Intelligent Automation & Soft Computing K Tech Science Press

DOI:10.32604/iasc.2022.025292
Article

Multi-Agent with Multi Objective-Based Optimized Resource Allocation on
Inter-Cloud

J. Arravinth” and D. Manjula

Department of Computer Science and Engineering, College of Engineering, Guindy, Anna University, Chennai, 600025,
Tamilnadu, India
*Corresponding Author: J. Arravinth. Email: arravinth@rediffmail.com
Received: 19 November 2021; Accepted: 31 December 2021

Abstract: Cloud computing is the ability to provide new technologies and stan-
dard cloud services. One of the essential features of cloud computing is the provi-
sion of “unlimited” computer resources to users on demand. However, single
cloud resources are generally limited and may not be able to cope with the sudden
rise in user needs. Therefore, the inter-cloud concept is introduced to support
resource sharing between clouds. In this system, each cloud can tap the resources
of other clouds when there are not enough resources to meet the demands of the
consumer. In cloud computing, allocating the available resources of service nodes
to on-demand tasks is an important concern. To achieve this, in this paper, multi-
agent with multi-objective optimized resource allocation on inter-cloud is pro-
posed. The proposed algorithm is a combination of adaptive tree seed optimiza-
tion (ATSO) and multi-agent. The proposed approach consists of four agents
namely, user interface agent, monitoring agent, scheduler agent, and Executer
agent. Initially, the user agent collects the task from the users, and the monitoring
agent reports the resource list to the scheduler agent. Based on the resource list,
the scheduler agent schedules the task with the help of ATSO. Finally, the exe-
cuter agent, allocate the task to the resources. The performance of the proposed
approach is evaluated using makespan, cost, and resource utilization.

Keywords: Resource allocation; adaptive tree seed optimization, multi-agent;
inter-cloud; scheduling and task

1 Introduction

Cloud computing gives adaptable and cost-powerful services for endeavors, associations, and people
running computational and information concentrated applications. The quick execution of cloud
computing has brought about significant investment and quick development. Consistent exploration of
cloud computing has turned into an incredible motor for the improvement of artificial intelligence [1].
Through the cloud computing stages, clients can present their resource requests to cloud service providers
(CSPs). The CSPs then give the clients their necessary resources as a virtual machine in return. A viable
virtual machine (VM) resource allocation should not just convey adaptable services to fulfill different
client requirements in the pursuit of expanding the CSP’s benefit [2,3], yet additionally save the energy

This work is licensed under a Creative Commons Attribution 4.0 International License, which
@ @ permits unrestricted use, distribution, and reproduction in any medium, provided the original

work is properly cited.



mailto:arravinth@rediffmail.com
http://dx.doi.org/10.32604/iasc.2022.025292
http://dx.doi.org/10.32604/iasc.2022.025292

134 TASC, 2022, vol.34, no.1

utilization of the PMs utilized for running clients’ applications in the pursuit of diminishing the CSP’s cost.
As a rule, communication cost needs more energy utilization than computation cost [4]. Lately, to diminish
the communication cost, numerous commitments have been made in proposing pertinent communication
plans for multi-agent agreement issues [5,6]. An agent is a computer system that is fit for settling on
choices freely, doing activities independently, and communicating with different agents through
participation, coordination, and arrangement [7].

A multi-agent system (MAS) is a distributed artificial intelligence system made out of various
independent agents equipped for communicating and working together with one another to accomplish
shared objectives [8]. Multi-agent learning is a space of study that arrangements with the hypothetical test
of seeing how agents learn and adjust their behavior within the sight of different agents that are also
learning [9]. Task and resource allocation among heterogeneous agents by arrangement is a focal issue in
multi-agent systems because it seriously influences the presentation of the whole system. In any case,
suitable allocation via independent agents in a dispersed environment is a challenging one [10].
Scheduling and resource allocation in a multi-project environment are pervasive in present-day task and
operations management [11]. In any case, the expanding interest for additional resources in different
settings puts a substantial interest on the cloud data centers [12]. Resource Allocation is the most
common way of relegating accessible resources to the required cloud applications over the web [13]. It
expects to distinguish the small part of a restricted resource that an agent can use to accomplish ideal
worldwide targets. This prompts limiting resource battle, absence of resources, resource fracture, over-
provisioning, and under-provisioning [14,15].

The main objective of the proposed approach is to optimally allocate the task to the resources using
ATSO and multi-agents in inter-cloud. In this paper, four agents are incorporated with the resource
allocation process namely, user interface agent, monitor agent, scheduler agent, and executer agent. For
the resource allocation phase, ATSO algorithm is used. For the optimal resource allocation process, the
multi-objective function is designed. The designed function is a combination of Execution time, cost,
resource utilization, and skewness. And also all the tasks are must complete before the deadline. The
main contribution of the proposed approach is listed below;

e The multi-objective function is designed to obtain the optimal resource allocation on inter-cloud.

e For resource allocation,an ATSO algorithm is proposed. The ATSO algorithm is a hybridization of
Tree Seed Optimization (TSO) and GA parameters namely crossover and mutation.

e The performance of the proposed approach is analyzed in terms of efficiency metrics such as
makespan, cost, and resource utilization.

2 Literature Survey

Many of the researchers had developed multi-agent-based resource allocation on inter-cloud. Among
them some of the works are analyzed here; Xiangqiang et al. [16] have provided a step-by-step multi-
agent optimization (HMAO) algorithm for resource allocation. It is a combination of the GA and Multi-
Agent Optimization Algorithm (MOA). An advanced GA was proposed to detect the service terminal and
to reduce bandwidth cost using the MAO algorithm.

Moreover, Ligade et al. [17] have suggested a resource allocation model using the Sunflower Whale
Optimization Method (SFWOA). The proposed algorithm was obtained by combining the hunting
technique and the behavior of the humpback whale and the strange behavior of the sunflower. The task
was assigned to the low-cost virtual machine using the proposed optimization algorithm, taking into
account working time and deadlines. A modified honey bee-inspired algorithm for resource allocation
was proposed by Sharma et al. [18]. The utilization of their strategy for dispersing jobs to more than one



TIASC, 2022, vol.34, no.l1 135

organization guarantees that assets are not underutilized. Judith et al. [19] explored a wide range of dual-
mode endpoint search control techniques to solve resource allocation problems in multi-agent systems
with dynamically linked agents.

They specifically addressed issues related to resource allocation, depending on resource requirements
and real-time system dynamics. Similarly, Li et al. [20] studied a multi-agent system with quantized
communications to solve distributed optimization problems. That method could reduce communication
costs in terms of frequency and amount of transmitted data. Since it was not accurately obtained from the
system, there was a bias between the resulting solution and the optimal solution for distributed
optimization with a fixed quantizer. Therefore, they proposed a multi-agent system with a quantizer
density that changes over time to obtain the optimal solution.

Wanyuan et al. [21] proposed a multi-agent-based distributed resource allocation approach to reduce the
energy costs of cloud systems. This method consists of two complementary mechanisms. (1) An auction-
based VM allocation mechanism configured to determine which VM the agent assigns to which PM, and
(2) a negotiation-based VM integration mechanism designed to replace the assigned virtual machine to
save energy costs and deal with system dynamics.

In [22], optimal and energy-efficient scheduling in a public cloud environment was proposed. To
improve the efficiency of this method, a load balancing algorithm was introduced. To prove the efficiency
speed, time, energy, and security level was utilized. Moreover, improved particle swarm optimization
(IPSO) algorithm-based task schedule was presented in [23]. The experiment result showed that the
performance of the approach was better when it was compared with the existing task scheduling approaches.

3 Task Flow Model

The main objective of this paper is to effectively schedule the task on VM based on resource availability.
Let us consider the task “T” which has a different deadline, start time, and Execution time. Here, four tasks
are considered as {7, T», .T5, T4} and the deadline for these tasks is represented as {d, ,d5, .d3, ds} with the
start time of {w;,w,,.w3,ws} and the Execution time of{ry,r,,r3,74}. Once the cloud receives the
application from the user, the tasks T1, T2, T3, and T4 are allocated to the VM using the proposed ATSOA.

However, allocation is based on the cost, makespan, and resource utilization of the VM. The main
factors to consider when assigning tasks to a VM are cost, makespan, and deadline.The task with
minimum cost value is initially allocated to the VM on the cloud. Once the task enters into the cloud for
the scheduling process, the proposed optimization algorithm checks the deadline and Execution time of
the task and the task with low cost is allocated to the VM to effectively perform the resource allocation.
Let us consider three different applications as A;, A, andAsand each application has a different number
of tasks. The different tasks are given in Tab. 1 with their start time, execution time, and deadline.

Table 1: Sample value for deadline and execution time of each task

Application Application (A;) Application (A;) Application (Az)
Tasks Tl T2 T3 T4 T5 T6 T7
Deadline 4 3 6 7 5 9 8
Execution time 2 2 3 2 2 4

Start time 1 1 1 1 1 1 1




136 TIASC, 2022, vol.34, no.l1

In Tab. 1, the start time of the entire task Ti presented in the entire application is set as “1”. Here, the
tasks Ty, T, and Tj is under the application A;, the task T4 and Ts are under the application A, and the
tasks Tg and T, are under the application Aj, respectively. The specified Execution time and deadline-
based resource allocation is given in Tab. 2.

Table 2: Sample resource allocation scheme based on deadline and execution time

Virtual machine VM, VM, VM,
Time Slot

Y, T, Ts T,
Y, T, Ts T,
Y, T, T, T,
Y, T, T, T,
Ys T, Te -

Y T, Te -

Y, T, Te -

Yy - Te -

Task T is allocated to VM based on the minimum cost associated with the task and tasks are allocated to
VM within the Execution time and deadline. For example, consider the three virtual machines such as VM,
VM, and VM3 and assume VM, has the minimum cost then VM, and VM3. So that, initially, the tasks are
assigned to VM, then VM, and VM3 respectively. To perform the resource allocation, we assign the value of
each task between 0—1. The task values are given in Tab. 3.

Table 3: Sample task value

Application Aq A, Aj
Task Tl T2 T3 T4 T5 T6 T7
Task value 0.5 0.3 0.6 0.7 0.5 0.8 0.9

Let us assume an eight-time slot and three VM for the tasks to be allocated. The tasks Ty, T2, and T;
under application Al have values of 0.5, 0.3, and 0.6. Among the tasks T, T,, and T, task T, has the
minimum value hence, task T, is allocated to VM, as VM; has minimum cost. As the runtime of T, is
2’ and the deadline is ‘2°, the task T, executes in VM, at time slots Y; and Y,. Then, task T is verified
with T and selects task T for resource allocation as it has a minimum value of 0.4. The runtime and the
deadline of T;is ‘2’ and ‘5°, so T, is allocated to VM, at the time slot Y3 and Y, and then, the task T; is
assigned to VM, at the time slot Ys,Ys, and Y5 since the run time of T is ‘3°. Task T4 and Ts under
application A, have the value of 0.7 and 0.5 while comparing T4 and Ts, task Ts has the minimum value
so it is allocated to VM, at the time slot Y; and Y, since the runtime of Ts is ‘2° T, uses two-time slots.
Task T, is allocated to VM, at time slots Y; and Y,4. Similarly, the remaining tasks T, and T, are
allocated to VM based on the minimal value.



TIASC, 2022, vol.34, no.l1 137

4 Multi-Objective Function Design

Our proposed approach is designed based on a multi-objective function whose objectives are to trade
between makespan, cost, and resource utilization. The proposed system should minimize the makespan
and cost while it tries to maximize resource utilization. The multi-objective function is designed
using Eq. (1).

Fitness = min (Makespan, Cost, 1/Re source utilization) €))

Makespan: Makespan is calculated based on the time it takes to complete the workflow. Due to the
structure of the directed acyclic graph (DAG), it is possible to calculate the time of completion of the exit
task of a solution makespan. Consider the start time 7“" and end time 7¢"¢ of the task #,. Task ¢, start
time depends on all its parental task completion time and data transfer time between parent and ti. The
start time is calculated using Eq. (2).

ar 0 ty = [entry
Sstari —
T (t,) = max {T ©m(ty) + T Z 4 } otherwise @)

t,EParent(t,)
where T°°"(¢,) represent the completion time of a task #,. The completion time is calculated using Eq. (3).

T (1) = T (n) + TE ()
Once we find out the 7%“"*(¢,) and7°"(¢,) , the makespan of workflow is calculated using Eq. 4.
Makespan = T (toir) “4)

Cost: In cloud computing, users are charged based pay-per-use system, which means they have to pay
based on how long they have been using the service. The overall cost of the task ¢, is calculated based on

three costs such as processing cost, cost of data transfer, and the cost of storage. The cost of the
execution task #; is calculated using Eq. (5).

cos7C = T8 % cre 5)

where;
T 5’;5 — The execution time of a task 7,
CPC — Processing cost
The data transfer price among task #, and their child is evaluated using Eq. (6)
Cost? = ) m x (6)

t,€T:t,EParent(tp)
where; C2” demonstrate the cost of using bandwidth. The storage cost of the task ¢, is evaluated using
Eq. (7).

CostS = < ¢+ max T%) x C} (7

tyEParent(ty)

C; — The instance type P storage cost.

The total cost is calculated using Eq. (8).



138 TIASC, 2022, vol.34, no.l1

Cost = Z Cosz“fc + Costh + Costis (®)

teT

Resource utilization: The resource utilization VM, is the same as the number of tasks that the VM has
executed up to its finishing time. The VM utilization is calculated using Eq. (9).

Zz,, €4 Ml(ta)

exe trm
ZtaeA <Ta,k + maXthEParent(ta) Ta’b>

Us ©)

where A represents the group of task and MI(¢,) is the size of the task #, in million instructions. The
average utilization is calculated using Eq. (10).

ZVMkeﬁ Uk

10

Utilization =

where, 9 is the set of instances and || shows the cardinality of it.

5 The Proposed Model Plan

The main objective of the proposed methodology is allocating the resources to incoming tasks. To
provide the resources to users without any delay, in this paper inter-cloud system is presented. Inter-cloud
is an interconnected global “cloud of clouds” that allows each cloud to utilize the resources of other
clouds, making the interactions between cloud partners more complex because the resources between
clouds are distributed and controlled by different clouds. Today, agent-based cloud computing approaches
have been developed to track resources between clouds. An agent is a computer company that can make
decisions independently and communicates with other agents. Therefore, in this paper, multi-agent with
multi-objective-based optimized resource allocation on inter-cloud is proposed. The overall structure of
the proposed approach is given in Fig. 1.

Cloud user Scheduling agent Executer agent
Resource

1 I monitoring : Multi-objective | I |
: : agent ,  scheduling 1 : :
! ! ! strategy : 1 1
1 \ 1 ! 1 1 - 1 1
1 1 ! 1 1 1 |
| | 1 Task 1 1 = : | \
! I User : information : : : O :
1 I "

! —>{ interface —): 3 IAllocptlon :
1 I 10 eyt |
A B WL S I gy [ o |
1 I I 1
1 I 1| information |1 1 ! I ]
1 - I 1 ] 1 : 1 1
1 1 ! 1 1 1 1
I I 1 o R;::“t';ce : I L) I
1 1 | — 1 1 utilization 1 1
1 ~™ I : I ]
1 I 1 I 1
1 AR 1 L 1 1
1 I 1 ! I 1
I I I : I J ]
I [ I ATSOA [ I
1 I I : I Q) I

______________________________

Figure 1: Overall structure of multi-agent-based resource allocation



TIASC, 2022, vol.34, no.l1 139

5.1 User Interface Agent

Initially, the user agent collects the request from the different cloud users. The task contains the
information of (request rate, type, size, etc.) Then, the collected requests are directly transferred to the
monitor agent. The user interface agent algorithm is given below;

Interface agent (receive a request from the user)
{

Input = receive a request from the user;
Output: entire user request

Generate a request-id for each task;

Then;

Call resource monitoring agent (o)}

5.2 Resource Monitor Agent

Monitor agent must collect the request from the user agent and resources information from the data
center. The monitor agent is denoted as a;. The agent collects the information of resource load rate (CPU
load and memory). This agent checks that the available resources are there in the corresponding cloud. If
it does not mean, it collects the resources from inter-cloud. The agent collects the information of resource
load rate (CPU load and memory). The resource monitor agent algorithm is presented below;

Resource monitor agent (receive a task from users and collect the resource list)
{

Input = users task and resource list

Output: details of task and resource

Generate a resource table;

Then;

Call scheduler agent (yi)}

5.3 Scheduler Agent

In this section, the monitor agent transmits the collected information about a user requests and resource
load information to the scheduler agent (y;). The scheduler agent, optimally allocates the task to resources
while considering, time, cost, and resource utilization. For resource allocation, in this paper, the ATSO
algorithm is presented. The TSO was derived from the relationship between trees and seeds by the
population-based evolutionary method. When the seed formation process takes place in the TSO, the
level improvement of each dimension of the seed is calculated separately. In the tree-seed method, each
tree represents a parent individually and each seed represents a child created from one parent tree. To
enhance the TSO algorithm, the GA operators namely, crossover and mutations are adapted with TSO.
The scheduler agent algorithm is presented below;



140 TASC, 2022, vol.34, no.1

scheduler agent (receive resource table from monitor agent)
{

Input= Resource table

Output: Scheduled task

Schedule the suitable task with resources

Then;

Call Executer agent (Ei)}

The step by step process of ATSO algorithm based resource allocation is listed below;

Step 1: Solution Encoding: Solution encoding is an initial step for performing the resource allocation
strategy optimally in the cloud. In this section, initially, the parameter used in this paper is initialized. The
parameters are task count, number of clouds, number of VM, CPU capacity, population size, maximum
iteration, ATSO parameters. Then, the solutions are randomly generated. In solution encoding, the virtual
machines are assigned with a task, which has low-cost price and the task with high-cost price are
assigned at last. Based on the values associated with each task T, the solution vector is designed. The
solution format is given in Fig. 2.

T T> T3 Ta Ts Te T~
0.5 0.3 0.6 0.7 0.5 0.8 0.9
T> T, Ts Ts Ta Ts Ty
0.3 .S 0.5 0.6 0.7 0.8 0.9

Figure 2: Solution encoding

Step 2: Fitness Evaluation: The parameters Execution time; cost, resource utilization, and skewness are
used for calculating fitness function. The fitness is evaluated for each solution. The fitness function is used to
obtain the optimal solution. In this paper, the minimization function is used for fitness. The fitness function is
computed using Eq. (11).

Fitness = min (Makespan, Cost, 1/Resource utilization) (11)

Step 3: Updation Using TSOA:once the fitness is evaluated, the solutions are updated using the TSO
algorithm. The TSO is updatedits position based on Search Tendency (ST) value. If the ST value is lesser
than the random value R;; means, then the value of seed is updated their position using Eq. (12).

Sij = Tij + (B — Toy) (12)



TASC, 2022, vol.34, no.1 141

Otherwise, the value of seed is updated by the following equation;
Sij = Tiy + 0ij(Tij — Tr)) (13)

Step 4: Crossover operation: After TSO updation, the solutions are again updated using the Crossover
operator. The crossover operation is used to generate a new set of solutions from the old solutions. The cross-
over operation is given in Fig. 3.

1 (3507 |9|11|13|15|17 1(3|57|9|11|13[15]17
1(3|5]7|9|11|13|15|17 1(3(5[7|9[11|13|15|17
Parents Offspring

Figure 3: Single point crossover
Step 5: Mutation Operation: After the crossover, the mutation is performed. Mutations are the formation
of new offspring from single parents and maintain the diversity of each chromosome shown in the figure.
There is the possibility of randomly changing a child’s genotype. This gene performance is better than
that of aging parents. There are two methods of mutation, random and alternative. Mutation operation is
given in Fig. 4.

Mutation point

11357 |9|11]13]|15]17 §>1357911131517

Parents Child

Figure 4: Mutation

Step 6. Termination Criteria:The algorithm stops its performance when the best fitness value is selected.
Once optimal fitness is achieved, the resource allocation is addressed. The flowchart of ATSO is given
in Fig. 5.

5.4 Executer Agent

After the scheduling process, the scheduled tasks are given to the executer agent (E;). Here, the executor
allocates the task to each VM. The allocation should minimize the cost, computation time and increase
resource utilization. The resources allocated are based on the obtained optimal solution.



142 TASC, 2022, vol.34, no.1

A 4
Initialize the parameters of TSO, crossover
rate, mutation rate, Number of VM, PM,
cloud and tasks

o5 . o
[ ) [ J @ = T
e | e e ) T e "o
......... -® » e 1 - - -
! - !
e [ @] @ Pe T -4
Randomly generated Update the solution
solution using TSOA
® | ® [ ® p—
® ® [ ® : «f .
- ',V\ v . =
e [ e [ @® T Mt
Updated new solutions Crossover and mutation
operation

A4

Evaluate the fitness and update the
solution

t=t+1

No

Figure 5: Flowchart of proposed ATSO algorithm

6 Results and Discussion

This section discusses the results and discussion of the proposed adaptive tree seed optimization
approach for resource allocation in cloud computing. The proposed resource allocation is done on an Intel
Core i5 processor, and a computer with 6GB of memory using the Windows 10 operating system.
Simulation of the proposed method is implemented in JAVA. For experimentation analysis, three types of
workflows are used such as Montage, CyberShake, and LIGO. The structure of workflow is presented in
Fig. 6. The VM specifications are given in Tab. 4. The Amazon EC2 VM instance specification is given
in Tab. 5 and Google Compute Engine VM instance specifications are given in Tab. 6.



TASC, 2022, vol.34, no.1 143

(b)

©
Figure 6: Workflow structure (a) Montage, (b) CyberShake, and (c¢) LIGO

Table 4: VM specifications

Type “Processing capacity” “Processing cores” “RAM (MB)” “Bandwidth (Mbps)” “Storage”
A 1000 512 512 512

B 2000 2 1024 1024 1024

C 3000 4 2048 2048 2048

Table 5: Amazon EC2 VM instance specification

Instance type  “Core speed”  “Processing cores” “RAM (GB)”  “Storage” “Cost per hour”
(GB) ®

m1.small 1 1 1.6 150 0.5

ml.large 5 3 7.6 900 0.22

ml.xlarge 9 5 16 1710 0.51

cl.medium 6 3 1.8 370 0.29

cl.xlarge 21 9 7.2 1710 1.20

Table 6: Google Compute Engine VM instance specification

Instance type “Core speed” “Processing cores” RAM (GB) “Storage” (GB) “Cost per hour”
®

ml.small 1 1 1.9 160 0.7

ml.large 5 3 7.6 920 0.39

ml.xlarge 9 5 15.5 1720 0.52

cl.medium 6 3 1.9 350 0.4

cl.xlarge 21 9 7.5 1720 1.30




144 TASC, 2022, vol.34, no.1

6.1 Experimental Results

In this section, the experimental results obtained from the proposed approach are analyzed. The main
objective of the proposed approach is to optimally allocate the task to the resources by using multi-agents
and ATSO. For scheduling the task, the multi-objective function is utilized.

6.1.1 Experimental Results Based on Makespan
Makespan is an important parameter for scheduling. The makespan is changes based on the workflow
scheduling model. The result obtained by various workflow models is analyzed in this section.

In Fig. 7a, the performance of the proposed approach is analyzed using makespan. When analyzing
Fig. 7a, the proposed method attained the makespan of 46 s for small instances, the 50 s for medium
instances and 55 s for large instances type.The results demonstrate that the makespan of the proposed
approach is lower than the TSO, PSO, and GA-based task allocation. This is due to the adaptation of
TSO. Besides, the TSOA algorithm has better results compared to the other two methods. The proposed
ATSO is accomplished by ducking entanglement in local optimization by removing solutions within a
given radius of optimal points and replacing them with new random solutions. In Fig. 7b, a Cybershake
workflow-based experimental result is analyzed. The makespan is an important parameter. The makespan
is varied based on task flow. According to Fig. 7b, the proposed method takes minimum makespan
compared to other methods. In Fig. 7c, LIGO workflow-based experimental results are analyzed. Here,
the experimental analysis is carried out based on three instances. Compared to three instances, a large
instance takes the maximum makespan. When analyzing Fig. 7c, the proposed method is taken a
maximum makespan of 700 s. From Fig. 7, the proposed method is taken a maximum makespan of 55 s,
120 s, and 700 s for Montage, cyberShake, and LIGO respectively.

250 300 - .
Hors

- 1600 - _
200 1 @GA 250 ’ @80 oy }
. aPs0 1500 4 BISOA |/ |
LI g 200 T 1200 | 1 BATSOA|
< aTS0A 7 < ; -y 7
£ QATSOA £ 150 ’ £ w0 d )
g , 4 ? 5 ool
- f 2 100 - - 600 i
50 - ' 55 4 400 -
’ 200 -
v f

Medium Medium
Instance type Instance type Instance Type

Figure 7: Comparative analysis based on Makespan (7a) Montage, (7b) CyberShake, and (7c¢) LIGO

6.1.2 Experimental Results Based on Cost

In this section, we compare the performance of the proposed approach based on normalized cost. The
cost is varied for each task and virtual machine. The normalized cost of the workflow execution is given in
Eq. (14).

Cost,,
NC = /v (14)
Cost™

where; Cost,, represent the overall cost of the workflow and Cost” represent the cost of all tasks present in
the workflow on the cheapest instance respectively. The experimental results obtained by three workflows are
explained below;

In Fig. 8a, the performance of the proposed approach is analyzed based on the normalized cost for
Montage workflow. When analyzing Fig. 8a, the outcome depicts that the NC is most similar to TSOA



TASC, 2022, vol.34, no.1 145

based scheduling. But our proposed ATSO little bit better than TSO. This is due to genetic operators or
adapted with TSOA. In Fig. 8b, a Comparative analysis based on the normalized cost for CyberShake is
discussed. When analyzing Fig. 8b, the proposed approach taken 15§ for scheduling cybershake
workflow using small instance, 29$ for scheduling cybershake workflow using medium instance, and 34$
for scheduling cybershake workflow using large instance. Cost is varied based on instance. Here, two
clouds are integrated for resource allocation. In Fig. 8c, the performance of the proposed approach is
analyzed based on normalized cost. Here also proposed approach attained better results compared to the
exiting approach.

120 60 5
AGA 2 AGA 45 z
100 4 Do s0 . 2GA
& aPsSO _ @PsSO = @Pso
* 4
‘E’ 80 { BTSOA gf 10 aTSOA :g 3-: ATSOA
51 , 8 ]
z BATSOA A IS0, = BATSOA
S § 301 § 25
= 3 " 2
E E 20 § 1.5 4
z z z
10 2
0.5
0 0
Instance type Instance Type Instance type

Figure 8: Comparative analysis based on normalized cost (8a) montage, (8b) CyberShake, and (8c) LIGO

6.1.3 Experimental Results Based on Resource Utilization

In this section, the performance of the proposed approach is analyzed based on resource utilization. In
this paper, the multi-objective function is designed based on three parameters namely, makespan, cost, and
resource utilization.

In Fig. 9a, the efficiency of the presented approach is analyzed based on resource utilization using a
montage workflow model. A good resource allocation system should have maximum resource utilization.
When analyzing Fig. 9a, the proposed approach utilized more resources compared to other methods for
scheduling the montage workflow models. This indicates, the proposed ATSO is much suitable for the
scheduling process. Similarly, in Figs. 9b and 9c also our proposed approach attained the better results.
Compared to the four methods, GA-based scheduling got work performance output. Overall, from the test
results, it is clear that our approach works best in reducing makespan and cost as well as increasing the
utilization of resources.

2200 1 @pGA 2000 1 pGA 2400 -
< 2100 { BPSO e aPSO . T 2200 -
@ @ 1800 1 p o 7 H
2 2000 2 PTSoA 7 % },, 2 2000
= - BATSQA % % =
£ 190 - § 1000 1 : / é é £ 1800 -
g 18001 5 1400 - é % 5 1600 1
T : g g E oo | |
& 1600 & 12001 ,;;;4, % % & 1200 /
1s00 |42, ik ki vooo | kA Aé Z % 1000 A %% / 7
Small Medi Large Small Medium Large Small Medium Large
Instance type Instance Type Instance Type

Figure 9: Comparative analysis based on Resource utilization (9a) Montage, (9b) Cyber Shake, and (9c¢)
LIGO



146 TASC, 2022, vol.34, no.1

7 Conclusion

An efficient resource allocation on inter-cloud using multi-agent and ATSO algorithm has been proposed
in this paper. Resource allocation based on the proposed optimization effectively allocates resources in the
cloud without reducing the efficiency of the model system. To allocate the task, the multi-objective fitness
function has been developed which is based on cost, makespan, and resource utilization.The fitness with
minimum value has been considered as the best solution. The proposed optimization algorithm is used
the behavior of tee and seeds growth. The efficiency of the proposed approach has been analyzed based
on various metrics. The proposed approach attained the minimum makespan of 46s, cost of 40$ for small
instance of montage workflow. Overall, from the test results, it is clear that our approach works best in
reducing makespan and cost as well as increasing the utilization of resources. T In the future, we will
apply resource allocation on real-time applications and we will use a machine learning algorithm for
resource allocation.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References

[1] J. Lin, D. Cui, Z. Peng, Q. Li and J. He, “A two-stage framework for the multi-user multi-data center job
scheduling and resource allocation,” Institute of Electrical and Electronic Engineers Access, vol. 8, pp.
197863-197874, 2020.

[2] J. Cao, K. Hwang, K. Li and A. Zomaya, “Optimal multiserver configuration for profit maximization in cloud
computing,” IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 6, pp. 1087-1096, 2013.

[3] S. Chaisiri, B. Lee and D. Niyato, “Optimization of resource provisioning cost in cloud computing,” /IEEE
Transactions on Services Computing, vol. 5, no. 2, pp. 164-177, 2012.

[4] P.Yi, Y. Hong and F. Liu, “Initialization-free distributed algorithms for optimal resource allocation with feasibility
constraints and application to economic dispatch of power systems,” Automatica, vol. 74, no. 1, pp. 259-269,
2016.

[5] G. Seyboth, D. Dimarogonas and K. Johansson, “Event-based broadcasting for multi-agent average consensus,”
Automatica, vol. 49, no. 1, pp. 245-252, 2013.

[6] D. Ye and X. Yang, “Distributed event-triggered consensus for nonlinear multi-agent systems subject to cyber
attacks,” Information Sciences, vol. 473, no. 1, pp. 178-189, 2019.

[71 K. Sim, “Agent-based approaches for intelligent intercloud resource allocation,” IEEE Transactions on Cloud
Computing, vol. 7, no. 2, pp. 442-455, 2019.

[8] S. Adhau and M. Mittal, “A multiagent based system for resource allocation and scheduling of distributed
projects,” International Journal of Modeling and Optimization, vol. 2, no. 4, pp. 524-528, 2012.

[9] N. Barbalios and P. Tzionas, “A robust approach for multi-agent natural resource allocation based on stochastic
optimization algorithms,” Applied Soft Computing, vol. 18, no. December, pp. 12-24, 2014.

[10] Y. Ishihara and T. Sugawara, “Multi-agent task allocation based on the learning of managers and local preference
selections,” Procedia Computer Science, vol. 176, pp. 675-684, 2020.

[11] F. Li, Z. Xu and H. Li, “A multi-agent based cooperative approach to decentralized multi-project scheduling and
resource allocation,” Computers & Industrial Engineering, vol. 151, no. 1, pp. 106961, 2021.

[12] M. Masdari and M. Zangakani, “Efficient task and workflow scheduling in inter-cloud environments: Challenges
and opportunities,” The Journal of Supercomputing, vol. 76, no. 1, pp. 499-535, 2019.

[13] M. Katyal and A. Mishra, “Application of selective algorithm for effective resource provisioning in cloud

computing environment,” International Journal on Cloud Computing: Services and Architecture, vol. 4, no. 1,
pp. 1-10, 2014.



TASC, 2022, vol.34, no.1 147

[14] Z. Xiao, W. Song and Q. Chen, “Dynamic resource allocation using virtual machines for cloud computing
environment,” IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 6, pp. 1107-1117, 2013.

[15] S. Pankaj, P. Kumar and T. Singh, “Resource allocation strategies in cloud computing,” International Journal of
Computer Science & Communication Networks, vol. 5, no. 6, pp. 358-363, 2015.

[16] G. Xianggiang, R. Liuand and A. Kaushik, “Hierarchical multi-agent optimization for resource allocation in cloud
computing,” IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 3, pp. 692—707, 2002.

[17] S. Ligade and R. Udayakumar, “Sunflower whale optimization algorithm for resource allocation strategy in cloud
computing platform,” Wireless Personal Communications, vol. 116, no. 4, pp. 3061-3080, 2021.

[18] A. Sharma, K. Upreti and B. Vargis, “Experimental performance analysis of load balancing of tasks using honey
bee inspired algorithm for resource allocation in cloud environment,” Materials Today: Proceedings, 2020.

[19] O. Judith and M. Guay, “Distributed extremum seeking control of multi-agent systems with unknown dynamics
for optimal resource allocation,” Neurocomputing, vol. 381, no. 3, pp. 217-226, 2020.

[20] K. Li, Q. Liu and Z. Zeng, “Quantized event-triggered communication based multi-agent system for distributed
resource allocation optimization,” International Journal of Information Science, vol. 577, pp. 336-352, 2021.

[21] W. Wanyuan, Y. Jiang and W. Wu, “Multiagent-based resource allocation for energy minimization in cloud

computing systems,” IEEE Transactions on Systems Man and Cybernetics: Systems, vol. 47, no. 2, pp. 205—
220, 2016.

[22] S. Muthurajkumar, M. Vijayalakshmi, A. Kannan and S. Ganapathy, “Optimal and energy efficient scheduling
techniques for resource management in public cloud networks,” National Academy Science Letters, vol. 41,
no. 4, pp. 219-223, 2018.

[23] B.P. Kavin, S. Ganapathy and A. Karman, “An intelligent task scheduling approach for cloud using IPSO and A*
search algorithm,” in 2018 Eleventh Int. Conf. on Contemporary Computing, India, pp. 1-5, 2018.



	Multi-Agent with Multi Objective-Based Optimized Resource Allocation on Inter-Cloud
	Introduction
	Literature Survey
	Task Flow Model
	Multi-Objective Function Design
	The Proposed Model Plan
	Results and Discussion
	Conclusion
	References


