD. This
creates a data bottleneck problem: data scale and quality issues will cause that
model with a better design can still not reach its full potential. To mitigate this,
we propose a tree autoencoder (TAE) architecture. It uses unsupervised learning
to pretrain with abstract syntax trees (ASTs) of a large-scale dataset, then fine-
tunes the trained encoder in the downstream CCD task. Our proposed TAE con-
tains a tree Long Short-Term Memory (LSTM) encoder and a tree LSTM decoder.
We design a novel embedding method for AST nodes, including type embedding
and value embedding. In the training of TAE, we present an “encode and decode
by layers” strategy and a node-level batch size design. For the CCD dataset, we pro-
pose a negative sampling method based on probability distribution. The experimen-
tal results on two datasets verify the effeteness of our embedding method, as well as
that TAE and its pretrain enhance the performance of the CCD model. The node
context information is well captured, and the reconstruction accuracy of the
node-value reaches 95.45%. TAE pretrain improves the performance of CCD with
a 4% increase in F1 score, which alleviates the data bottleneck problem.

Keywords: Code clone detection; autoencoder; abstract syntax tree

1 Introduction

In the development of software, to improve efficiency and reduce time cost, some existing codes are
often copied-pasted or reused, which produces code cloning. Code cloning refers to two or more identical
or similar source code fragments. Code cloning is pretty common, The percentage of which ranges from
5% to 70% [1]. It can improve efficiency and reduce development cost. However, it will increase the
maintenance cost, easily to introduce bugs and malicious codes. Therefore, code clone detection (CCD) is
needed to find out the cloning pair and mitigate the negative effects of code cloning.

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI: 10.32604/iasc.2022.027349

Article

echT PressScience

mailto:hdlingnuaa@163.com
http://dx.doi.org/10.32604/iasc.2022.027349
http://dx.doi.org/10.32604/iasc.2022.027349


Many CCD methods have been proposed, including traditional methods [2–4] and machine learning
based methods [5–7]. They primarily handle single language CCD. However, developers often need to
develop the same functionality in different programming languages for different software systems [8–11]
(e.g., C/C# for Windows phones, Java for Android phones, and Objective-C for iPhone [12]) to achieve
compatibility and adoptability [13,14]. These bring the cross-language clones. Most of the existing
studies only consider a single language, the research on CCD is limited to a single language. Single
language CCD methods cannot detect clones between different languages. Thus, Cross-language CCD
methods need to be developed. Some cross-language CCD have been proposed, including traditional
methods [12,15,16] and machine learning based methods [17–19]. Machine learning based methods
achieve better results but require a labeled dataset for model training [20]. Due to the difficulty of dataset
collecting, the dataset is typically small or has a gap between real-world cloning. This leads to a data
bottleneck problem: data scale and quality issues will cause that model with a better design can still not
reach its full potential. For example, the work of [17] created a CCD dataset by fetching source code
from competitive programming websites. The dataset is small and very different from the source code in
a real-world system.

To mitigate this, we consider using unsupervised learning to pretrain the model on a large-scale dataset,
then use the trained model to fine-tune in the small dataset. We use an autoencoder framework. The pretrain is
done by doing an auto-encode-and-decode task on ASTs. It does not require any label and the dataset can be
fetched from the internet as much as we want. By training an autoencoder through unsupervised learning in a
large-scale dataset, a better result can be achieved in the downstream CCD task with the pretrain encoder,
especially when the amount of labeled data is small. We make the following contributions:

1) We design a novel embedding method for AST nodes, including type embedding and value embedding.
We design a tree-based distance and a tree-based Glove algorithm for type embedding, use a Gated
Recurrent Unit (GRU) [21] plus LSTM [22] autoencoder for value embedding.

2) We propose a novel architecture that uses an autoencoder to pretrain on a large-scale dataset then fine-
tunes the encoder in CCD. This will reduce the dataset requirement. We design a tree structure encoder
and decoder, which combine as a tree autoencoder (TAE).

3) We present three training techniques for TAE, including “encode and decode by layers”, the use of
node-level batch size and a tree splitting strategy. We propose a probability distribution based
negative sampling method for the training on the CCD dataset.

4) We verify our proposed methods in a self-collecting dataset and an open-source cross-language CCD
dataset. Experimental results verify the effeteness of the node embedding method, as well as that TAE
and its pretrain enhance the performance of the CCD model.

In the next section, we will list some related works, then we will present our method in Section 3. In
Section 4, we will present the experimental setup and results. Finally, we conclude our work in Section 5.

2 Related Work

In this section, we will present some related works about CCD and some other approaches for vector
embedding representation.

2.1 CCD Approaches

Recently, the rise of neural networks has led to better development of CCD. Many researchers have
designed neural network models for CCD and achieved promising results. AST-based neural network
(ASTNN) [5] is a neural network designed for code AST to extract features from ASTs and perform

1562 IASC, 2022, vol.33, no.3



CCD. It first does a word embedding pretrain on ASTs, then trains a neural network using the pretrain
embedding. However, its pretrain performs on node sequences obtained by depth-first search (DFS) on
ASTs, which loses tree structure information and cannot obtain a good embedding.

Clone detection with learning to hash (CDLH) [6] uses a tree-based LSTM for CCD. The tree-based
LSTM encodes the AST into a vector and then uses a hash layer to map the vector into a hamming space
(hash code) [23]. Finally, the CCD prediction is determined by the hash codes. Similarly [7] also uses a
tree-based LSTM to extract features from ASTs. The features of the two ASTs are input into a classifier
or a similarity measurement model. Then, a loss function is designed to train the whole model. Both [6]
and [7] must transfer the ASTs into binary trees. However, if transform ASTs into binary trees, extra nodes
are added, and the tree size and depth can dramatically increase. This will affect the encoding of the tree,
weaken the model’s ability to capture more realistic and complex semantics, and affect the performance.

For cross-language CCD, C2D2 [15] is the first cross-language CCD tool. It detects clones between C#
and Visual Basic .NET languages using Code Document Object Model (CodeDOM) as an intermediate
representation. However, the requirement of an intermediate representation makes it limited. Cheng et al.
[16] proposed CLCMiner that uses the code revision histories for CCD without an intermediate language.
However, the revision histories it relies on may not be available in the real application. So, it has limitations.

Perez et al. [17] proposed a novel AST node embedding method: a tree-based skip-gram. After the node
embedding, the AST is flattened into a sequence by DFS and then fed into the LSTM. Finally, a classifier is
used to predict the clone pair. However, the window size in the paper cannot be increased to capture further
node context information. When increasing the window size, the method not only fails to obtain a better
representation but also introduces more noise, resulting in information flattening problem (related types’
embedded vectors in space distribution are more dispersed and lower polymerized).

CroLSim [18] uses the application programming interface (API) documentation to find relationships
among the API calls used by different languages. It presents a deep learning based vector learning
method to identify semantic relationships. However, this method depends on the quality of the API
documentation.

2.2 Vector Representation Approaches

Vector representation refers to projecting objects (e.g., words, nodes, tokens) in high-dimensional space
into a continuous vector space with a much lower dimension. It maps the object into a fixed dimension vector
[24]. Since the source code and natural language are similar in some ways, vector representation techniques
like word embedding used in natural language processing can also apply to source code related work such as
CCD.

There are word embedding methods, includingWord2vec [25] and Glove [26]. Word2Vec is a successful
method used in large-scale word representation. It obtains word-pair information for model training by
sliding a fixed-length window on the sentences in the corpus. Two models are proposed in Word2Vec:
continuous bag-of-words model (CBOW) and skip-gram model. The former uses the context to predict
the central word, while the latter uses the central word to predict the context. Glove improves Word2vec
by using corpus’s global statistics, making it quite efficient. However, these methods are designed only
for sequence data, and cannot apply to tree structure data such as AST.

Besides the word embedding, there are other vector representation techniques, some of which are
designed for source code. Peng et al. [27] designed a “coding criterion” method to build vector
representations of AST nodes, making it possible to use deep learning for program analysis. Yu et al. [28]
proposed a new token embedding method, position-aware character embedding (PACE). It splits a token
into characters, then the token’s embedding is the weighted sum of one-hot encoding of all characters
[29]. This embedding technique requires no training and can apply to arbitrary tokens. However, this

IASC, 2022, vol.33, no.3 1563



method that weighting by position is asymmetric in position: the weight of the front position is bigger than
the weight of the back position.

The work of [30] uses a random walk method on AST, which combines DFS and breadth-first search
(BFS) simultaneously to obtain a sequence to train the skip-gram model. After obtaining the embedding
of AST nodes, sentence embedding, a lightweight approach, is used to obtain the representation of the
entire tree. Finally, it detects code clones by similarity measure using Euclidean distance. However, it
uses all the ASTs in the dataset to generate the sequence, leading to the wrong context information when
sliding the window (nodes on two different ASTs appear in the window at the same time).

3 Methodology

The overview of our method is illustrated in Fig. 1. There are two major parts: TAE pretrain and CCD.
For TAE pretrain, we first fetch source codes from the database, then get the AST data and do filtration to
obtain the Base AST data. Then, the Base AST data is extracted and filtered to build three datasets: Type
Embedding Dataset, Value Embedding Dataset, and Pretrain AST Data. We train the models and get the
trained encoder of TAE, which will be used in the CCD model. For CCD, we preprocess the CCD dataset
and create Pair Data. After training the CCD model, we can use it for evaluation or use it as a CCD tool.

3.1 Node Embedding

Our method uses the AST of the source code. We first have to preprocess the source code: extract the
AST, and do a transformation (i.e., refer to the AST syntax of the target language and simplify the AST).
Inspired from the node representation format in [7], which uses a type-content pair to represent an AST
node, we use the format type-value pair to represent an AST node. The preprocessing of the source code
is not our focus. To do computation on the AST, we use fixed dimension vectors to represent nodes (i.e.,
embedding). Our node embedding includes type embedding and value embedding.

Encoder

Decoder

Node embedding Model

TAE

Type Embedding Model

Classifier
TAE

Tree LSTM

CCD ModelTree Decoder Node Decoder

Type Embedding Model

Value Embedding Model

Value Embedding Model

feed

feed

train

train train

fetch

filtration

filtration

filtration

extract

extract

sample

feed

extract

transform

transform

get encoder
and copy

CCD Model

Encoder

Encoder

Type Embedding
Dataset

feed
train Value Embedding

Dataset

CCD Dataset

AST data

Pair Data
Pretrain AST Data

Base AST Data

AST Data

Raw Data

Code Database/Server
(i.e., github)

Figure 1: Method overview

1564 IASC, 2022, vol.33, no.3



Our type embedding method is based on Glove [26], a word embedding method that uses corpus’s global
statistics (co-occurrence matrix). Its target is to optimize the following function:

L ¼
XV
i;j¼1

f ðXijÞðwT
i ~wj þ bi þ ~bj � logXijÞ2 (1)

where V is vocabulary size, wi and wj are the left and right embedding of the i-th word, X is the co-occurrence
matrix. f is a weighting function. The window of Glove can only be used in sequential data, not tree structure
data. To improve Glove to adapt the tree structure data, we first propose a novel tree-based distance d(x, y).
For two different nodes a and b in the same tree:

1) dða; aÞ ¼ dðb; bÞ ¼ 0.
2) If a and b are inheritance relationship (a is an ancestor/descendant of b), then dða; bÞ ¼

jdeepðaÞ � deepðbÞj.
3) If a and b are not inheritance relationship, find the “closest” (the deepest) common ancestor c,

then dða; bÞ ¼ dða; cÞ þ dðb; cÞ � 1.

The tree-based distance visually can be interpreted as that every two children of the same node are
connected by a shortcut. It’s easy to prove that the proposed distance satisfies the three conditions of a
legal distance definition (non-negativity, symmetry, and satisfying the triangle inequality).

We define a node’s sequentiality based on whether its children’s order matter: if a node’s children matter
in order and the number of children is not fixed, we call it a sequential node (or it’s sequentiality), otherwise
we call it a non-sequential node (or it’s non-sequentiality). We add five auxiliary losses according to five
additional tasks. One is to predict a type’s sequentiality, other four are to predict special relationship:
parent-child relationship, grandpa-grandchild relationship, near-sibling relationship (sibling nodes whose
indexes differ by 1), near-near-sibling relationship (sibling nodes whose indexes differ by 2). Their losses
denote as Ls, La, Lb, Lc, Ld, requiring vector S and matrix A, B, C, D. The loss of Glove denotes as Lg.
The final loss is as follows:

L ¼ hLg þ gLs þ aLa þ bLb þ cLc þ dLd (2)

Si is the statistics about type ti, can be positive or negative (depend on sequentiality). Aij is the statistics
about ti and tj (ti is on the left of tj, “left” and “right” is based on the node order by DFS on the AST, the front
is left, the behind is right), can be positive or negative (depend on the relationship between ti and tj). B, C and
D are similar to A. We have (Lb, Lc and Ld are similar to La):

Ls ¼
XV
i¼1

jSijkPV
j¼1 jSjjk

BCEðIðSiÞ; Wsðwi þ ~wiÞÞ (3)

La ¼
XV
i; j¼1

jAijjkPV
k; l¼1 jAkljk

BCEðIðAijÞ; Wa½wi þ ~wi

wj þ ~wj
�Þ (4)

IðxÞ ¼ 1; x. 0
0; x � 0

�
(5)

where λ is an exponent hyperparameter to soften the weight coefficient, BCE is the binary cross entropy. The
co-occurrence matrix X can be represented as a linear combination of specific distance co-occurrence
matrices: X ¼ Ps

d¼1 rdYd. Where s is the predefined window size, Yk is the co-occurrence matrix of
distance k. The element of Yk grows extremely fast when k increases. rd is the normalization ratio used to

IASC, 2022, vol.33, no.3 1565



prevent information flattening. Evidence can be found in [17], the method faces the problem that increasing
the window size will create more noise, and not get better results. The ratio we used is

rk ¼
P

i; j Y
ðijÞ
1P

i; j Y
ðijÞ
k

(6)

The whole step of tree-based Glove is the following: “slice” the window on the ASTs to get all matrices
and optimize Eq. (2) by sampling index pairs from V to get the embedding matrix Et ¼ wþ ~w.

In the value embedding phase, we use a GRU + LSTM autoencoder framework. GRU encodes value
into a fixed-length vector, and then LSTM decodes the vector to reconstruct the original value. In the
encoding phase, two special tokens are added before and after the word to get the input sequence,
including the start of the word and the end of the word, denoted as and . Then, feed the sequence into the
encoder to get the output vector. In the decoding phase, distribute the output vector in time step and feed
them into the LSTM, then apply the linear layer to the outputs to get the predicted sequence. The
illustration can be seen in Fig. 2. We add two additional auxiliary losses according to two additional tasks:

1) Word classification: predict whether the word/value is an identifier, a real number or the others.
2) Character classification: predict each character’s class. We categorize 128 ASCII characters, and into
7 classes: , , digits, capital letters, lowercase letters, non-printing characters (control characters, ASCII
range is in 0∼ 31) and other characters.

Finally, the whole loss is the following:

L ¼ Lreconstruct þ aLword þ bLchar (7)

Lreconstruct ¼ 1

nþ 1

Xnþ1

i¼1

CEðei; êiÞ: (8)

Lword ¼ CEðyw; WwvÞ: (9)

Figure 2: Autoencoder of value embedding

1566 IASC, 2022, vol.33, no.3



Lchar ¼ 1

nþ 2

Xnþ1

i¼0

CEðzi; WcoiÞ: (10)

where en+1 is , yw and zi are the classification labels, and CE is the cross entropy.

3.2 Tree Autoencoder

Our TAE model includes an encoder and a decoder, both use a tree LSTM. LSTM [22] is proposed for
handling sequence data and cannot handle tree structure data like AST. To deal with tree structure data, [31]
proposed Child-Sum Tree-LSTMs:

~hs ¼
X
j2CðsÞ

hj; (11)

is ¼ rðW ðiÞxs þ U ðiÞ~hs þ bðiÞÞ; (12)

fsj ¼ rðW ðf Þxs þ U ðf Þhj þ bðf ÞÞ (13)

os¼ rðW ðoÞxs þ U ðoÞ~hs þ bðoÞÞ (14)

gs¼ tanhðW ðgÞxs þ U ðgÞ~hs þ bðgÞÞ; (15)

cs ¼ is � gs þ
X
j2CðsÞ

fsj � cj; (16)

hs ¼ os � tanhðcsÞ; (17)

where σ is the sigmoid function, � is element-wise multiplication and C(s) is the set of children of node s.
Our encoder is based on Child-Sum Tree-LSTMs. We first change Eq. (11) from summation into an inner
GRU, to make use of the child order. Then we change Eq. (13) from σ into softmax. It’s a normalization to
make the forget gates (f) of all children sum to 1. Then, we have our tree LSTM:

~hs ¼ GRU½LhðsÞ�; (18)

is ¼ rðW ðiÞxs þ U ðiÞ~hs þ bðiÞÞ; (19)

~fsj ¼ W ðf Þxs þ U ðf Þhj þ bðf Þ; (20)

fsj ¼ e
~f sj=ð

X
j2CðsÞ e

~f sjÞ; (21)

os ¼ rðW ðoÞxs þ U ðoÞ~hs þ bðoÞÞ; (22)

gs ¼ tanhðW ðgÞxs þ U ðgÞ~hs þ bðgÞÞ; (23)

cs ¼ is � gs þ
X
j2CðsÞ

fsj � cj; (24)

hs ¼ os � tanhðcsÞ; (25)

where xs is the input (node embedding, concatenating of type embedding and value embedding) of node s.
LhðsÞ ¼ ½hCðsÞ1 ; hCðsÞ2 ; . . . ; hCðsÞn � is the list of hidden states of children of node s. This is fed into an inner

IASC, 2022, vol.33, no.3 1567



GRU to get the last hidden states (Eq. (18)). If s is a leaf node, then ~hs is zero and there is no cj. Our Tree
LSTM is shown in Fig. 3 (left).

The decoder of TAE contains a node embedding decoder (type classifier + value decoder) and a Tree
LSTM Decoder (inner decoder + outer decoder + end of children (EOC) classifier):

~h1; ~h2; . . . ; ~hn ¼ decodeðhsÞ; (26)

is ¼ rðW ðiÞyþ U ðiÞhs þ bðiÞÞ; (27)

fsj ¼ rðW ðf Þyþ U ðf Þ~hj þ bðf ÞÞ; (28)

oj ¼ rðW ðoÞyþ U ðoÞ~hj þ bðoÞÞ; (29)

gs ¼ tanhðW ðgÞyþ U ðgÞhs þ bðgÞÞ; (30)

cj ¼ is � gs þ fsj � cs; (31)

hj ¼ oj � tanhðcjÞ; (32)

where y is the input of the decoder LSTM, not the node embedding of s. The inner decoder decodes hs into
½~h1; ~h2; . . . ; ~hn�, it can be any decoder that decodes a vector into a list of vectors. Here we use the one
similar to the decoder in value embedding without the linear layer. We use the type embedding of the
predicted type as the input y. In the training, we use scheduled sampling [32]. Since the decoding is a
one-to-many operation, we apply an EOC classifier on ~hj to decide how many children need to be
decoded. fsj is a weight defined by s and ~hj, which applies on cs to decide how much information flows
from node s to node j (Eq. (31)). Finally, hj can be obtained according to oj and cj. The decoder is
depicted in Fig. 3 (right). The reconstruction loss is as follows (Fig. 4):

L ¼ aLtype þ bLvalue þ cLeoc þ dLchildren (33)

Figure 3: TAE's tree LSTM and decoder

1568 IASC, 2022, vol.33, no.3



Ltype ¼ 1

jT j
X
s2T

CEðts; t̂sÞ (34)

Lvalue ¼ 1

jT j
X
s2T

jj~vs � v̂sjj22 (35)

Leoc ¼ 1

2jT j � 1

X
s2T

½
Xns
i¼1

BCEð0; êiÞ þ BCEð1; ênsþ1Þ� (36)

Lchildren ¼ 1

jT j � 1

X
s2T

Xns
i¼1

jjhi � ĥijj22 (37)

where T is the nodes set of an AST tree, |T| is the node count, and ns is the children count of node s. Since
the tree root is not a child to any node, hroot is not used in Eq. (37). The number of hidden states we need to
compute Lchildren is |T| − 1, we have jT j ¼ P

s2T 1; jT j � 1 ¼ P
s2T

Pns
i¼1 1

The encoding/decoding of each node depends on the encoding/decoding of its children/parent. The
encoding/decoding has to be from down/top to top/down. With this, we introduce an “encode and decode
by layers” strategy: group nodes by layers and encode/decode multiple nodes simultaneously in a layered
fashion [33]. For the encoding/decoding of multiple trees, we first sort the trees by depth. Then group the
nodes by layers and encode/decode them layer by layer. Such a strategy takes full advantage of parallel
computing capability. When training on the AST data, we don’t train on a batch of ASTs. Instead, we
train on a batch of nodes. The node count of every step depends on the AST (i.e., the size of the batch is
dynamic). We use a hyperparameter “max node count” to imply the max node count in a training step. If
several ASTs’ total node count is smaller than the batch size, we group them in a batch. If an AST’s node
count is bigger than the batch size and smaller than the max node count, we use a tree splitting strategy
that split it into several subtrees to make every subtree’s node count smaller than the batch size. Then,
train on these subtrees one by one while preserving every subtree’s root encoding to provide for the
parent subtree.

3.3 CCD

Our CCD model uses a siamese-based architecture neural network [34], including an AST extractor, two
encoders and a classifier. The AST extractor extracts AST from the source code. The encoder uses TAE’s

Figure 4: TAE's encoding and decoding

IASC, 2022, vol.33, no.3 1569



encoder that encodes the whole AST into a fixed-length vector. The CCD classifier accepts two vectors and
does a binary classification to predict if the two code fragments are clone pair. The training code pairs are
obtained from the dataset by sampling similar to [17], except for the sampling of negative samples.

To create code pairs, first, sample a code fragment (anchor) and then sample a positive sample and n
negative samples. The positive sample is randomly selected from the set of code clones of the current
anchor fragment. For negative samples, we create a candidate set and randomly select m samples from it
to run into the model. Finally, select n samples whose predicted scores are top-n highest as negative
samples. We use a probability distribution method. We denote the selected positive fragment as a, denote
code fragment dataset of the target language as C, and g(a) is the AST node count of a. Then we use

MðaÞ ¼ PðgðxÞ � gðaÞÞ ¼ jfx jgðxÞ � gðaÞ; x 2 Cgj
jCj (38)

as a probability measure of a. Finally, the candidate set of a is created with a hyperparameter e 2 ð0; 0:5Þ:

SeðaÞ ¼
fx j0 � MðxÞ � 2e; x 2 Cg MðaÞ � e
fx jMðaÞ � e � MðxÞ � MðaÞ þ e; x 2 Cg e,MðaÞ, 1� e
fx j1� 2e � MðxÞ � 1; x 2 Cg MðaÞ � 1� e

8<
: (39)

Such a candidate set makes sure its size is always 2ε|C|.

4 Experiment Evaluation

4.1 Experimental Setup

In our experiments, we use two datasets: a pretrain dataset for node embedding and TAE pretrain and a
CCD dataset for cross-language CCD [17]. The pretrain dataset is created by fetching repositories whose
starts are not less than 1k from GitHub. The raw data is about 100G (python + java). We extract ASTs and
do filtration to get the base AST data. Filtration range and node-type counting information are listed in
Tab. 1 (“seq” is short for sequential), AST statistic is listed in Tab. 2. The CCD dataset mainly contains
folders of source codes, including 20828 java files (46 lines/file on average) and 23792 python files
(13 lines/file on average). There are 576 folders, each folder represents a problem. Files in the same folder
have the same functionality, thus two files or code fragments from the same folder can be seen as a clone pair.

Table 1: Filtration range and node-type counting information of the pretrain dataset

Language Filtration range Node-type counting

Node Width Depth Seq Non-seq Total

Python [6, 25000] [4, 20000] [3, 200] 37 124 161

Java [8, 30000] [6, 25000] [4, 200] 46 177 223

Table 2: AST statistic of the pretrain dataset

Language File count Sum node count Max node count Max width Max depth

Python (before filtration) 153,870 171,567,690 1,046,594 521,225 1,009

Python (after filtration) 141,473 152,991,959 24,952 16,916 182

Java (before filtration) 422,182 517,881,807 1,555,420 982,463 1,246

Java (after filtration) 421,435 477,452,394 29,982 22,852 200

1570 IASC, 2022, vol.33, no.3



We conduct experiments on a six-core window-10 machine of 16 GB memory with a Nvidia GeForce
GTX 1650 GPU of 4 GB memory. Pytorch (https://pytorch.org) is used to build and train our model. Python
built-in ast module (https://docs.python.org/3.9/library/ast.html) and javalang (https://github.com/c2nes/
javalang) are used to extract python/java raw AST. We use Adam [35] as the optimization algorithm,
except for type embedding, we use stochastic gradient descent (SGD). The learning rate is 0.01 if not
specified. For brevity, in node embedding and TAE pretrain, we only show python results.

4.2 Node Embedding Result

Node embedding includes type embedding and value embedding. The experimental settings are in
Tab. 3. For type embedding, the f in Eq. (1) is similar to the Glove paper, the ratio in Eq. (2) is [0.9497,
0.01, 0.015, 0.01, 0.0003, 0.015]. The experimental result is visualized in Fig. 5 using T-SNE [36–38].
The red dots are sequential node-types and the blue dots are non-sequential node-types. The figure shows
that the related node-types gather nicely, the context information and semantics are well preserved. If not
using normalization, the points in the figure will be more dispersed [39–41]. With the proposed tree
distance and the normalization, there is no need to worry about the information flattening problem. The
window size can increase to 7 even more, unlike [17] that can only use a window size of 2 and does not
include siblings.

For the value autoencoder training, we first filter some words whose length is bigger than a predefined
threshold (here we use 100). And words with length no more than this threshold will be used as the base
dataset. Then, the base dataset is split into a training set and a testing set at a ratio of 9:1. The fine-tuning
learning rate of the char embedding layer is 0.0001. Four criteria are used to evaluate the models:

■ char_acc: characters level accuracy.
■ s_char_acc: characters level accuracy in strict mode.
■ word_acc: word-level accuracy.
■ len_acc: word length match accuracy, the ratio of whose are predicted in the correct length.

The experimental result is in Tab. 4. The configuration with dc ¼ 8 and dv ¼ 128 gets a better result. We
plot the value reconstruction accuracy w.r.t. the value length of this configuration in Fig. 6. From the figure,
we can see that the reconstruction is pretty good when the value length is less than 20. The accuracy scores
(criteria) drop rapidly when the value length is over 20, and the len_acc drops much slower.

Table 3: Experimental settings for node embedding

Experiment Parameter Value Parameter Value Parameter Value

Type embedding Embedding dim dt 32 Window size 5 Batch size 2048

Exponent λ 0.3 Momentum 0.997 Epochs 5000

Value embedding α in Eq. (7) 0 or 0.5 β in Eq. (7) 0.1α Epochs 100

Decoder hidden do 2dv Batch size 512

IASC, 2022, vol.33, no.3 1571

https://pytorch.org
https://docs.python.org/3.9/library/ast.html
https://github.com/c2nes/javalang
https://github.com/c2nes/javalang


4.3 TAE Pretrain Result

In the training of TAE, the whole AST, which comes from the data preprocessing, will be involved. In
the training phase, we process the source code on the fly via multi-processing. We filter the base AST data by
max node count, the left AST data is also split into a training set and a testing set at a ratio of 9:1. To speed up
the value embedding phase, we pre-compute the top 10000 most frequent value to build a lookup table. We
use the scheduled sampling [32] for the input of TAE’s outer decoder. The probability p decays in each
epoch/step via cosine decay (can be epoch-level or step-level):

Figure 5: T-SNE visualization of python AST type embedding

Table 4: Value embedding training results

dc dv α char_acc s_char_acc word_acc len_acc

8 64 0 90.87% 84.07% 74.89% 99.80%

8 64 0.5 90.84% 83.34% 74.07% 99.78%

8 128 0 95.45% 91.68% 86.22% 99.64%

8 128 0.5 95.03% 90.86% 85.09% 99.47%

16 128 0 92.84% 87.31% 79.34% 96.43%

16 128 0.5 91.87% 86.13% 76.94% 97.53%

1572 IASC, 2022, vol.33, no.3



p ¼ p0 � pT
2

cosðip
T
Þ þ p0 þ pT

2
; i ¼ 0; 1; 2; . . . ; T (40)

The ratio we used in Eq. (33) is [0.2, 0.1, 0.2, 0.5]. We set the max node count to 500, set the batch size to
300, and set epochs to 10. The type embedding model fine-tuning learning rate is 0.00002. The type
classifier, value decoder, and EOC classifier all adopt 2 layers of feed-forward neural network. The
experimental result can be seen in Tab. 5. As can be seen in the table, the second configuration achieves
the best result in criteria. We use the encoder of this configuration as the encoder of our CCD model.

4.4 Cross-Language CCD Result

We first do a cross-language code clone classification experiment. The CCD dataset is randomly split
into a training set and a testing set at a ratio of 9:1. For negative sampling, we use n = 10, m = 4, ɛ = 0.1.
We set the max node count to 1024, set the batch size to 2 × 512, and set epochs to 20. If the encoder
comes from pretrain, then we set its fine-tuning learning rate to 0.0001. The experimental result of
classification is depicted in Tab. 6. From the result, we can see that our proposed tree LSTM based CCD
model outperforms the sequence LSTM based CCD model. And the TAE pretrain enhances the
performance of the CCD model. Next, we use the trained model to do the CCD experiment. We
randomly select 500 code fragments from the test set and run the model for all pairs to determine clone
pairs. The clone detection result is depicted in Tab. 7. As can be seen in the table, our proposed CCD
model outperforms the sequence LSTM based CCD model as well, and CCD benefits from the pretrain.
The work of [17] uses sequential LSTM to encode the sequence. It obtains token sequence from AST by

Figure 6: Python value embedding reconstruction accuracy

Table 5: TAE training results

dv de Inner L Lvalue Lchildren type_acc eoc_acc eoc_precision eoc_recall

64 512 LSTM 0.0283 0.0312 0.00216 97.56% 98.77% 98.96% 97.56%

64 512 LSTM 0.00468 0.0152 0.00219 98.71% 98.73% 98.96% 98.66%

128 1024 LSTM 0.0237 0.00436 0.00264 96.25% 97.81% 98.73% 96.86%

128 1024 GRU 0.0156 0.00403 0.00143 98.58% 97.64% 96.92% 98.44%

IASC, 2022, vol.33, no.3 1573



DFS, doing so will lose the AST tree structure information. Unlike [17], our Tree LSTM does the encoding
directly on the AST, which preserves the AST structure information. So, our method still obtains a better
result without pretrain.

Our TAE training is based on file level, a more fine-grained level (e.g., class/function level) can be
considered in future work. With the trained TAE, code fragments can be represented as a vector, different
languages correspond to different vector spaces. We can consider using an unsupervised learning
framework like CycleGAN [39], to do one more pretrain on different languages’ encoding spaces, which
will build a connection between different languages without the help of any label. This may benefit CCD,
which can be a key future work. In addition, our value embedding is a little bit overhead, and our CCD
model’s loss is simple. A better value embedding method and a better CCD loss are needed in future work.

5 Conclusion

In this work, we focus on cross-language CCD using an autoencoder to pretrain on a large-scale dataset.
We first introduce the node embedding method, including type embedding and value embedding. Then, we
give detail about our TAE model, including the encoder and the decoder. We also present techniques about
the training of TAE, including the “encode and decode by layers” strategy and the batch size design. Next, we
talk about the CCD model and our negative sampling strategy. In the end, we evaluate our method in a self-
collecting dataset and an open-source cross-language CCD dataset. The experimental results verify the
effeteness of our node embedding method, as well as that TAE and its pretrain enhance the performance
of the CCD model. The node context information is well captured and the reconstruction accuracy of the
node-value reaches 95.45%. TAE pretrain improves the performance of CCD with a 4% increase in
F1 score, which alleviates the data bottleneck problem.

Funding Statement: This work was supported by the National Key R&D Program of China (Grant No.
2021YFB3100700), the National Natural Science Foundation of China (Grant No. 62032025, 62076125,
U20B2049, U20B2050, 61702236), the Natural Science Foundation of Jiangsu Province (Grant No.
BK20200418, BE2020106), the Guangdong Basic and Applied Basic Research Foundation

Table 7: Cross-Language CCD results

Model Precision Recall F1

LSTM (pretrained token vectors) [17] 19% 90% 32%

Our (randomly initialized encoder) 28% 92% 43%

Our (pretrained encoder) 31% 93% 47%

Table 6: Java-Python code clone classification results

Model Precision Recall F1

LSTM (pretrained token vectors) [17] 55% 83% 66%

Our (randomly initialized encoder) 64% 88% 74%

Our (pretrained encoder) 67% 90% 77%

1574 IASC, 2022, vol.33, no.3



(2021A1515012650), the Shenzhen Science and Technology Program (JCYJ20210324134810028), the
Natural Science Foundation of Jiangsu Province (Grant No.BK20200418, BE2020106).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] S. Ducasse, M. Rieger and S. Demeyer, “A language independent approach for detecting duplicated code,” in

1999 Int. Conf. on Software Maintenance, Oxford, England, UK, pp. 109–118, 1999.

[2] T. Kamiya, S. Kusumoto and K. Inoue, “Ccfinder: A multilinguistic token-based code clone detection system for
large scale source code,” IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654–670, 2002.

[3] L. Jiang, G. Misherghi, Z. Su and S. Glondu, “Deckard: Scalable and accurate tree-based detection of code
clones,” in 29th Int. Conf. on Software Engineering, Minneapolis, MN, USA, pp. 96–105, 2007.

[4] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy and C. V. Lopes, “Sourcerercc: Scaling code clone detection to big-
code,” in Proc. of the 38th Int. Conf. on Software Engineering, Austin, TX, USA, pp. 1157–1168, 2016.

[5] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang et al., “A novel neural source code representation based on
abstract syntax tree,” in Proc. of the 41st Int. Conf. on Software Engineering, Montreal, QC, Canada, pp. 783–
794, 2019.

[6] H. Wei and M. Li, “Supervised deep features for software functional clone detection by exploiting lexical and
syntactical information in source code,” in 26th Int. Joint Conf. on Artificial Intelligence, Melbourne,
Australia, pp. 3034–3040, 2017.

[7] L. Büch and A. Andrzejak, “Learning-based recursive aggregation of abstract syntax trees for code clone
detection,” in 26th IEEE Int. Conf. on Software Analysis, Evolution and Reengineering (SANER), Hangzhou,
China, pp. 95–104, 2019.

[8] C. Ge, Z. Liu, J. Xia and L. Fang, “Revocable identity-based broadcast proxy re-encryption for data sharing in
clouds,” IEEE Transactions on Dependable and Secure Computing, vol. 18, no. 3, pp. 1214–1226, 2021.

[9] C. Ge, W. Susilo, J. Baek, Z. Liu, J. Xia et al., “Revocable attribute-based encryption with data integrity in
clouds,” IEEE Transactions on Dependable and Secure Computing, vol. 21, no. 5, pp. 1–12, 2021.

[10] Y. J. Ren, Y. Leng, Y. P. Cheng and J. Wang, “Secure data storage based on blockchain and coding in edge
computing,” Mathematical Biosciences and Engineering, vol. 16, no. 4, pp. 1874–1892, 2019.

[11] C. Ge, W. Susilo, Z. Liu, J. Xia, P. Szalachowski et al., “Secure keyword search and data sharing mechanism for
cloud computing,” IEEE Transactions on Dependable and Secure Computing, vol. 18, no. 6, pp. 2787–2800,
2021.

[12] X. Cheng, Z. Peng, L. Jiang, H. Zhong, H. Yu et al., “Mining revision histories to detect cross-language clones
without intermediates,” in Proc. of the 31st IEEE/ACM Int. Conf. on Automated Software Engineering, Singapore,
pp. 696–701, 2016.

[13] C. Ge, W. Susilo, J. Baek, Z. Liu, J. Xia et al., “A verifiable and fair attribute-based proxy re-encryption scheme
for data sharing in clouds,” IEEE Transactions on Dependable and Secure Computing, vol. 21, no. 7, pp. 1–12,
2021.

[14] L. Fang, M. Li, Z. Liu, C. Lin, S. Ji et al., “A secure and authenticated mobile payment protocol against off-site
attack strategy,” IEEE Transactions on Dependable and Secure Computing, vol. 21, no. 9, pp. 1–12, 2021.

[15] N. A. Kraft, B. W. Bonds and R. K. Smith, “Cross-language clone detection,” in Proc. of the Twentieth Int. Conf.
on Software Engineering & Knowledge Engineering (SEKE’2008), San Francisco, CA, USA, pp. 54–59, 2008.

[16] X. Cheng, Z. Peng, L. Jiang, H. Zhong, H. Yu et al., “Clcminer: Detecting cross-language clones without
intermediates,” IEICE Transactions on Information and Systems, vol. 100, no. 2, pp. 273–284, 2017.

[17] D. Perez and S. Chiba, “Cross-language clone detection by learning over abstract syntax trees,” in Proc. of the
16th Int. Conf. on Mining Software Repositories (MSR), Montreal, Canada, pp. 518–528, 2019.

IASC, 2022, vol.33, no.3 1575



[18] K. W. Nafi, B. Roy, C. K. Roy and K. A. Schneider, “Crolsim: Cross language software similarity detector using
api documentation,” in 18th IEEE Int. Working Conf. on Source Code Analysis and Manipulation (SCAM),
Madrid, Spain, pp. 139–148, 2018.

[19] K. W. Nafi, T. S. Kar, B. Roy, C. K. Roy and K. A. Schneider, “Clcdsa: Cross language code clone detection using
syntactical features and api documentation,” in 34th IEEE/ACM Int. Conf. on Automated Software Engineering
(ASE), San Diego, CA, USA, pp. 1026–1037, 2019.

[20] Y. J. Ren, J. Qi, Y. P. Cheng, J. Wang and O. Alfarraj, “Digital continuity guarantee approach of electronic record
based on data quality theory,” Computers, Materials & Continua, vol. 63, no. 3, pp. 1471–1483, 2020.

[21] K. Cho, B. V. Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares et al., “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” in Proc. of the 2014 Conf. on Empirical Methods in
Natural Language Processing, Doha, Qatar, pp. 1724–1734, 2014.

[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780,
1997.

[23] Y. J. Ren, F. J. Zhu, S. P. Kumar, T. Wang, J. Wang et al., “Data query mechanism based on hash computing power
of blockchain in internet of things,” Sensors, vol. 20, no. 1, pp. 1–22, 2020.

[24] Y. J. Ren, J. Qi, Y. P. Liu, J. Wang and G. Kim, “Integrity verification mechanism of sensor data based on bilinear
map accumulator,” ACM Transactions on Internet Technology, vol. 21, no. 1, pp. 1–20, 2021.

[25] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado and J. Dean, “Distributed representations of words and phrases
and their compositionality,” in Advances in Neural Information Processing Systems 26: 27th Annual Conf. on
Neural Information Processing Systems, Lake Tahoe, Nevada, United States, pp. 3111–3119, 2013.

[26] J. Pennington, R. Socher and C. D. Manning, “Glove: Global vectors for word representation,” in Proc. of the
2014 Conf. on Empirical Methods in Natural Language Processing, Doha, Qatar, pp. 1532–1543, 2014.

[27] H. Peng, L. Mou, G. Li, Y. Liu, L. Zhang et al., “Building program vector representations for deep learning,” in
8th Int. Conf. on Knowledge Science, Engineering and Management, Chongqing, China, pp. 547–553, 2015.

[28] H. Yu, W. Lam, L. Chen, G. Li, T. Xie et al., “Neural detection of semantic code clones via tree-based
convolution,” in Proc. of the 27th Int. Conf. on Program Comprehension, Montreal, QC, Canada, pp. 70–80,
2019.

[29] Y. J. Ren, K. Zhu, Y. Q. Gao, J. Y. Xia, S. Zhou et al., “Long-term preservation of electronic record based on
digital continuity in smart cities,” Computers, Materials & Continua, vol. 66, no. 3, pp. 3271–3287, 2021.

[30] Y. Gao, Z. Wang, S. Liu, L. Yang, W. Sang et al., “TECCD: A tree embedding approach for code clone detection,”
in 2019 IEEE Int. Conf. on Software Maintenance and Evolution, Cleveland, OH, USA, pp. 145–156, 2019.

[31] K. S. Tai, R. Socher and C. D. Manning, “Improved semantic representations from tree-structured long short-term
memory networks,” in Proc. of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th Int. Joint Conf. on Natural Language Processing of the Asian Federation of Natural Language Processing,
Beijing, China, pp. 1556–1566, 2015.

[32] S. Bengio, O. Vinyals, N. Jaitly and N. Shazeer, “Scheduled sampling for sequence prediction with recurrent
neural networks,” in Advances in Neural Information Processing Systems 28: Annual Conf. on Neural
Information Processing Systems, Montreal, Quebec, Canada, pp. 1171–1179, 2015.

[33] Y. J. Ren, Y. Leng, J. Qi, K. S. Pradip, J. Wang et al., “Multiple cloud storage mechanism based on blockchain in
smart homes,” Future Generation Computer Systems, vol. 115, pp. 304–313, 2021.

[34] J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. Lecun et al., “Signature verification using a “siamese” time delay
neural network,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 7, no. 04, pp. 669–
688, 1993.

[35] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd Int. Conf. on Learning
Representations, San Diego, CA, USA, 2015. [Online]. Available: http://arxiv.org/abs/1412.6980.

[36] L. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of Machine Learning Research, vol. 9, no. 11,
pp. 2579–2605, 2008.

[37] T. Li, N. P. Li, Q. Qian, W. Xu, Y. Ren et al., “Inversion of temperature and humidity profile of microwave
radiometer based on bp network,” Intelligent Automation & Soft Computing, vol. 29, no. 3, pp. 741–755, 2021.

1576 IASC, 2022, vol.33, no.3

http://arxiv.org/abs/1412.6980


[38] X. R. Zhang, W. F. Zhang, W. Sun, X. M. Sun and S. K. Jha, “A robust 3-D medical watermarking based on
wavelet transform for data protection,” Computer Systems Science & Engineering, vol. 41, no. 3, pp. 1043–
1056, 2022.

[39] J. Y. Zhu, T. Park, P. Isola and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent
adversarial networks,” in Proc. of the IEEE Int. Conf. on Computer Vision, Venice, Italy, pp. 2223–2232, 2017.

[40] Y. J. Ren, F. Zhu, J. Wang, P. Sharma and U. Ghosh, “Novel vote scheme for decision-making feedback based on
blockchain in internet of vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 2, pp.
1639–1648, 2022.

[41] X. R. Zhang, X. Sun, W. Sun, T. Xu and P. P. Wang, “Deformation expression of soft tissue based on BP neural
network,” Intelligent Automation & Soft Computing, vol. 32, no. 2, pp. 1041–1053, 2022.

IASC, 2022, vol.33, no.3 1577


	Improve Representation for Cross-Language Clone Detection by Pretrain Using Tree Autoencoder
	Introduction
	Related Work
	Methodology
	Experiment Evaluation
	Conclusion
	References


