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Abstract: Cracks affect the robustness and adaptability of various infrastructures,
including buildings, bridge piers, pavement, and pipelines. Therefore, the robust-
ness and the reliability of automated crack detection are essential. In this study, we
conducted image segmentation using various crack datasets by applying the
advanced architecture of U-Net. First, we collected and integrated crack datasets
from prior studies, including the cracks in buildings and pavements. For effective
localization and detection of cracks, we used U-Net-based neural networks, ResU-
Net, VGGU-Net, and EfficientU-Net. The models were evaluated by the five-fold
cross-validation using several evaluation metrics including mean pixel accuracy
(MPA), mean intersection over union (MIoU), and confusion matrix. The results
of the integrated dataset showed that ResU-Net (68.47%) achieves the highest
MIoU with a relatively low number of parameters compared to VGGU-Net
(67.71%) and EfficientU-Net (68.07%). In addition to the performance, ResU-
Net showed the lowest test runtime, 40 milliseconds per single image, and the
highest true positive rate of 45.00% in the pixel-wise recognition test. As the
models were trained and validated with diverse surfaces, the proposed approach
can be used as a pre-trained model in the task with relatively few data sources.
Furthermore, both practical and managerial implications are discussed herein.

Keywords: Crack detection; semantic segmentation; deep learning; fully
convolutional network; U-Net

1 Introduction

In industrial infrastructures, cracks are repeatedly generated due to various factors such as corrosion,
poor construction, and/or loading [1]. Over the past few years, several locations have suffered notable
physical damage owing to cracks occurring in roads and transport pipes [2]. To prevent potential
accidents caused by such cracks, significant efforts have been devoted toward detecting abnormalities
using numerous different technical and administrative approaches. Traditionally, when well-trained
experts conduct comprehensive investigations of specific structures, such as pipes, they utilize various
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datasets collected via diverse pathways from the structures (e.g., sensors) to compute and estimate the exact
location or extent of specific cracks, as well as to determine the need for structural reinforcements [3,4].
However, this approach has significant limitations. In general, a majority of traditional approaches require
labor-intensive and time-consuming tasks [5–7].

To address this issue, a number of remarkable techniques based on computer vision and machine
learning theories have been introduced for realizing efficient crack detection and classification tasks
[8–10]. In-line with this trend, a majority of previous studies have proposed the use of deep-learning-
based architectures with a convolutional neural network (CNN) to detect specific cracks [11,12]. For
instance, Fan et al. [13] and Zhang et al. [12] introduced CNN-based models with supervised learning
approaches for detecting cracks in pavements and roads, respectively. In addition to deep learning models
applying a CNN for road/pavement crack detection, several researchers have explored semantic
segmentation approaches with models to more accurately classify whether each pixel is included in the
crack dimensions [14]. Zhang et al. [2] proposed a vision-oriented crack detection system with a deep
semantic segmentation network. Additionally, Lee et al. [15] argued that a crack detection network
involving image segmentation approaches can be helpful for robust crack detection tasks.

Based on the findings of previous studies, the current study aims to explore whether comprehensive
image segmentation architectures can be employed to detect cracks in diverse surfaces, regardless of both
objects and environments. With this aim, we collected integrated datasets including diverse crack images.
Subsequently, three deep learning models based on the U-Net network architecture were employed to
localize and detect crack positions. The remainder of this paper is organized as follows: Section
2 introduces several examples of crack detection via image-based deep learning techniques. Sections
3 and 4 describe the study methodologies and performances of the employed deep learning models,
respectively. Both the implications and limitations of this study, as well as the scope for future research,
are presented in Section 5.

2 Related Studies

Deep learning approaches using image datasets constitute an important research topic in the fields of
computer science and artificial intelligence. Several previous studies have employed both digital images
and deep learning architectures to solve specific industrial problems [16]. This indicates that deep
learning models can be more effective and efficient when employing image datasets, as compared with
traditional machine learning models [17]. Deep learning-based representation approaches employing a
neural network architecture have been widely used in image classification, object detection, image
captioning, and semantic segmentation [18]. In addition to deep learning approaches, the collection of
large-scale image datasets (e.g., ImageNet [19]) has enabled several researchers and practitioners to
successfully complete numerous large-scale visual recognition tasks.

In general, a CNN is organized in three dimensions (width × height × depth) with three main layers
(convolutional, pooling, and connected layers). Based on this architecture, a number of CNN-based image
processing models have been introduced to utilize image datasets and extract valuable features [20].
Similar to other deep learning models applied to image datasets, the detection of cracks in specific
structures (so-called crack detection) is one of the adaptation domains using deep learning models. Thus,
several prior studies have focused on crack detection using deep learning networks; this approach is
classified into three techniques: image classification-, bounding-box-, and image segmentation-based
techniques [21]. Tab. 1 summarizes prior studies.
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The traditional application of a CNN architecture involves an image classification task to determine
whether an image includes a distinguishable crack. Using this approach and task, the classifier is
generally organized into an input layer, convolutional layers (for extracting specific characteristics),
pooling layers (for reducing the number of dimensions), and connected layers. Wang et al. [22] used a
CNN architecture and component analyses to classify pavement cracks, achieving accuracies of 97.2%,
97.6%, and 90.1% for longitudinal, diagonal, and alligator cracks, respectively. Chen et al. [23]
introduced a deep learning model with both CNN and naïve Bayes-based fusion schemes for detecting
cracks on the surface of a nuclear power plant, achieving a hit rate of 98.3% per frame.

One of the notable approaches using a CNN architecture for crack detection is a bounding box task. This
task aims to specify certain sliding windows for crack locations. Cha et al. [24] proposed a visual inspection
method with a faster region-based CNN (Faster R-CNN) for detecting cracks in concrete and steel surfaces.
Based on 2,366 collected images, the proposed method yielded precision rates of 90.6%, 83.4%, 82.1%,
98.1%, and 84.7% when detecting five different types of damage in concrete and steel surfaces, respectively.

Although deep learning models for image classification and bounding box tasks have achieved excellent
performance, the models for these tasks have notable limitations in terms of their practical applicability. As
one of the most representative limitations, the models for these tasks are unable to precisely indicate crack
regions. In addition, large crack shapes occur on diverse surfaces, which needs to be addressed and considered
in crack detection tasks [2]. To address the abovementioned limitations, a semantic segmentation task that
focuses on both crack detection and image classification, while also considering each pixel, is required. In
general, a fully convolutional network (FCN) is employed for pixel-wise classification. For instance, Yang
et al. [25] utilized the FCN architecture for detecting diversely categorized cracks with an accuracy of
97.96%. In addition, Dung et al. [1] proposed an FCN-based model using a VGG network as the backbone.
To successfully detect concrete cracks, the implemented FCN with pre-trained VGG-16 models was
employed, achieving a precision ratio of 90%. Zhang et al. [2] employed both an FCN and a dilated
convolutional layer to observe concrete cracks; this model, validated on 600 images, resulted in a mean
pixel accuracy (MPA) of 92.55% and a mean intersection over union (MIoU) of 86.05%. Pan et al. [26]
proposed SCHNet, a segmentation model for concrete crack based on VGG-19 with self-attention
mechanism. With the data augmentation method, SCHNet achieved MIoU of 85.31%.

Encoder-decoder architectures have been employed to achieve better performance than general deep
learning models [27]. Thus, researchers have focused on U-Net, which is an FCN with an encoder-
decoder architecture, for image segmentation [28]. Ji et al. [29] applied the DeepLabV3+ with the
encoder-decoder architecture to asphalt pavements. The model, trained for 250 images, recorded
0.8342 MIoU for validation data and 0.7331 for an external validation set with 80 images. Liu et al. [30]
proposed a detection and segmentation method using ResNet-34 based U-Net with a YOLO detector. The
proposed two-step approaches scored 90.58%, 95.75% f-1 score in detection and segmentation. In
general, U-Net can be employed to present more accurate image locations by delivering feature matrices
from the encoder to the corresponding decoder. Therefore, this study employs U-Net-based approaches to
explore whether comprehensive image segmentation architectures can be employed to detect cracks in
diverse surfaces, regardless of both objects and environments.

3 Methods

In this study, to explore crack outlines, three U-Net-based models designed for semantic segmentation
tasks were employed. Fig. 1 provides an overview of the proposed architecture. Each U-Net model employed
was trained using the datasets of crack images and subsequently validated using test datasets.
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Figure 1: Overview of the proposed architecture

1
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Table 1: Summary of prior studies on crack detection using deep learning models (FWIoU: Frequency Weighted
Intersection over Union)

Sources Method Dataset Results

Wang et al.
[22]

CNN and principal
component analysis

30,000 pavement crack
images

Correct rate: 97.2% (longitudinal crack),
97.6% (transverse crack), 90.1%
(alligator crack)

Chen et al.
[23]

CNN and Naïve
Bayes-based fusion
model

147,344 crack images,
149,460 non-crack
images

Hit rate: 98.3%

Cha et al. [24] Faster R-CNN 2,366 crack images Mean average precision: 87.8%

Yang et al.
[25]

FCN More than 800 crack
images

Accuracy: 97.96%, Precision: 81.73%,
Recall: 78.97%, F1 score: 79.95%

Dung et al. [1] VGG network, FCN
with VGG backbone

40,000 (classification),
600 crack images
(segmentation)

Accuracy: 99.9% (classification),
Average precision 89.3% (segmentation)

Zhang et al.
[2]

FCN with dilated
convolution

600 crack images Pixel accuracy: 96.84%, Mean pixel
accuracy: 92.55%, MIoU: 86.05%,
FWIoU: 94.22%

Pan et al. [26] SCHNet (Spatial-
Channel
Hierarchical
Network)

11,000 pavement and
concrete images

MIoU: 85.31%

Ji et al. [29] DeepLabv3+ 300 pavement crack
images

MIoU: 73.31%

Liu et al. [30] ResNet based U-Net
with YOLO detector

7,104 pavement crack
images

F1 score: 90.58% (detection), 95.75%
(segmentation)

3.1 Dataset

We employed crack image datasets of diverse surfaces such as pavements or concrete1. This dataset includes
more than 11,200 RGB and annotated masked crack images [12,31–35]. We also used the additional road-crack
image dataset [1], which is organized into 11,449 images in total (pavement: 4650, concrete: 6,799). All the
images were then resized to 224 × 224, and each pixel was normalized to between zero and 1 (Fig. 2).
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3.2 Semantic Segmentation Models

To detect cracks in diverse materials using a large-scale dataset, we employed three U-Net based models:
VGGU-Net, ResU-Net [36], and EfficientU-Net [37]. Moreover, Tab. 2 shows the number of parameters and
layers in this study.

Figure 2: Examples of original and ground truth images from combined dataset

Table 2: Comparison of parameters and layers of each model

Model Number of parameters Number of layers

VGGU-Net 3,903,489 39

ResU-Net 4,723,057 95

EfficientU-Net 11,472,361 443
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3.2.1 VGGU-Net
VGGU-Net was proposed by Simonyan et al. [37]. This model is organized using U-Net architecture and

a VGG network as the encoder. As a feature extraction component, the VGG network reduces a set of high-
dimensional features in raw images to low-dimensional features with multiple convolutional and pooling
layers. In general, the extracted features in the VGG network are linked to a fully connected layer.
Thereafter, the output of the layer is estimated and obtained via the activation function.

However, in this study, the feature extraction component of the VGG network, i.e., the multiple
convolutional and pooling layers, were used. Subsequently, the decoding components, including the de-
convolutional, convolutional, and up-sampling layers, were added. The architecture of the proposed
VGGU-Net is presented in Fig. 4a.

3.2.2 ResU-Net
ResU-Net, which includes a residual block to exclude issues regarding training degradation in deeper

hidden layers [38], was employed [36]. The residual block was based on the assumption that, for the
input x, it is more efficient and beneficial to optimize residual mapping issues, F(x) := H(x) − x, as
compared to optimizing the original mapping, H(x). As presented in Fig. 3a, the operation in the residual
block is represented as F(x) + x (shortcut connection). The residual block in ResU-Net is organized as
two convolutional layers with 2 kernels of 3 × 3 with batch normalization in the main flow, and a single
convolutional layer with 1 kernel of 1 × 1 in shortcut connection. Fig. 4b depicts the model architecture.

3.2.3 EfficientU-Net
EfficientU-Net, which is an advanced model of UNet++ [26], and EfficientNet B4 [39] as the backbone

encoder are applied. UNet++ is a refined architecture of U-Net, achieved by updating the skip connection
with a dense block of DenseNet [40]. Moreover, DenseNet is connected among all the layers (Fig. 3b).
Thus, the vanishing gradient problem was addressed using the model with dense blocks.

Fig. 4c presents the model architecture of EfficientU-Net. In particular, the architecture of EfficientU-
Net is organized by the enhanced skip connection (indicated in green blocks) between the encoding
component as a contracting path and the decoding component as an expansive path (indicated in black
arrows). Specifically, the skip connections (indicated by green and blue) integrate the feature maps of all
previous blocks. An equation of the layer connection rule is described in the following Eq. (1), where H
indicates the operation of block X, x stands for the output of block X, u denotes the up-sampling, and [ ]
represents a concatenating operation. Moreover, i and j refer to the vertical and horizontal orders of
blocks. Each block X mainly consists of two 3 × convolution layers with batch normalization and a leaky
ReLU activation function.

xi;j ¼ Hðxi�1;jÞ; if j ¼ 0
Hð½½xi;k �j�1

k¼0; uðxiþ1;j�1Þ�Þ; if j. 0

�
(1)

Figure 3: Residual and dense blocks
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3.3 Loss Function and Optimization

We employed a binary cross entropy (BCE) as a loss function, which is widely used for pixel-wise
binary classification (Eq. (2)). Here, θ is the model parameter, and n, i and j are the pixel locations. In
addition, N, W, and H denote the batch size, width, and height of the input, respectively; ynij ∈ {0, 1}
represents the presence of the crack, and ŷ denotes the probability of the predicted class.

J ðhÞ ¼ � 1

N �W � H
XN
n¼1

XW
i¼1

XH
j¼1

ynij logðbynijÞ þ ð1� ynijÞ logð1� bynijÞ; (2)

We used the adaptive moment estimation (Adam) optimization algorithm with a learning rate η of 0.001,
β1 of 0.9, and β2 of 0.999 [41]. The batch size was set to 16.

Figure 4: Models employed in this study. (a) It represents the structure of VGGU-Net, which utilizes the
VGG network as an encoder. (b) It represents the structure of ResU-Net with a residual block in the
encoder and decoder. (c) It represents the structure of EfficientU-Net, which comprises an EfficientNet
encoder, a decoder, and an enhanced skip connection
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3.4 Metrics

Two widely used evaluation metrics for semantic segmentation tasks were employed to evaluate the
proposed models: MPA and MIoU [42]. MPA is the mean of the ratio of pixels correctly classified for
each class (Eq. (3)), where nc is the number of classes, ti is the total number of pixels in a specific class i,
nii is the number of correctly classified pixels, and nji is the number of pixels incorrectly classified.

MPA ¼ 1

nc

X
i

nii
ti
; (3)

In addition, MIoU is the mean of the overlapping area over the union between the prediction and ground
truth images (Eq. (4)).

MIoU ¼ 1

nc

X
i

nii
ti þ

P
j nji � nii

; (4)

Also, typical evaluation metrics for classification tasks were utilized to evaluate pixel-wise crack
recognition performance of the proposed models; confusion matrix, TPR (true positive rate) and FPR
(false positive rate). The confusion matrix is a table layout that can visualize the performance of the
model. Each row of the matrix represents a real class, and each column represents a prediction class. The
confusion matrix consists of the number of TN (true negative), FP (false positive), FN (false negative),
and TP (true positive). The TPR is used to measure the proportion of actual positives which are correctly
identified (Eq. (5)).

TPR ¼ TP

TP þ FN
; (5)

The FPR is a measure of false positives for whole positive predictions (Eq. (6)).

FPR ¼ FP

FP þ TN
; (6)

The FNR is the measure that true positive is omitted by the test (Eq. (7)).

FNR ¼ FN

TP þ FN
; (7)

Also, the TNR is the ratio that the true negative is predicted to be negative (Eq. (8)).

TNR ¼ TN

FP þ TN
; (8)

3.5 Model Training

We applied five-fold cross-validation procedures to validate the performance and robustness of the
proposed models. The following procedures were conducted [43]: First, the entire dataset was divided
into five folds, four of which were used for the training set. The last fold was employed as the testing
dataset. Thereafter, the testing datasets were changed to other folds that were not previously included as
the testing datasets. The average results of the five evaluations were then computed. As the current study
employed 11,449 images, each fold had 2290 images; the last fold included 2289 images. We used
Python language to implement all U-Net-based models based on deep learning frameworks, Tensorflow
and Keras. We trained the model on an Ubuntu 18.04 machine equipped with RTX2080Ti GPU.
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4 Results and Discussion

Fig. 5 shows the results of the cross-validation procedures. ResU-Net achieved the highest convergence
speed, followed by VGGU-Net and EfficientU-Net (Fig. 5a). Although the BCE loss of VGGU-Net was
greater than that of EfficientU-Net during the early stages of the training procedures, the BCE (Binary
Cross Entropy) loss rapidly decreased.

Fig. 5b shows the average MPA. ResU-Net demonstrated the highest accuracy (99.02%), followed by
VGGU-Net (98.97%) and EfficientU-Net (98.87%). Although VGGU-Net showed the lowest training
accuracy among the models during the early stage of training, after 30 epochs, it achieved accuracies
higher than those of EfficientU-Net.

Fig. 5c shows the MIoU during training. The overall trend was similar to those of the BCE loss and MPA.
ResU-Net showed the highest MIoU (74.86%), followed by VGGU-Net (72.67%) and EfficientU-Net

Figure 5: Performance of each model with respect to training epochs. Each graph was obtained by
averaging the results of the five-fold cross-validation for the employed models. (a) It depicts the
variations in BCE loss. (b) It shows the changes in MPA. (c) It shows the changes in MIoU
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(70.24%). The difference in performance among the models was not significant at the beginning of training;
however, as training progressed, significant differences were observed in the results of the models.

Tab. 3 shows the average results of the five-fold cross-validation procedures for concrete images,
pavement images, and the integrated images. During testing for the all images, EfficientU-Net showed the
lowest BCE loss (0.04), followed by VGGU-Net (0.06) and ResU-Net (0.07). Moreover, EfficientU-Net
exhibited the highest MPA (98.55%), as compared with the other models (ResU-Net: 98.47%, VGGU-
Net: 98.46%). However, ResU-Net achieved superior performance in terms of the MIoU (68.47%), as
compared with the other models (EfficientU-Net: 68.07%; VGGU-Net: 67.72%).

In the case of 4,650 pavement images, the EfficientU-Net showed the highest performance, achieving
66.63% in MIoU and 97.51% in MPA, followed by ResUNet achieving 65.93%, 97.36% in terms of
MIoU and MPA. However, for the concrete with 6,799 images, ResU-Net achieved 70.21% in MIoU,
showing significantly higher performance than other models (VGGU-Net: 69.63%, EfficientU-Net:
69.05%). Meanwhile, we could confirm that there is no significant performance gap between the three
models in MPA (VGGU-Net: 69.63%, ResU-Net: 99.23%, EfficientU-Net: 69.05%).

Fig. 6 depicts the original, ground truth, and predicted images. Overall, the results of the semantic
segmentation tasks using ResU-Net and EfficientU-Net were similar. It indicates that both models can be
employed to effectively detect cracks in various surfaces, whereas VGGU-Net can involve notable
limitations in detecting cracks that are considerably long and thin. Moreover, VGGU-Net tends to be
unsuitable for detecting cracks on diverse surfaces owing to the generalized issues of the results.

Tab. 4 shows the test runtime of each model. As ResU-Net is composed of the residual blocks, it requires
40.6250 milliseconds to process a single image, which is 1.23, 1.69 times faster than VGGU-Net (49.9998
ms) and EfficientU-Net (68.7599 ms).

Fig. 7 shows the confusion matrix calculated for each pixel of the ground truths and predicted images,
and their TNR (true negative rate), FPR (false positive rate), FNR (false negative rate), and TPR (true positive
rate). As shown in the first row of each confusion matrix, all models accurately predicted TN. It means that
the non-crack pixels were appropriately classified as non-crack (VGGU-Net: 560,890,680, ResU-
Net:560,484,708, EfficientU-Net: 561,072,993). Similarly, in TNR and FPR scores, there is no significant
difference between the models. (VGGU-Net, 99.56%, 00.44%; ResU-Net, 99.49%, 00.51%; EfficientU-
Net, 99.59%, 00.41%).

Table 3: Average test performance determined via five-fold cross-validation

Dataset # of images Model BCE loss MPA (%) MIoU (%)

Pavement images 4,650 VGGU-Net 0.1339 97.3183 64.9058

ResU-Net 0.1565 97.3618 65.9357

EfficientU-Net 0.0837 97.5103 66.6365

Concrete images 6,799 VGGU-Net 0.0224 99.2424 69.6318

ResU-Net 0.0233 99.2396 70.2162

EfficientU-Net 0.0168 99.2666 69.0531

All images concrete &
pavement images

11,499 VGGU-Net 0.0676 98.4621 67.7175

ResU-Net 0.0773 98.4777 68.4787

EfficientU-Net 0.0422 98.5541 68.0750
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Figure 6: Segmentation results. The original image, ground truth image, and segmentation results were
obtained by employing the last fold as the test set

Table 4: Test runtime of the employed models

Model Test runtime (ms)

VGGU-Net 49.9998

ResU-Net 40.6250

EfficientU-Net 68.7599

IASC, 2022, vol.34, no.1 603



However, there is a huge performance gap in predicting crack pixels. As depicted in the second row of
the confusion matrices, ResU-Net, which classified 4,790,667 and 5,855,140 pixels in terms of TP and FN,
recognized the crack pixel accurately compared to other models. Also, ResU-Net achieved the highest TPR
(45.00%) and the lowest FNR (55.00%) scores, which are crucial indicators in recognition of risk. It implies
that ResU-Net is not only superior to other competing models in crack detection but also robust in
misrecognition, i.e., judging crack pixels as non-crack.

EfficientU-Net yielded the highest MPA, as compared with the other U-Net-based models. In addition,
ResU-Net presented the highest MIoU and TPR, as compared with the other models. Based on the
experimental results, it was confirmed that ResU-Net is a more efficient and effective deep learning
model for crack-related image segmentation tasks, compared with the other U-Net-based models.

To sum up the aforementioned results, the technical and experimental merits of using ResU-Net for
various tasks can be detailed as follows:

� The number of required parameters for ResU-Net is approximately 51% less than that for
EfficientU-Net.

� The processing speed of ResU-Net is 1.69 times faster than that of EfficientU-Net.
� The convergence time of ResU-Net is faster than that of the other U-Net-based models.

� The true positive rate of ResU-Net showed the highest rate, 45.00%.

5 Conclusion

The detection of cracks on specific surfaces is essential for efficiently maintaining and managing
different types of structures. In this study, we integrated several datasets consisting of diverse surfaces
such as concrete walls and pavements, in order to enhance the generalization ability of crack detection
models. Three U-Net-based deep learning models, VGGU-Net, ResU-Net, and EfficientU-Net, were
validated with five-fold cross-validation using several evaluation metrics including MPA, MIoU, and
confusion matrix. Based on the findings of the current study, several practical and managerial
implications are presented. As the proposed models are trained, implemented, and tested using datasets
that are organized based on images of diverse surfaces, the models can be applied to different surfaces
and structures, without being limited to specific environments such as concrete structures or pavements.

Figure 7: Confusion matrix for employed segmentation models (a) It represents the confusion matrix of
VGGU-Net. (b) It indicates the confusion matrix of ResU-Net. (c) It shows the confusion matrix of
EfficientU-Net
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It implies that the proposed models are more flexible and comprehensive than other models, when addressing
more general issues than crack detection. For example, the proposed model can be used as a pretrained model
in the domain such as the pipeline transportation [16], where limited data is available [44].

Despite the contributions of this study, a few limitations remain unaddressed. First, this study did not
consider the characteristics of surfaces (e.g., material) and cracks (e.g., depth and extent). Thus, the
performance of the proposed models can be further improved if characteristics of specific surface images
and cracks are extracted and reflected as key features in the models. Second, recurrent-oriented schemes
were not employed when designing the advanced U-Net models. Future research should focus on
addressing and resolving these issues.
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