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Abstract: Container technology is the latest lightweight virtualization technology
which is an alternate solution for virtual machines. Docker is the most popular
container technology for creating and managing Linux containers. Containers
appear to be the most suitable medium for use in dynamic development, packa-
ging, shipping and many other information technology environments. The port-
ability of the software through the movement of containers is appreciated by
businesses and IT professionals. In the docker container, one or more processes
may run simultaneously. The main objective of this work is to propose a new
algorithm called Ant Colony Optimization-based Light Weight Container
(ACO-LWC) load balancing scheduling algorithm for scheduling various process
requests. This algorithm is designed such that it shows best performance in terms
of load balancing. The proposed algorithm is validated by comparison with two
existing load balancing scheduling algorithms namely, least connection algorithm
and round robin algorithm. The proposed algorithm is validated using metrics like
response time (ms), mean square error (MSE), node load, largest Transactions Per
Second (TPS) of cluster (fetches/sec), average response time for each request (ms)
and run time (s). Quantitative analysis show that the proposed ACO-LWC scheme
achieves best performance in terms of all the metrics compared to the existing
algorithms. In particular, the response time for least connection, round robin
and the proposed ACO-LWC algorithm are 58, 60 and 48 ms respectively when
95% requests are finished. Similarly, the error for scheduling 120 requests using
least connection, round robin and the proposed ACO-LWC algorithm are 0.15,
0.11 and 0.06 respectively.

Keywords: Docker; containerization; ant colony optimization; light weight
container; load balancing

1 Introduction

In the last few years, server virtualization is popularly being used in the field of information technology.
Virtualization acts as a valuable tool for running multiple operating systems in cloud. It facilitates the
implementation of various virtual machines on a single physical hardware. The common drawbacks of
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virtualization include, increased size, unstable performance, longer time to boot up, etc [1]. To avoid these
drawbacks containers are popularly being used. These containers avoid the time required for the
configuration of libraries. In these containers the main components are the images. The image file
contains the code required and the necessary libraries required for the operation of an application [2].

The docker images are collectively present in Docker Hub. These repositories contain the docker images
in an organized manner. The docker repositories can be of two types. The first is the private docker repository
and the second is the public docker repository. They are also split into official repositories and community
repositories [3]. The official repositories are more popularly used as they contain the public certified images.
These images are used as a base platform for other images. Hence, maintaining the security of the official
repository images is mandatory. On the other hand, the community repositories can be generated by any
individual [4]. Containers do not have any guest operating system. This helps to reduce the overall
overload of the system. In real-time, the container system is combined with the Ethernet systems to
achieve scalable performance. This helps to create automation along with the internet facilities. These
automation processes can be easily controlled using machine learning algorithms [5]. Recently, docker
containers are known for providing services to multiple applications using shared hosts. These docker
containers are much lighter compared to the virtual machine devices. The usage of docker containers aid
the developers to share many applications [6]. Containers are maintained using container management
systems. These services render Application Programming Interface (API) for the management of the life
cycle. This comprises of multiple levels. The first level is the acquisition. The second level is the build
and development. The third level is the deployment. The fourth level is the run command. The final level
is the maintenance [7]. The platform used for managing containers is called as Kubernetes. This platform
is used for providing effective communication between the containers. Further, it provides necessary
resources to operate the containers in an independent manner. Using Kubernetes the reliability of the
containers enhances to a greater extent [8]. The main drawback of these systems is the vulnerability to be
attacked easily. This is because docker platform can be easily exposed to the external resources. Denial of
service attack is the common attack that affects these docker images. Hence, preservation of docker
images is a crucial task [9]. To integrate the cloud computing with the end users fog computing
techniques are being used. These techniques increase the storage and resources of the cloud data center.
This helps in the improved performance of the Internet of Things (IoT) devices. The fog architecture is
usually split into multiple presence-of-points to achieve improved performance [10].

Section 2 provides methods, it contains related work research and a review of the literature. Section
3 provides the paper contributions. Section 4 provides the stages of the container maturity process.
Section 5 describes lightweight container technologies and their management. Section 6 explains the
implementation of the container on the host machine. Sections 7 describe the container load balancing
with the proposed algorithm. Section 8 shows the result and discussions. Finally, Section 9 shows the
conclusion of the work and the scope for future work.

2 Method

This section provides related theories and technologies that are the tools integrated into our scalable
container service architecture.

Luo et al. [11] proposed a new fog computing architecture based on container systems for the energy
balancing. The scheduling was done using improve the battery efficiency of the virtual machine. The
resource utilization done by the fog devices are increased using the proposed technique. This system was
designed to reduce the service delay. Von Leon et al. [12] designed a lightweight container model that is
suitable for the cloud architecture. This scheme utilized the integration of cloud and container devices to
enable reliable connectivity along with reduced computational power. The flexibility of the service was
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attained using multi-tenancy containerization model. Garg et al. [13] introduced automated cloud infrastructure
for the creation of robust container security. This was implemented using continuous integration of the docker
containers. The transformation of cloud computing for the purpose of industrial automation purpose was
implemented to improve the productivity of the system. Bhimani et al. [14] analyzed the variation of the
performance of the container system with respect to the increase in the number of applications. This scheme
was dedicated for the usage in intensive applications. A platform of multiple docker containers were used in
this model to identify the effects on the performance in terms of execution time and resource utilization.
Mendki [15] utilized docker containers for the implementation by the IoT edge devices. Deep learning
framework was implemented in this system. The hardware component used in implementation was the
Raspberry Pi module. This scheme was evaluated using surveillance applications in which the real-time
data was analyzed. Wan et al. [16] used micro services for the implementation of the docker containers.
Hypervisor based virtualization scheme was introduced in this framework. The objective was to minimize
the application deployment cost using a micro service architecture. The algorithm was designed to operate
in an incremental manner. Jha et al. [17] used holistic evaluation for the integration of docker containers
with the micro services. Comparison was done using the container with hypervisor and container with bare-
metal. In this work, the docker containers were implemented using heterogeneous set of micro services.
Two types of containers namely inter-container and intra-container were analyzed and evaluated. Liu et al.
[18] proposed a new scheduling algorithm for the container systems based on the optimization of multiple
objectives. The resource scheduling was done using the Multiopt algorithm. A new metric was designed to
weight each factor in scheduling. Based on this metric, a scoring function was implemented to combine all
the factors. Saha et al. [19] evaluated the docker containers using scientific work loads. This system was
designed for the cloud implementation. This scheme enabled the flexibility and portability for the usage
with multiple applications. Solution was provided based on the singularity principle. Further, this scheme
was capable of providing improved performance with minimal overhead. Lingayat et al. [20] performed an
extensive performance evaluation of docker containers on baremetals. Here, containers were used for
initiating the applications with minimal start up time. Testing was conducted to analyze the type of
environment to be used for the implementation of the docker systems. It was found that the usage of
baremetal improved the performance by 50%. Based on the literature survey, we infer that proper
scheduling algorithms helps to improve the performance of docker systems. Hence, a new algorithm called
Ant Colony Optimization-based Light Weight Container (ACO-LWC) load balancing scheduling algorithm
for scheduling various process requests is being proposed in this research.

3 Contribution of the Paper

The main contributions of the paper are listed below:

� Virtual machine and Container systems are compared in detail.

� Lightweight container technologies and their management are discussed.

� Implementation of docker systems is explained.

� A novel Ant Colony Optimization-based Light Weight Container (ACO-LWC) load balancing
scheduling algorithm is proposed.

� The proposed algorithm is analyzed using parameters like response time (ms), mean square error
(MSE), node load, largest TPS of cluster (fetches/sec), average response time for each request (ms)
and run time (s).

4 Virtual Machine vs. Container

The popularity of software containers has been increasing significantly since the release of Docker in
2013. The main advantage of virtualization approach is its lightweight nature. This helps to isolate and
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run various programs even on computers that have limited computing capabilities. Recently, the docker
containers are being used on top of virtual machine. This helps to overcome the drawbacks of earlier
virtual machines. With the rapid evolution of IoT systems, the docker containers are used to promote
highly connected networks. These systems help to improve the software processing speed, platform
independence and process reliability.

Tab. 1 shows the main differences between virtual machine and the docker container. The first difference
is the virtualization level. The virtual machine is based on hardware level whereas, the docker container is
based on software level. The virtual machine is fully isolated and the docker container is isolated based on
process or application level. The docker container is faster compared to virtual machine. Also, it occupies
less storage space compared to virtual machine. The docker machine used a docker hub for its operation.
The code reusability concept is encouraged on docker container compared to virtual machine. Further, the
resource utilization is done dynamically in docker container whereas, it is done in a static manner in
virtual machine.

Fig. 1 shows the layer structure of the docker container. The lowermost layer is the infrastructure layer.
This layer is topped with Guest Operating System. On top of this layer, is the docker layer. The top most layer
is the application layer that contains multiple containerized applications.

Table 1: Virtual machine vs. container comparison using various parameters

Parameters Virtual machine Docker container

Level virtualization Hardware level Software level

Isolation Fully isolated Process or application-level isolation

CPU processing and performance Slower: uses more CPU cycles Faster: consumes less CPU cycle

Memory usage speed Slower Real-time and faster

Hardware storage Occupies more storage Less storage

Web-hosted hub No web hub Use docker hub

Code-reusability Poor code-reusability Encourage code-reusability

Resource utilization Static allocation Dynamic allocation

Figure 1: Layer structure of docker container
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5 Lightweight Container Technologies and their Management

Container technology is a methodology that is capable of functioning as a packaged application. This
technology operates with the help of its dependencies. Docker is a software container deployment tool.
This tool operates at a process level. The docker container is a tool that allows applications to be isolated
from one another in a lightweight manner. The container technology is a network-level virtualization
technology that has a separate file system, network and process space to run a server without changing
the host operating environment. Using a docker container, more than one processes can be operated
simultaneously in a single computer without any conflict with each other.

Fig. 2 depicts the docker core concept. The main component of docker system is image. This image is a
read-only model which is a combination of file system, configuration data and startup command. The docker
containers have their registry on Docker Hub. Alternatively, they can also be operated on their private
registry server. The Docker engine is responsible for starting, stopping and monitoring the containers on a
given host. The popularly used CLI (command Line Interface) docker commands are as follows:

(i) docker pull: This command retrieves a resource from a dedicated repository, such as a docker
image.

(ii) docker rmi: This command is used to delete one or more images from a container.
(iii) docker start: This command is used to start the container.
(iv) docker stop: This command terminates the operating container.
(v) docker commit: This command allows the user to build a new image based on changes made in an

existing container.
(vi) docker ps: This command generates a list of containers.
(vii) docker rm: This command lets the user delete one or more containers.

6 Implementation

Implementation of docker with multi-service using load balancing algorithm is done as follows,

Step 1:ADockerfile includes a collection of instructions for building an image of docker. The popularly
used instructions are FROM, COPYand ENV. The FROM instruction is used for specifying the base images.
The COPY command is used for the addition of new files into the container files. The ENV instruction is used
for defining the default execution command for the environment variables.

Step 2: The second step is to build the image and to start the container based on the specification in
docker-compose.yml file. In this step, the docker compose files are created. This is done using three main

Figure 2: The core concept of docker container
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steps. The first step is to define the application environment using Dockerfile. The second step is to define all
the docker services using docker compose YAML file.

This file is shown in Fig. 3. The final step is to run the docker compose file using the command prompt.

Step 3: The final step is to run the application using compose file. This step is used for building images
from the Dockerfile. In this step the docker-compose up command is used for combining the container
output.

Step 4: In this step, the docker stat command is used for monitoring the usage of the docker.

This is shown in Fig. 4. Here, the load_test_master is used for monitoring the service of the docker in a
continuous manner.

Figure 3: Docker-compose up

Figure 4: Docker stats
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7 Proposed Load Balancing Scheduling Algorithm

A new algorithm is proposed for load balancing scheduling based on Ant Colony Optimization (ACO).
In this scheduling algorithm, initially, the amount of resource to be allocated to each node is computed. Based
on this computed value, the task allocation is done in a round robin fashion. Then the probability of transition
from one node to another is computed. We mostly run docker on the bare computer. Where only docker is
operating, implying that the system is completely dedicated to docker. Whereas the individual container will
get a maximum of 60% CPU and memory consumption. For effective load balancing, the CPU usage and
memory usage must be within a particular optimal range. Hence the CPU usage and memory usage are
then computed. Finally, based on the probability of transition, rate of CPU usage and rate of memory
usage, the next node to be selected by the artificial ant is then identified. This is explained in the
Algorithm 1 below.

Algorithm 1: Ant Colony Optimization-based Light Weight Container (ACO-LWC) load
balancing scheduling algorithm

The scheduler is designed such that the tasks are allocated based on the available resources. In this
research, ACO is used for the optimal task allocation. The pheromone trail of every resource is analyzed
by the artificial ant for the computation of amount of resource to be allocated to each node. This is given by,

RðNiÞ ¼ xm � M 0ðNiÞ
MðNiÞ

� �
þ xc � C0ðNiÞ

CðNiÞ
� �

(1)

where R(Ni) is the allocated resource for the node Ni, ωm is the memory weight, M′(Ni) is the amount of
memory available in node Ni, M(Ni) is the total memory of node Ni, ωc is the CPU weight, C′(Ni) is the
available CPU resources in node Ni and C(Ni) is the total CPU of node Ni.

Then, the task allocation for each node is done in a Round-Robin fashion. It is represented as

T0ðNiÞ ¼ RRðNiÞ (2)

where T0 represents the initial task allocation and RR represents the Round-Robin algorithm.

The probability of transition from node Ni to node Nj at the T
th instant is then given by,

PTðNi; NjÞ ¼ ToðNiÞ � ð�iÞPn
j¼1 ToðNjÞ � ð�jÞ (3)

where PT(Ni, Nj) is the probability of transition from node Ni to node Nj, To(Ni) is the task allocated to node
Ni, λi is the heuristic value of node Ni, To(Nj) is the task allocated to node Nj, λj is the heuristic value of node Nj

and n represents the total number of nodes.

The rate of CPU usage is computed as

rC ¼ CU ðNiÞ
CðNiÞ � 100 (4)

where σC is the rate of CPU usage,CU(Ni) is the amount of CPU used by node Ni andC(Ni) is the total CPU of
node Ni.

The rate of memory usage is computed as

rM ¼ MU ðNiÞ
MðNiÞ � 100 (5)
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where σM is the rate of memory usage,MU(Ni) is the amount of memory used by node Ni andM(Ni) is the total
memory of node Ni.

If the CPU usage level is too high, then the response time increases. If the CPU usage level is too low,
then the CPU resource gets wasted. Thus, the CPU usage level must be within certain limits. Similarly, if the
memory usage level is too high, the run time increases. If the memory usage level is too low, the node load
gets unbalanced. Thus, the memory level should neither be too low nor be too high. Based on the probability
of transition, rate of CPU usage and rate of memory usage, the next node to be selected by the artificial ant,
i.e., node Nj is identified using,

Nj ¼
arg max PTðNi; NjÞ; rLC ,rC ,

j2n
rHC & rLM , rM , rHM

PTðNi; NjÞ ; o:w:

(
(6)

where σLC is the lower limit of the CPU usage rate, σHC is the upper limit of the CPU usage rate, σC is the rate
of CPU usage, σLM is the lower limit of the memory usage rate, σHM is the upper limit of the memory usage
rate and σM is the rate of memory usage. The value of σLC, σHC, σLM and σHM are set as 0.2, 0.8, 0.2 and
0.8 respectively.

The lightweight container load-balancing method is based on ant colony optimization. Fig. 5 shows the
flow chart of the proposed ACO-LWC Load Balancing Algorithm. The flowchart goes as follows: first,
initialize the container parameters, such as the container name and then begin generating a Docker
application package. Then set CPU and memory threshold limitations. The suggested ACO-LWC Load
Balancing Algorithm is used to verify the container’s workload. If the workload of the container reaches
the maximum threshold limit, ant proceeds to compute the container’s current resource consumption. If
the container is found to be overloaded, a new container is created and a job is assigned. Finally, the best
solution was discovered.

8 Results and Discussion

For evaluating the proposed ACO-LWC algorithm we have used parameters like response time (ms),
mean square error (MSE), node load, largest TPS of cluster (fetches/sec), average response time for each
request (ms) and run time (s). The proposed algorithm is compared with two existing load balancing
scheduling algorithms namely, least connection algorithm and round robin algorithm.

In Fig. 6, the percentage of requests processed were varied from 50% to 95% and the response time was
identified for the three algorithms namely, least connection, round robin and the proposed ACO-LWC
algorithm. From the Fig. 6, we see that the response time is minimal for the proposed ACO-LWC
algorithm compared to the existing algorithms. The response time for least connection, round robin and
the proposed ACO-LWC algorithm are 25, 28 and 18 ms respectively when 50% requests are finished.
This shows that the response speed is maximum for the proposed scheme. Thus, this scheme can be
easily implemented in docker containers for efficient usage. Also, Fig. 5 shows that the response time for
least connection, round robin and the proposed ACO-LWC algorithm are 58, 60 and 48 ms respectively
when 95% requests are finished. This shows the effectiveness of the proposed algorithm.

Fig. 7 shows the comparison of mean square error of the three scheduling algorithms, after scheduling
60 and 120 requests. For all the three algorithms, the error increases when the number of requests increases.
The error for scheduling 60 requests using least connection, round robin and the proposed ACO-LWC
algorithm are 0.12, 0.09 and 0.04 respectively. Similarly, the error for scheduling 120 requests using least
connection, round robin and the proposed ACO-LWC algorithm are 0.15, 0.11 and 0.06 respectively.
Thereby, it is evident that the error is very less using the proposed load balancing algorithm. This
indicates that the proposed algorithm achieves better performance in load balancing with better stable results.
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Figure 5: Flow chart for the proposed ACO-LWC load balancing algorithm

Figure 6: Comparison of response time
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The cluster is divided into many “clusters” in the sense that each node can continue to ping just a subset
of the nodes it is aware of. The maximum number of compute nodes in a cluster network is 128 nodes. In
Fig. 8, we have considered three nodes namely, Node 1, Node 2 and Node 3. We find that the node load
cluster is dispersed in the least connection and round robin algorithm. Whereas, for the proposed ACO-
LWC algorithm, the node load is closer together in the cluster. The closeness of node load in the cluster
indicates the stability of load balancing. Thus, we can infer that the proposed ACO-LWC algorithm
achieves better stability performance.

Fig. 9 shows the variation of largest TPS of cluster with respect to number of applications. As shown in
the Fig. 9, we see that the number of TPS increases tremendously using the proposed ACO-LWC algorithm.
However, the TPS for the least connection and round robin are very low even for higher number of
applications. The TPS of cluster for 20 applications is 45, 55 and 650 for the least connection, round
robin and proposed ACO-LWC respectively. Similarly, the TPS of cluster for 50 applications is 120,
231 and 1042 for the least connection, round robin and proposed ACO-LWC respectively. The reason for
this is because the proposed algorithm schedules the containers adaptively based on the CPU and
memory usage. Thus, the response speed is tremendously increased that results in improved TPS
performance.

Figure 7: Comparison of mean square error
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Figure 8: Comparison of node load

Figure 9: Variation of largest TPS of cluster with respect to number of applications
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In Fig. 10, we see that, for the least connection algorithm, as the number of applications increases, the
average response time also increases. Thus, this system is not suitable for higher number of applications. The
TPS range achieved by the round robin algorithm is in the range of 2345 to 2865 ms. Thus, it is clear that
the response time is high for the round robin algorithm. The proposed ACO-LWC algorithm attains minimal
response time ranging from 1567 to 1593 ms. For higher number of applications, for instance, when the
number of applications is fixed as 60, algorithms like least connection, round robin and the proposed
scheme uses a response time of 5282, 2865 and 1593 ms. Thereby, we understand that, even when the
number of applications is high, the response time of the proposed scheme is minimal. This aids in the
easier implementation of the proposed algorithm.

In Fig. 11 see that, the run time increases with the increase in the number of applications for all the three
algorithms. However, the average run time (ART) for the proposed ACO-LWC scheme is 42.08 ms. For least
connection algorithm, the ART is 87.75 ms. For the round robin algorithm, the ART is 67.66 ms. This shows
that the overall run time is very low for the proposed scheme. There is around 2.08 times reduction in ART
compared to least connection and 1.607 times reduction in ART compared to the round robin algorithm. This
clearly indicates the increased performance speed of the proposed scheme.

8.1 CPU Performance

The performance of the CPU is greatly improved by the utilization of the proposed ACO-LWC load
balancing scheduling algorithm. This helps in the effective resource utilization of the docker host
systems. Further, the time taken for the completion of a particular task is very less with the usage of the
proposed scheme.

Fig. 12 clearly indicates that the proposed scheme has a higher capability to limit the CPU utilization.
The amount of CPU utilized by containers and images are greatly reduced with the usage of the proposed
algorithm.

Figure 10: Variation of average response time for each request with respect to number of applications

Figure 11: Variation of run time with respect to number of applications
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Tab. 2 shows the comparison of CPU usage (%) for all the three algorithms. The Tab. 2 indicates that the
CPU usage for least connection, round robin and ACO-LWC algorithm are 0.43, 0.27 and 0.10 respectively.
This shows that the proposed algorithm has very less CPU usage, thereby, maximizes the CPU efficiency.

8.2 Memory Performance

The proposed scheme is further analyzed with respect to the memory performance. This indicates the
easier usage of the computer resources. Efficient memory performance helps the docker systems to
process multiple applications with minimal cost and minimal overhead.

Fig. 13 shows the RAM speed performance of the proposed ACO-LWC algorithm. This Fig. 13 clearly
illustrates that almost 100% of the memory utilized by the system are allocated to the software. This ensures
that very low memory level is utilized by the system for the virtualization. This helps to improve the RAM
speed and the overall performance of the system.

The Tab. 3 indicates that the memory usage for least connection, round robin and ACO-LWC algorithm
are 2.13 GB, 1.53 GB and 144.3 MB respectively. Thus, the memory utilization of the proposed algorithm is
very low. This increases the RAM speed of the system.

8.3 Network I/O Performance

The network I/O indicates the data quantity transmitted and received by the docker system using the
network interface. The proposed scheme is analyzed based on the network I/O levels using the
throughput of the system.

Figure 12: CPU utilization of ACO-LWC scheme

Table 2: Comparison of CPU usage

Algorithm CPU usage (%)

Least connection 0.43

Round robin 0.27

ACO-LWC 0.10
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Fig. 14 illustrates the network I/O performance of the proposed ACO-LWC scheme. This Fig. 14
indicates that the performance of the system in terms of throughput is very high. Also, high throughput is
achieved even in the presence of under loading and overloading conditions. This shows the effective load
balancing capability of the proposed scheme.

Figure 13: RAM speed performance of ACO-LWC scheme

Table 3: Comparison of memory usage

Algorithm Memory usage

Least connection 2.13 GB

Round robin 1.53 GB

ACO-LWC 144.3 MB

Figure 14: Network I/O performance of the proposed ACO-LWC scheme

IASC, 2022, vol.34, no.1 217



9 Conclusion and Future Work

In this research, we have proposed a new algorithm called Ant Colony Optimization-based Light Weight
Container (ACO-LWC) load balancing scheduling algorithm for scheduling various process requests.
Initially, the task allocation was done in a round robin fashion. To achieve effective load balancing, in
this algorithm, the CPU usage and memory usage were maintained within a particular optimal range.
Here, the load balancing scheduling was done based on Ant Colony Optimization. Performance analysis
showed that the proposed ACO-LWC algorithm achieved better stability performance. Further, the TPS of
cluster for 50 applications was found to be 120, 231 and 1042 for the least connection, round robin and
proposed ACO-LWC respectively. Similarly, the response time for least connection, round robin and the
proposed scheme with 60 applications was identified as 5282, 2865 and 1593 ms. Furthermore, analysis
shows that the overall run time is very low for the proposed scheme. There is around 2.08 times
reduction in run time compared to least connection and 1.607 times reduction in run time compared to
the round robin algorithm. In future, we plan to integrate the proposed framework with IoT systems. We
also plan to deploy the proposed algorithm for micro services-based applications.
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