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Abstract: Facial age is one of the prominent features needed to make decisions,
such as accessing certain areas or resources, targeted advertising, or more straight-
forward decisions such as addressing one another. In machine learning, facial age
estimation is a typical facial analysis subtask in which a model learns the different
facial ageing features from several facial images. Despite several studies confirm-
ing a relationship between age and gender, very few studies explored the idea of
introducing a gender-based system that consists of two separate models, each
trained on a specific gender group. This study attempts to bridge this gap by intro-
ducing an age estimation system that consists of two main components. The first
component is a custom-built gender classifier that distinguishes females and males
apart. The second is an age estimation module that consists of two models. Model
A is trained only on female images, while model B is trained only on male
images. The system takes an input image, extracts the facial gender then passes
the image to the appropriate model based on the predicted gender label. Our
age estimation models are based on the Visual Geometry Group (VGG16) net-
works and have been modified to fit the nature of our problem. The models pro-
duce accuracies of more than 85% individually, and the system achieves an
overall accuracy of 80%. The proposed system is trained and tested on the UTK-
Face dataset and cross-validated on the FG-NET dataset to validate the perfor-
mance on unseen data.

Keywords: Age estimation; age group classification; deep learning; computer
vision; facial recognition; facial analysis

1 Introduction

Automatic age estimation is the process of training a machine learning model to process an input image
with an unknown age label, extract the relevant features, then produce a label representing the person’s
estimated age or age group.

Whether the model is based on traditional machine learning or deep learning architecture, the creation,
training and testing processes remain the same. Before training, the initial step is finding a suitable labelled
facial images dataset for training and evaluation. Several benchmark datasets such as the Adience [1] or the
UTKFace [2] have been widely used for age estimation research. The second step is pre-processing the
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samples in which the images are cropped and rotated to eliminate unnecessary background noises that may
interfere with the training process. The next step is extracting the relevant facial features from the training
samples. This step can be carried out using deep learning methods such as convolutional neural networks
or manually configured filters like local binary patterns [3] or Sobel [4] filters. The next and final step in
building the model is training a particular machine learning algorithm on the extracted feature maps. The
defined model attempts to produce a mapping function ŷ ¼ f ðxÞ where ŷ is the predicted age label from a
given image x.

Although age estimation studies such as [5,6] have confirmed a direct correlation between age and
gender, there has been insufficient research into the concept of estimating age based on the subject’s
gender. In addition, other studies such as [7,8] have stated that the rate of ageing and ageing patterns
varies based on the subject’s gender. Based on these studies, which have demonstrated a relationship
between age and gender, we consider the lack of research into building gender-specific age estimation
models a significant gap in the current work of literature. We attempt to solve the abovementioned issue
by introducing a gender-specific age estimation system that consists of two models. Each model is based
on the Visual Geometry Group (VGG16) [9] architecture and trained on the UTKFace dataset. Model A
is only trained on images of female subjects, while model B is only trained on images of male subjects.
We use the letters “A” and “B” for labelling purposes. In addition, a custom-built gender estimation
model is employed to detect the gender of the subject from an input image and produces a label that is
then used to load the appropriate age model. We divide the images into four age classes: 0–12, 13–19,
20–59 and 60+ and test our implementation on a testing portion of the UTKFace dataset, which was not
included in the training phase. The proposed system is also cross-validated on the FG-NET [10] dataset
to confirm whether gender separation affects performance. Our results demonstrate an improvement in the
classification accuracy when two separate models are trained compared to a single model. Our
contributions are summarized as follows:

1) We propose a novel gender-based age classification system consisting of two age classifiers, where
each model is trained on a specific gender group.

2)We introduce a robust custom-built facial gender classifier that produces a gender label responsible for
loading the appropriate age model.

3) We propose two modified VGG16 networks to estimate age groups from input images.

The study’s novelty and the main contribution to the literature is the system architecture that segregates
the training process between males and females. To the best of our knowledge, none of the current work has
introduced a similar design but instead focused on either introducing new age estimation algorithms or
optimizing existing ones. The typical age estimation process is illustrated in Fig. 1.

This paper is organized into six sections. Section one is the introduction in which we introduce the
problem and a high-level explanation of the proposed method. Section two covers the latest work that has
been done to solve the problem of age estimation. Section three presents a thorough explanation of our
proposed method. Section four presents both our experimental and comparative results. Section five

Figure 1: An overview of the training process of age estimation models
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discusses the results and why these accuracies were obtained. The sixth and final section concludes the study
and provides our plans for future works.

2 Related Works

A typical age estimation model is usually based on either regression or classification. On the one hand,
regression-based models learn to output a single value representing the estimated age. In contrast,
classification-based models attempt to produce a label representing the subject’s age group.

In a study conducted by [11], the authors presented a set of pre-trained models combined with K-Fold
validation to estimate facial age. The authors employed three pre-trained networks, namely the VGG16,
Residual Networks (ResNet50) [12] and the Squeeze-and-Excitation (SENet50) [13]. The authors claim
that these models were decided on after a few experiments.

All the three networks used Visual Geometry Group Face (VGGFace) [14] weights as they were trained
on facial recognition, which is a task that is close to age estimation. All three models were fine-tuned to
produce the best possible accuracies. The fine-tuning of the networks is carried out by adding five more
layers at the end of each network. The first layer flattens the feature map into a 1D vector, and the three
subsequent layers are fully connected. The fifth and final layer is an output layer that maps the features to
eight age classes. In addition, the authors froze all the layers in all networks except the ones that were
added. The networks were trained on the UTKFace dataset, where the age classes were divided into eight
groups: 0–2, 4–6, 8–12, 15–20, 25–32, 38–43, 48–53, 60+.

The UTKFace dataset was divided into 9300 images for training, 2300 images for testing and
330 images for validation. Each model was trained for 20 epochs for 5 h with a batch size of 32 and
optimized using the Adam optimizer with a learning rate of 0.001. Additionally, every network was
trained with a 5-fold cross-validation technique to counter overfitting. The authors reported accuracy of
71.84% from the ResNet50 network, 65.31% from the VGG16 network and 61.96% from the
SENet50 network.

In another study, [15] experimented with five pre-trained models, namely, the extreme version of
Inception (Xception) [16], ResNet50, VGG16, Visual Geometry Group (VGG19) and InceptionV3 [17].
Prior to training, the training samples are cropped, rotated and resized to 224 × 224. This step is crucial
to ensure that only the faces are extracted without the unnecessary background noises. The authors used a
large-scale dataset denoted as MORPH, which contains more than 40,000 images to train and test all five
models. The authors focused primarily on investigating the effects of freezing and unfreezing the layers
in each network on the accuracy of estimating age. The experimental results of their study demonstrated
that the Xception model is the most accurate, with a comparatively low Mean Absolute Error (MAE) of
2.35 when 100% of its layers were frozen. However, the model produces the worst mean absolute error
of 15.5 among all the five models when all layers are unfrozen. The InceptionV3 model produced an
MAE of 2.47 when all layers were frozen and 15.4 when 0% were frozen.

The ResNet50 model performed slightly better than the other two abovementioned, with an MAE of
2.53 with 100% frozen layers and 8.95 with all layers unfrozen. The VGG models, on the other hand,
were incapable of producing better accuracies than the ResNet50, InceptionV3 and Xception. The lowest
MAE obtained by the VGG16 model was 4.43, with all the layers remaining unfrozen. A higher MAE of
9.32 was obtained when 25% of the layers were frozen. The fifth and final model, VGG19, produced an
MAE of 3.14, with 75% of the layers frozen. However, this value increased to 9.32 when 25% of the
layers were frozen. Despite the obtained accuracies, the authors insisted that the training samples did not
resemble real-life scenarios where images are taken in various conditions.
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Another study [18] proposed a multi-stage system that detects gender and age from a given facial image.
The first component in the proposed system is an encoder-decoder saliency detection network that extracts
regions of interest. In this study, regions of interest are denoted as “people”, and unwanted background noises
are denoted as “others.” The encoder of the network consists of 14 convolutional layers, each followed by
one max-pooling. On the other hand, the decoder contains six convolutional layers, five unpooling layers,
and a single output layer. The second module in the proposed system is a regression-based model which
predicts age and gender. The prediction model is based on the VGG19 architecture due to its robustness
and efficiency. The saliency network was trained on a modified PASCAL visual object challenge
2012 dataset [19] since the authors did not have access to a dataset with samples of pixel-level saliency.
The modification of this dataset was done by manually labelling regions of interest and backgrounds. The
authors trained and tested the entire system on three benchmark datasets: FG-NET, Adience and Cross-
Age Celebrity Dataset (CACD) [20]. The system produced an MAE of 2.97 on the FG-NET, 2.08 on the
Adience dataset and 5.94 on the CACD dataset.

Despite the numerous studies discussed in this section, there has been little to no attention given to
investigating the effect of gender on the accuracy of age estimation models. Therefore, the fundamental
hypothesis discussed in our study is that gender influences the accuracy of age estimation models, so the
primary gap we attempt to bridge is the relationship between age and gender.

3 Method

This section explains our proposed system and provides information on replicating the method for future
research. Our method consists of two main components. The first component is a gender estimator, that
groups input images based on their facial gender. The second component is an age estimation module
which consists of two VGG16 models. The first model is denoted as model A, and it is trained only on
images of female subjects. The second model is denoted as model B, and it is trained only on male
subjects. The labels A and B are only used to refer to the models. We use the UTKFace and FG-NET
datasets to test and train our age estimation models and the Kaggle gender dataset [21] to train our gender
classifier. We choose an entirely different dataset to train our gender estimation model to minimize biases
that might arise if we train it on the age estimation dataset. An overview of the process is illustrated in Fig. 2.

Figure 2: Overview of the proposed system
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3.1 Pre-Processing

Before training the gender and age estimation models, we first pre-process the samples to ease the
training process. We begin by running a face detection algorithm based on the C++ Deep Learning
Library (dlib) and OpenCV to detect faces in a given image. The detected faces are cropped and
separated from the rest of the entire image. Next, the positions of both left and right eyes are detected
using dlib and the coordinates are extracted. The coordinates are then used for reference to align and
rotate the image. The alignment is carried out using Eq. (1):

h ¼ tan�1 yj � yi
xj � xi

� �
(1)

where xi and yi represent the coordinates of the left eye, and xj and yj represent the coordinates of the right
eye. The rotation angle is denoted as θ. After preparing the images for training, we segregate them into
classes. We separate the images in the UTKFace dataset based on their gender labels for age estimation,
resulting in two training datasets. One dataset contains only males, and the other is only females.

3.2 Gender Estimation

Our gender estimation model is created and trained from scratch due to the simplicity of the gender
prediction task compared to age estimation. The model is a binary classifier with a sigmoidal output
between 0 and 1. For labelling purposes during training, images of males are assigned “0”, and images of
females are denoted as “1”. This output is produced after a given image x is fed to the model. We
describe the sigmoid function [22] in Eq. (2):

f ðxÞ ¼ 1

1þ e�x
(2)

We use the binary cross-entropy loss function [23] to optimize the model. The function is defined in Eq.
(3) as follows:

l ¼ � 1

N
yi logðpðyiÞÞ þ ð1� yiÞðlogð1� pðyiÞÞ (3)

where y is the gender label, p(yi) is the probability of the image being of class A while log(1 − p(y)) is the
probability that the image is of class B and N is the total number of samples. The network takes an input RGB
image of size 96 × 96. The network consists of four hidden layers and two fully-connected layers. The hidden
layers are defined as follows:

1) The first convolutional layer consists of 64 filters with a kernel size of 3 × 3, followed by batch
normalization and max-pooling layer.

2) The second layer consists of 128 filters with a kernel size of 3 × 3, followed by a batch normalization
layer and max-pooling layer.

3) The third layer consists of 256 filters of kernel size of 3 × 3, a batch normalization layer and a max-
pooling layer.

4) The final layer contains 512 filters with a kernel size of 3 × 3, followed by batch normalization and
max-pooling layers.

Each convolutional layer is activated using the Rectified Linear Unit (ReLU) function, and each max-
pooling layer has a pool size of 2 × 2. The fully-connected portion consists of two layers, each with
512 neurons, activated using the ReLU function and followed by a dropout layer with a rate of 0.5. The
final output layer consists of two neurons, producing the gender label. The network is optimized using
the Adam optimizer and trained for ten epochs. The model’s architecture is presented in Fig. 3.
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3.3 Age Group Estimation

Model A and Model B are both pre-trained, fine-tuned VGG16 networks. The networks are initially pre-
trained on the ImageNet dataset [24], containing around 1.2 million images. The VGG16 design is
comparatively deep and robust, and it has been employed in several challenging tasks besides age
estimation. We modify the model to fit our task by replacing the default input layer with an input layer
that accepts an image size of 96 × 96 × 3. The input size is adjusted to 96 × 96 to reduce the network’s
complexity and training time.

Moreover, we do not freeze any of the layers during training. The second adjustment we make to the
model is adding a single dense layer with 512 neurons after the last convolutional layer. This dense layer
is activated using the ReLU function and followed by a single dropout layer with a rate of 0.5. This
dense layer finally maps to an output softmax layer which maps to four age classes. In total, the number
of trainable parameters becomes 22,386,757 from 138 million. Since we are using the softmax activation
for the output layer and cross-entropy as a loss function, we define these in Eqs. (4) and (6):

rð~zÞi ¼
eziPK
j¼1 e

zj
(4)

~z ¼ w0x0 þ w1x1 þ � � � þ wkxk (5)

L ¼ � 1

m

Xm
i¼1

yi: logðbyiÞ (6)

We define~z as the input vector that is obtained using Eq. (5), zi represents the values of the ith element,PK
j¼1

ezj is a normalization term that ensures that the outputs sum up to 1, and K is the number of existing

classes. In Eq. (4), w represents the weight, and x represents the features, while in Eq. (6), m represents

the number of classes, y is the ground truth label and ŷ is the predicted label.

During training, the number of epochs is set to 100; however, early stopping is implemented to ensure
that the models do not overtrain. The addition of early stopping stops the training process of model A on the
30th epoch and model B on the 20th epoch. Both models are optimized using the adam optimizer with a
learning rate of 0.001. In Fig. 4, we summarize the overall design of both age estimation models.

4 Results and Evaluation

This section presents the accuracy of both models, the system’s overall accuracy, a comparative
evaluation with similar methods, and a breakdown of the datasets.

Figure 3: Gender classifier’s architecture
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Figure 4: Overview of the age estimation model

4.1 Datasets

In this study, we use the following datasets:

1) UTKFace [2]: This is a large-scale dataset with over 20,000+ facial images of subjects between 0 and
100 years old. In addition to age, the dataset is also labelled by gender, making it more suitable to train
our system. We divide this dataset into two portions. The first portion is training and testing, which is
used to train and validate models A and B. This portion consists of 22,508 images. The second portion is only
used to test both models and the whole system, and it contains 1164 images. We use 80% of the images for
training and 20% for validation for the first portion. The dataset can be downloaded through this link.

2) Kaggle Gender Dataset [21]: The Kaggle gender dataset is available for research purposes on
Kaggle. This dataset contains 47,009 training images, out of which 23,766 are of males, and the
remaining are of females. We use this dataset to train our gender classifier. The dataset is designed
for facial analysis tasks and can be accessed through this link.

3) FG-NET [10]: The FG-NET dataset has been widely used in age estimation tasks, and it is relatively
smaller in size. The dataset contains 1009 facial images, and it is used to further validate the
performance of our implementation. Out of these images, we use 200 random images for testing.
The dataset is available for research purposes on this link.

Tabs. 1 and 2 present the breakdown of our age classes and the number of male and female images in
each dataset. In addition, the breakdown of the gender dataset is presented in Tab. 3.
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4.2 Experimental Evaluation

In Figs. 5 and 6, we present both models’ learning and loss curves. In addition, we present the confusion
matrix of models A and B in Figs. 7 and 8, respectively.

Since our age estimation model is classification-based, we use the formula presented in Eq. (2) as a
metric to produce the accuracy. In Tab. 4, we present the accuracies of each model separately. In addition,
in Tab. 5, we present the entire system’s accuracy when tested on the FG-NET dataset and the UTKFace
test portion. Tab. 6 presents the accuracy of a single model that has been trained on the entire dataset
without separating the genders. Moreover, in Tab. 7, we compare our method with existing pieces of
literature. In Fig. 9, we present several misclassified samples from the FG-NET and the UTKFace
datasets. The number of correctly classified and misclassified images is obtained using Eqs. (7) and (8):

Xi¼0

N

f ðxÞ ¼ 1; yi ¼ y
0; yi 6¼ y

�
(7)

Xi¼0

N

gðxÞ ¼ 0; yi ¼ y
1; yi 6¼ y

�
(8)

In Eq. (7), the objective is to find the number of correctly classified images where the predicted label
equals the ground-truth label. On the other hand, Eq. (8) objective’s is to find the total number of outputs
where the predicted label is not equal to the ground-truth label.

Table 1: Classes and number of samples per class (Males)

Class # of images

0–12 1363

13–19 413

20–59 8358

60+ 1512

Table 2: Classes and number of samples per class (Females)

Class # of images

0–12 1588

13–19 614

20–59 7571

60+ 1089

Table 3: Breakdown of the Kaggle gender dataset

Class # of images

Males 23,766

Females 23,243
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Figure 5: Training and validation loss/accuracy–model B

Figure 6: Training and validation loss/accuracy–model A
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Figure 7: Confusion matrix-model B

Figure 8: Confusion matrix-model A

Table 4: Accuracies of models A and B tested separately

Model # of images Correctly classified Misclassified Accuracy

Males 2912 2598 314 89.21%

Females 2716 2468 248 90.86%

Table 5: Accuracies of the entire system

Dataset # of images Correctly classified Misclassified Accuracy

UTKFace-test 1107 892 215 80.76%

FG-NET 200 133 67 66.50%

Table 6: Accuracies of the VGG16 model without separating the genders

Dataset # of images Correctly classified Misclassified Accuracy

UTKFace-test 1107 780 327 70.46%

FG-NET 200 98 102 48.00%
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To justify our choice of using a modified VGG16 network, we present the performance of three well-
known pre-trained models that have been configured similarly to our original age classifier. The
accuracies of the VGG19, ResNet50 and the Densely Connected Convolutional Networks (DenseNet121)
[31] are presented in Tab. 8.

5 Discussion

Upon conducting several experiments, we concluded that the most suitable network architecture for our
problem is the VGG16 design. We notice that pre-trained models other than the VGG16 tend to overfit easily

Table 7: Our work compared to existing methods

Method Accuracy (%)

Levi et al. [25] 50.70

Uddin et al. [11] 71.84

Qawaqneh et al. [26] 59.9

Kim [27] 67.47

Zhang et al. [28] 67.30

Hou et al. [29] 67.30

Rothe et al. [30] 64.00

Ours (UTKFace) 80.76

Ours (FG-NET) 66.50

Figure 9: Misclassified samples of females (top), males (bottom)

Table 8: Accuracies of similar pre-trained networks

Model Dataset Accuracy

VGG19 UTKFace test 80.58%

DenseNet121 79.31%

ResNet50 77.87%

VGG19 FG-NET 54.50%

DenseNet121 42.53%

ResNet50 45.50%
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with our configurations, as demonstrated in Tab. 8. We theorize that overfitting happens due to the
complexity of the models and the small number of training samples; therefore, ResNet50 or
DenseNet121 models may outperform the VGG16 network if more training images are acquired.

A significant observation from our study is that separating the images based on their facial gender
improves the classification accuracy. This observation is illustrated in the results presented in Tabs. 4–6.
It is evident from the results in these tables that training two different models increases the overall
accuracy by roughly 10%.

We hypothesize that the accuracy increases because each model will no longer have to learn the gender
features; therefore, the models will solely focus on extracting and learning the ageing features. The early
stopping mechanism backs this hypothesis since model A stops training on the 30th and model B stops
training on the 20th. Based on Tab. 4, it is observed that despite the number of female and male subjects
being almost similar, model B produces lower accuracy compared to model A. The theory for the difference
in accuracy is that images of males may contain more features than those of females. Features such as facial
hair in male subjects might explain why the model struggles to produce an accurate class prediction.

The number of age classes was decided on after several experiments. The age classes chosen represent
the four main age categories: Childhood (0–12), Teenage (13–19), Adulthood (20–59), Senior Citizens (60
+). This grouping of age labels was preferred to cover all the possible age groups, which studies like
[11,25,26] lack. The age gaps and number of classes seemed to affect the accuracy of both models and
the entire system. Based on our experiments, the accuracy worsens when we decrease the age gap and
increase the number of age classes. This issue occurs as some age classes might have overlapping
features with subsequent classes. For example, subjects in 0–5 and 6–10 age groups would be difficult to
classify as their facial features look similar.

The gender classifier is the first entry point to our system; therefore, we aim to produce a robust gender
estimation model that works on unrestrained facial images while remaining as lightweight as possible. We
achieve this objective by proposing the design shown in Fig. 3. Batch normalization is utilized for
regularization and to reduce overfitting. In addition, max-pooling layers are employed to reduce the
dimensionality of the feature map, thus reducing the number of parameters. To further prevent overfitting,
we add dropout layers with a rate of 50% after each fully-connected layer. The number of convolutional
layers, kernel size and filter size was decided based on several experiments. These experiments aimed to
maximize accuracy and reduce complexity as much as possible. Our system has several limitations that
could be solved if more training samples are added. The first limitation is that the system struggles to
classify age and gender when given grayscale images similar to the ones shown in Fig. 9.

Moreover, low-resolution samples pose a significant challenge to our system as several ageing features
like wrinkles or the face’s texture become unclear to capture. Finally, images of toddlers are mostly
misclassified during the gender filtering process since it is difficult to know a toddler’s gender based on
their face. These limitations are primarily encountered when the system is evaluated on the FG-NET dataset.

6 Conclusion

This study introduces a gender-specific age estimation system based on two components. The first
component is a gender estimation model which labels incoming input facial images. The second
component is an age estimation model, consisting of two main VGG16 classifiers denoted as models A
and B. Model A is trained only on female subjects. In contrast, model B is trained only on male subjects.
Based on the label produced by the facial gender estimator, the appropriate age model is loaded and used
to predict the facial age class. We bundle the age groups into four classes: 0–12, 13–19, 20–59 and 60+.
We use the UTKFace and FG-NET datasets to train and test the age estimation models and the Kaggle
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gender dataset to train the gender classifier. The presented results demonstrate that separating age estimation
models based on gender increases the classification accuracy; however, there are several limitations to the
proposed system which need to be addressed in future research. For future work, we are interested in
exploring the integration of generative adversarial networks (GANs) to generate more training samples
since the lack of enough data is one of the significant limitations.

Acknowledgement: The authors would like to thank Swinburne University of Technology (Sarawak
Campus) for providing the necessary resources to carry out this study

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] T. Hassner, S. Harel, E. Paz and R. Enbar, “Effective face frontalization in unconstrained images,” in IEEE Conf.

on Computer Vision and Pattern Recognition (CVPR), Boston, USA, pp. 4295–4304, 2015.

[2] Z. Zhang, H. Qi and Y. Song, “Age progression/regression by conditional adversarial autoencoder,” in IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), Hawai, USA, pp. 4352–4360, 2017.

[3] K. Song, Y. Yan, W. Chen and X. Zhang, “Research and perspective on local binary pattern,” Acta Automatica
Sinica, vol. 39, no. 6, pp. 730–744, 2013.

[4] N. Kanopoulos, N. Vasanthavada and R. L. Baker, “Design of an image edge detection filter using the sobel
operator,” IEEE Journal of Solid-State Circuits, vol. 23, no. 2, pp. 358–367, 1988.

[5] S. Al-Shannaq and L. A. Elrefaei, “Comprehensive analysis of the literature for age estimation from facial
images,” IEEE Access, vol. 7, pp. 93229–93249, 2019.

[6] R. Angulu, J. Tapamo and A. Adewumi, “Age estimation via face images: A survey,” Journal of Image Video
Processing, vol. 42, no. 2, pp. 1–35, 2018.

[7] O. Ekiz, G. Yuce, S. Ulaşli, F. Ekiz, S. Yuce et al., “Factors influencing skin ageing in a Mediterranean population
from Turkey,” Clinical and Experimental Dermatology, vol. 37, no. 5, pp. 492–496, 2012.

[8] M. A. Farage, K. W. Miller, P. Elsner and H. I. Maibach, “Intrinsic and extrinsic factors in skin ageing: A review,”
International Journal of Cosmetic Science, vol. 30, no. 15, pp. 87–95, 2008.

[9] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in Int.
Conf. on Learning Representations, San Diego, USA, pp. 1130–1150, May 2015.

[10] Y. Fu, T. Hospedales, T. Xiang, Y. Yao and S. Gong, “Interestingness prediction by robust learning to rank,” in
European Conf. on Computer Vision, Zurich, Switzerland, pp. 448–503, 2014.

[11] S. Uddin, M. Morshed, M. Prottoy and A. Rahman, “Age estimation from facial images using transfer learning
and K-fold cross-validation,” in 3rd Int. Conf. on Pattern Recognition and Intelligent Systems, Bangkok,
Thailand, pp. 33–36, 2021.

[12] K. He, X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition,” in 29th IEEE Conf. on
Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 770–778, 2015.

[13] J. Hu, L. Shen, S. Albanie, G. Sun and E. Wu, “Squeeze-and-excitation networks,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 42, no. 8, pp. 2011–2023, 2020.

[14] Q. Cao, L. Shen, W. Xie, O. Parkhi and A. Zisserman, “VGGFace2: A dataset for recognising faces across pose
and age,” in 13th IEEE Int. Conf. on Automatic Face & Gesture, Xian, China, pp. 67–74, 2018.

[15] A. Othmani, A. Taleb, H. Abdelkawy and A. Hadid, “Age estimation from faces using deep learning: A
comparative analysis,” Computer Vision and Image Understanding, vol. 196, no. 1, pp. 102961, 2020.

[16] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in IEEE Conf. on Computer Vision
and Pattern Recognition, Honolulu, USA, pp. 1800–1807, 2017.

IASC, 2022, vol.34, no.1 117



[17] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, “Rethinking the inception architecture for computer
vision,” in IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 2818–2826, 2016.

[18] J. Fang, Y. Yuan, X. Lu and Y. Feng, “Muti-stage learning for gender and age prediction,” Neurocomputing, vol.
334, no. 2, pp. 114–124, 2019.

[19] M. Everingham, L. Gool, C. Williams, J. Winn and A. Zisserman, “The pascal visual object classes (VOC)
challenge,” International Journal of Computer Vision, vol. 88, no. 2, pp. 303–338, 2010.

[20] B. Chen, C. Chen and W. Hsu, “Face recognition and retrieval using cross-age reference coding with cross-age
celebrity dataset,” IEEE Transactions on Multimedia, vol. 17, no. 6, pp. 804–815, 2014.

[21] KAGGLE, https://www.kaggle.com/cashutosh/gender-classification-dataset, 2019.

[22] J. Feng and S. Lu, “Performance analysis of various activation functions in artificial neural networks,” Journal of
Physics: Conference Series, vol. 1237, no. 2, pp. 111–122, 2019.

[23] S. Mannor, D. Peleg and R. Rubinstein, “The cross-entropy method for classification,” in Machine Learning,
Proc. of the Twenty-Second Int. Conf., Bonn, pp. 561–568, 2005.

[24] J. Deng, W. Dong, R. Socher, L. Jia, K. Li et al., “ImageNet: A large-scale hierarchical image database,” in IEEE
Conf. on Computer Vision and Pattern Recognition, Miami, USA, pp. 248–255, 2009.

[25] G. Levi and T. Hassner, “Age and gender classification using convolutional neural networks,” in IEEE Workshop
on Analysis and Modeling of Faces and Gestures (AMFG), Boston, USA, pp. 34–42, 2015.

[26] Z. Qawaqneh, A. Mallouh and B. Barkana, “Deep convolutional neural network for age estimation based on
VGG-face model,” arXiv preprint arXiv, 2017.

[27] T. Kim, “GeneralizingMLPs with dropouts, batch normalization, and skip connections,” arXiv preprint arXiv, 2021.

[28] K. Zhang, C. Gao, L. Guo, M. Sun, X. Yuan et al., “Age group and gender estimation in the wild with deep RoR
architecture,” IEEE Access, vol. 5, pp. 22492–22503, 2017.

[29] L. Hou, D. Samaras, T. Kurc, Y. Gao and J. Saltz, “Convnets with smooth adaptive activation functions for
regression,” in Int. Conf. on Artificial Intelligence and Statistics, Lauderdale, USA, pp. 430–439, 2017.

[30] R. Rothe, R. Timofte and L. Van Gool, “Deep expectation of real and apparent age from a single image without
facial landmarks,” International Journal of Computer Vision, vol. 126, no. 2, pp. 144–157, 2018.

[31] G. Huang, Z. Liu and K. Weinberger, “Densely connected convolutional networks,” in Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition, Honolulu, USA, pp. 4700–4708, 2017.

118 IASC, 2022, vol.34, no.1

https://www.kaggle.com/cashutosh/gender-classification-dataset

	Gender-specific Facial Age Group Classification Using Deep Learning
	Introduction
	Related Works
	Method
	Results and Evaluation
	Discussion
	Conclusion
	flink7
	References


