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Abstract: This paper presents effective techniques for automatic detection/classi-
fication of COVID-19 and other lung diseases using machine learning, including
deep learning with convolutional neural networks (CNN) and classical machine
learning techniques. We had access to a large number of chest X-ray images to
use as input data. The data contains various categories including COVID-19,
Pneumonia, Pneumothorax, Atelectasis, and Normal (without disease). In addi-
tion, chest X-ray images with many findings (abnormalities and diseases) from
the National Institutes of Health (NIH) was also considered. Our deep learning
approach used a CNN architecture with VGG16 and VGG19 models which were
pre-trained with ImageNet. We compared this approach with the classical machine
learning approaches, namely Support Vector Machine (SVM) and Random Forest.
In addition to independently extracting image features, pre-trained features
obtained from a VGG19 model were utilized with these classical machine learn-
ing techniques. Both binary and categorical (multi-class) classification tasks were
considered on classical machine learning and deep learning. Several X-ray images
ranging from 7000 images up to 11500 images were used in each of our experi-
ments. Five experimental cases were considered for each classification model.
Results obtained from all techniques were evaluated with confusion matrices,
accuracy, precision, recall and F1-score. In summary, most of the results are very
impressive. Our deep learning approach produced up to 97.5% accuracy and 98%
F1-score on COVID-19 vs. non-COVID-19 (normal or diseases excluding COV-
ID-19) class, while in classical machine learning approaches, the SVM with pre-
trained features produced 98.9% accuracy, and at least 98.2% precision, recall and
F1-score on COVID-19 vs. non-COVID-19 class. These disease detection models
can be deployed for practical usage in the near future.

Keywords: COVID-19; deep learning; image classification; lung disease; machine
learning; pneumonia; pretrained features

1 Introduction

In late 2019, China experiences an outbreak of a new disease called SARS-CoV-2 or COVID-19.
Among other symptoms, the disease can cause serious damage to the lungs of infected patients. The
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number of patients has been increasing rapidly. As of October 2021, over 240 million cases have been
detected [1]. Of all the cases, there are 4.9 million death cases. The World Health Organization (WHO)
has declared this disease a pandemic. So, there is an urgent need for an easy and simple way to detect the
suspected COVID-19 symptoms as soon as possible. Chest X-ray image analysis is one of the main
methods to detect lung disease including COVID-19. The image detection requires a radiologist together
with a medical doctor to perform a diagnosis.

Artificial intelligence (AI) has shown great promise in image identification and classification tasks.
Machine learning is one AI area that includes many methods for image detection and classification. One
of the popular methods is called deep learning. It is built with a multi-layer network that can be trained
using input data. A convolutional neural network (CNN) is one of the deep learning methods. It has great
success in classifying spatial data is and usually used for recognizing images. CNN combines feature
extraction and classification in one workflow. Other machine learning techniques require feature
extraction as an additional step before performing detection/classification. However, the classical machine
learning methods can also be successful in image classification.

2 Literature Review

Given the critical importance of COVID-19 diagnosis, there has been a wealth of recent research
applying artificial intelligence for chest X-ray image diagnosis. Arias-Londoño et al. [2] used CNN for
chest X-ray classification. The experimental corpus held many chest X-ray images in 3 classes which are
COVID-19, pneumonia, and others as shown in Tab. 1. Normal data (without disease) was not included.
The best accuracy was obtained with 91.67% accuracy. Khan et al. [3] proposed the classification using
Xception CNN architecture with 71 layers deep. The dataset contained 290 COVID-19 images,
1203 normal images and 1653 pneumonia images. The best experiment used a binary classification model
which obtained 99% accuracy. Another CNN model was used with a decision tree classifier proposed by
Vinod et al. [4]. The model produced 87% of accuracy and 93% of recall. Later, Abbas et al. [5]
proposed a framework combining Decomposition, Transfer learning, and Composition (DeTraC). The
dataset contained a total of 196 X-ray images having 3 classes which were normal, COVID-19, and
SARS. The final classification was done with VGG19 architecture. The model produced 97.35%
accuracy. Sedik et al. [6] proposed CNN and other deep learning techniques. The methods were tested on
a dataset of 56 COVID-19 and 56 non-COVID-19 images. The dataset was augmented by 10-fold before
using in the model. This research produced up to 99% accuracy. Multiple architectures of CNN were
tested by Kamil [7]. All architectures used transfer learning techniques so that they could be learned
quickly. The dataset combined 23 CT images and 977 Chest X-ray images (with 195 COVID-19 images)
in 2 classes, normal and COVID-19. The VGG19 model gave the highest accuracy of 99%. Rangarajan
et al. [8] proposed a classification model using 2 data augmentation methods. The first method used
flipping and rotation of the image, while the second method used a generative adversarial network [9] to
create synthetic images. The researchers compared 5 classification models, where the best model is
VGG16 with accuracy of 98.6%. Morís et al. [10] improved the COVID-19 screening with portable chest
X-ray images using cycle-generative adversarial networks to generate synthetic images. The classification
task was to classify the COVID-19 class and non-COVID-19 class where the ResNet-9 model gave the
highest accuracy of 98.61%.

Many recent research publications have presented classical machine learning techniques for COVID-19
chest X-ray image detection/classification as well. Majority voting-based techniques were deployed to
predict the result by Chandra et al. [11], where classical machine learning models were used to predict
the disease classes of chest X-ray images. This research used 3 feature extraction methods to select the
significant features [12]. The research obtained 98% accuracy on normal vs. abnormal, and 91% accuracy
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on pneumonia vs. COVID-19. Tuncer et al. [13] used Local Binary Pattern feature extraction [14] and
ReliefF feature selection [15]. A Support Vector Machine (SVM) classifier obtained 100% accuracy.
Öztürk [16] also presented an SVM classifier considering both CT X-ray and chest X-ray images using
shrunken features. The best accuracy obtained was 94.23%. Lastly, CT X-ray image classification was
performed by Ardakani et al. [17] using different techniques, where the dataset used only COVID-19 and
pneumonia images with a total of 612 images. The research presented 5 classification models, where the
best model was an ensemble model using 4 of the models to predict the result with accuracy of 93.85%.
Júnior et al. [18] used deep features from 3 architectures, VGG19, Inception-v3, and ResNet50 as input
of XGBoost classifier. The performance of classifying normal and COVID-19 classes gave 98.71%
accuracy. Tamal et al. [19] used radiomic features as input in SVM classifier. The radiomic features are
special features extracted from radiographic medical images [20]. The classification output classes are
COVID-19 and non-COVID-19 with 95.2% accuracy. Tab. 1 summarizes these previous research works.

In summary, both classical machine learning techniques and deep learning techniques were considered
for COVID-19 detection/classification. However, most of this previous research used a small number of
COVID-19 chest X-ray images together with a few hundreds of normal images. Mainly, they considered
binary class classification. A few papers considered 3-class classification using input data containing a
few disease types; COVID-19 and pneumonia.

In our work, we want to be able to identify multiple lung diseases, particularly COVID-19 against
others. We use a large amount of data (at least 1500 images per disease) compared to the previous
research to improve the detection/classification results and make them more reliable and robust. Multiple

Table 1: Summary of all literature review showing the methods, amount of data, number of output classes,
and accuracy

Reference Methods used Cases Output
Classes

Accuracy
(%)

Normal COVID Pneumonia Others

[2] CNN - 8573 24114 49983 3 up to 91.6

[3] Xception CNN 1203 290 1653 - 2–4 up to 99

[4] CNN + DT 463 701 - - 2 up to 87

[5] VGG19 80 105 - 11 3 up to 97.3

[6] CNN 56 56 - - 2 up to 99

[7] VGG19 805 195 - - 2 up to 99

[8] VGG16 1304 598 3804 - 3 up to 98.6

[10] ResNet-9 240 240 240 - 2 up to 98.6

[11] Majority Vote 782 782 782 - 2 up to 98

[13] SVM 234 87 - - 2 up to 100

[16] SVM 24 101 24 111 6 up to 94.2

[17] Ensemble - 306 306 - 2 up to 93.8

[18] XGBoost 1341 206 - - 2 up to 98.7

[19] SVM 75 341 75 52 2 up to 95.2

Ours SVM, RF, VGG16, VGG19 3500 3500 1500 3000 2–5 up to 99

IASC, 2022, vol.34, no.2 735



reliable datasets with various lung diseases are applied. We also want to directly compare the detection/
classification performance of deep learning and classical machine learning techniques. Since some
research papers have reported only overall detection accuracy, we want to perform a more extensive
evaluation that considers the full confusion matrix as well as other measures. Finally, we want to compare
results from binary class classification with multi-class classification. The framework of this work is
shown in Fig. 1.

The main contributions of this paper are as follows.

■ Consider and evaluate both deep learning techniques and classical machine learning (ML) techniques
for binary-class and multi-class classification. Many experimental cases are presented.

■ Apply pre-trained CNN models to speed up the training process and produce high detection/
classification accuracy.

■ Apply pre-trained features from deep learning models to classical ML techniques to produce higher
detection/classification accuracy than when using previously proposed feature extraction and
selection techniques.

■ Provide up to 97.5% accuracy and 98% F1-score of COVID-19 detection against various lung diseases
and normal using the proposed deep learning models.

■ Provide up to 98.9% accuracy and 99% F1-score of COVID-19 detection using the proposed Support
Vector Machine with pre-trained features from a selected deep learning model.

This paper is organized as follows. Section 2 presents the proposed methods including dataset preview,
data preprocessing, and detection/classification techniques. Section 3 describes our experimental design,
parameter settings, evaluation methods, and performance parameters. Section 4 presents the obtained
results and Section 5 provides the conclusions.

3 Proposed Method

In this section, we describe our datasets, how we process them, and all methods used in experiments. We
also discuss the deep learning and classical machine learning (ML) techniques used in this paper.

3.1 Dataset

Our dataset consists of chest X-ray images with Posterior Anterior (PA) view as shown in Fig. 2 (more
detailed information is provided in Section 3.). We obtained the datasets from reliable online sources such as

Figure 1: Proposed method framework
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Kaggle and NIH databases [21–23]. The datasets contain 5 classes which are Atelectasis, COVID-19,
Normal, Pneumonia, and Pneumothorax.

3.2 Data Preprocessing

Chest X-ray images were first in grayscale format and then converted into red-green-blue (RGB) format
for processing with a deep learning model and feature extraction method. The images were 224 × 224 with
3 color channels in RGB format. For each class, we mapped the images to their labels. For binary-class
classifications, 0 and 1 are used as our output. For categorical or multi-class classification, one-hot
encoding is used to transform the numeric label into values that represent each class. Normal means
having no lung disease.

3.3 Deep Learning

Deep learning is one of machine learning techniques that uses artificial neural network as its core.
Convolutional Neural Network (CNN) is a well-known technique that is used to classify images. Deep
learning usually consists of many layers. The network uses a back-propagation learning algorithm to adapt
the weights linking neurons in the network to one another. The weights determine the final output of the
network when given an input to classify. Deep learning already contains feature extraction, unlike classical
machine learning that requires an additional feature extraction process before classification as shown in Fig. 3.

Convolutional neural networks (CNN) [24] are specialized for handling spatially distributed data such as
images. They contain convolutional layers in which the output from a particular neuron or unit depends not
only on its activation value but also on its position in an array, with respect to other units. The convolutional
layers of a CNN are primarily responsible for learning spatial patterns, that is, features. To work well, CNNs
also include other types of layers, including pooling layers, drop-out layers, and fully connected layers.

Figure 2: Sample images from the dataset containing atelectasis, COVID-19, normal, pneumonia, and
pneumothorax classes
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The convolutional layer is used to collect information from image inputs and recombine them into new
images or features that will be fed into the deeper layer. The convolution layers are the core of the
convolutional neural network. The convolution operation is mathematically defined in Eq. (1), where G is
feature mapping, h is a kernel, and f is an input image. Pooling layers are used to reduce the
dimensionality of the network and summarize the output from convolutional layers. Dropout layers
randomly discard some of the output weights from the layer. Dropout layers slow the rate of learning but
help make the network generalize better by reducing overfitting. The fully interconnected layer (FC) is
the last part of the network. It is used to classify the input and gives predicted output. The input will be
converted from two-dimensional arrays to a one-dimensional vector (called “flattened”) before entering
this layer.

G½m; n� ¼ ðf � hÞ½m; n� ¼
X

j

X

k

h½j; k� f ½m� j; n� k� (1)

A popular method used in training a deep learning model is called “transfer learning” [25]. The method
adapts the knowledge of an already trained model for a new training goal. For classification, the transfer
learning freezes the trained capability of a previously trained model and removes the classification layers
which are fully connected layers. Then, we replace them with new fully connected layers and train the
model further to reach our goal. The transfer learning uses the lower-level features learned by the original
model, allowing them to be refined and applied in a new model to solve a new problem. Many successful
architectures have used the ImageNet training dataset [26] and gained high detection performance. VGG
is one of them. It has 2 main variation models which are VGG16 and VGG19 [27]. The VGG16 model
has 16 layers while the VGG19 model has 19 layers as shown in Fig. 4. The layer counting does not
include max pooling layers and fully connected layers.

3.4 Feature Extraction

Unlike CNN, classical machine learning techniques require the researcher to define and extract features
(dimensions or attributes) from the input before training the model. Feature extraction calculates values from
the input that represent the important characteristics of the data. In this work, we use pre-trained features to
extract the feature from our data.

The pre-trained feature approach borrows the idea from the transfer learning model with trained weights.
Usually, transfer learning is applied to a new CNN model, but in our case, the deep-learning-trained features
are used with classical ML approaches. We start with the VGG19 model trained with the ImageNet dataset.

Figure 3: Comparison between classical machine learning and deep learning process
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The fully connected layers in the model are removed, so that the last layer is the max-pooling layer, as shown
in Fig. 5. The model receives input size 224 × 224 × 3 and gives an output size of 7 × 7 × 512. Them, the
output features are flattened to produce 25,088 features and will be later used as the input to the classical
machine learning techniques.

3.5 Classical Machine Learning

Like deep learning models, supervised classical machine learning techniques must be trained with
labeled samples of the input data. However, unlike deep learning, these techniques do not learn the best
features in the input dataset by themselves. Instead, the input data must be transformed into a set of
selected features, for each training and testing data item. In this work, we present two effective machine
learning techniques which are Support Vector Machine (SVM) and Random Forest (RF).

Figure 4: Original architecture of VGG16 and VGG19

Figure 5: Cut-off VGG19 architecture to output only features
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SVM [28] is a machine learning technique that separates data items (input data items, represented as
vectors of feature values) into classes in high dimensional space by using a hyperplane. The data items in
the space can be handled with a selected kernel function that maps the data into a different form. There
are 3 common kernel functions which are linear, polynomial, and Gaussian functions.

RF [29] is an ensemble technique that consists of multiple decision trees [30]. The RF method uses a
randomly selected subset of data features to create a tree and creates many trees instead of one. The data
is classified based on the result of many trees, using some aggregation algorithm.

4 Experimental Design

In this section, the input data used in each experiment is described together with the experimental setup,
evaluation method, performance evaluation metrics, and hardware and software environment for the
experiments.

4.1 Dataset

The chest X-ray dataset used in our experiments consists of 5 classes which are normal, COVID-19,
pneumonia, pneumothorax, and atelectasis. These diseases are well-known and commonly found all
around the world. The input images were obtained from online databases at Kaggle (kaggle.com) and the
National Institutes of Health (nihcc.app.box.com). Details of the datasets are shown in Tab. 2.

4.2 Parameter Settings

The parameter setting for deep learning and classical machine learning are presented in Tabs. 3 and 4,
respectively. The deep learning models that we consider are VGG 16 and VGG19, while the machine
learning models are SVM and RF.

Table 2: Number of images gathered for each class

Class Kaggle NIH Total

Normal - 3,500 3,500

COVID-19 3,500 - 3,500

Pneumonia 1,500 - 1,500

Pneumothorax - 1,500 1,500

Atelectasis - 1,500 1,500

Table 3: Parameter setting for deep learning models, VGG16 and VGG19

Parameter VGG16 VGG19

Base model VGG16 without fully connected
layers

VGG19 without fully connected
layers

Input shape 224 × 224 × 3 224 × 224 × 3

FC 1 1024 1024

FC 2 1024 1024

FC 3 512 512

Output for binary class Sigmoid Sigmoid
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4.3 Experimental Design

We considered both binary (2 classes) and categorical (3–5 classes) classification tasks. For the binary
classification, two pairwise discriminations: normal vs. COVID-19 (case 1) and COVID-19 vs. non-COVID-
19 (case 2) were examined. For the categorical classification, 3 classes (normal, COVID-19 and others) and
5 classes (normal, COVID-19, pneumonia, pneumothorax, and atelectasis) were considered. Tab. 5 shows
the detailed experimental design and input dataset for each experimental case.

4.4 Evaluation

For evaluating our detection/classification models, we use two methods to separate the training and
testing data which are a hold-out method and a k-fold cross-validation method. In the deep learning
experiments, we used only the hold-out method. The method splits the training, testing, and validation
data into three non-overlapping sets. Validation data is only used to observe the result from model
training to find the best time to stop training to avoid over-trained or overfitting. K-fold cross-validation
splits the data into k subsets. Then it tests each subset while using the model trained from the remaining
subsets. In our experiment, the k-fold method is only used in classical machine learning. The detailed
information of our evaluation is shown in Tab. 6.

Table 3 (continued).

Parameter VGG16 VGG19

Output for categorical
classes

SoftMax SoftMax

Optimizer ADAM ADAM

Batch size 32 32

Epochs 100 100

Learning rate 1E-7 1E-7

Initial weight ImageNet ImageNet

Table 4: Parameter setting for SVM and RF

Algorithm Parameter Input size

SVM kernel = Gaussian 25088
25088RF depth = 16, estimators = 250

Table 5: Input data on each experimental case

Case Experiment Classes

Normal COVID Pneumonia Pneumothorax Atelectasis

1 COVID-19 vs. normal 3,500 3,500 - - -

2 COVID-19 vs. non-COVID-19 1,500 3,500 1,500 1,500 1,500

3 COVID-19 vs. normal vs. others 3,500 3,500 1,500 1,500 1,500

4 All 5 classes 1,500 1,500 1,500 1,500 1,500
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4.5 Performance Metrics

Performance evaluation metrics are calculated from the confusion matrix including accuracy, precision,
recall, and F1-score. The definitions of the confusion matrix and performance evaluation metrics are shown
in Fig. 6 and Tab. 7, respectively, where TP is true positive, FP is false positive, FN is false negative, and TN
is True negative.

4.6 Environment

In this paper, all detection/classification models were developed/trained using a personal computer with
i5-9500F 3.00 GHz Processor, 16 GB RAM, and GTX 1060 Graphics card running on the operating system
Windows 10, 64-bit Pro. We conducted the experiments using Python 3 with Keras deep learning library and
Scikit learn classical machine learning library.

Table 6: Evaluation for each classifier

Classifier Train Test Validation k-fold

VGG16 70% 20% 10% -

VGG19 70% 20% 10% -

SVM - - - 5

RF - - - 5

Figure 6: Confusion matrix of 2 classes

Table 7: Performance evaluation for each classifier

Measurement Formula

Recall TP/(TP + FN)

Precision TP/(TP +FP)

Accuracy (TP + TN)/(TP + TN + FP + FN)

F1-score (2 * Precision * Recall)/(Precision + Recall)
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5 Experimental Results

In this section, all experimental results of our proposed methods are presented. The results were
separated into two parts: deep learning experiments, and classical ML experiments with pre-trained
features. Each part contained 4 experimental cases (binary and categorical) as previously discussed.

5.1 Deep Learning Experiment

Our first part of the experiments focused on pure deep learning methods using transfer learning with
ImageNet weight. The experiment contained 4 cases which are Normal vs. COVID-19, COVID-19 vs.
non-COVID-19, Normal vs. COVID-19 vs. Others, and all 5 classes. As discussed in Section 3.4, the
experimental cases split the train-test-validation in the ratio of 70:20:10 using the hold-out method. The
training/validation accuracy and training/validation loss results of VGG19 are graphically displayed
in Fig. 7.

From Fig. 7, we see that the accuracy of both training and validation for all models increase rapidly
during the first 10 iterations/epochs and then gradually increase. The first row presents result obtained
from the first experimental case, while the 2nd-4th rows present results obtained from the 2nd-4th cases,
respectively. During this training time, each classification model learns to adjust itself so that the
difference between the two detection/accuracy rates (training and validation) is small and becomes stable.
Then, the models are ready for testing with separate testing datasets, where results are presented with
confusion matrices as shown in Fig. 8, and the corresponding performance evaluation metrics are shown
in Tabs. 8 and 9.

From Fig. 8, we can see that the classification results obtained from the VGG16 and VGG19 in each
experimental case are similar. COVID-19 images can be mostly detected/classified. In particular, in cases
1–2 with binary-class classification, less than 50 X-ray images out of 1400 images (700 COVID-
19 images and 700 non-COVID-19 images) were misclassified. Normal images, shown in case 1, can be
identified mostly as well. Considering multi-class classification, cases 3–4, more misclassified images
were obtained. However, we were still able to identify COVID-19 correctly mostly, apart from normal
and other diseases, as shown in case 3. Then, with more output classes to classify, in case 4, we had most
of the misclassified images belong to Pneumothorax and Atelectasis classes. The performance of the
VGG16 and VGG19 can be considered in detail as presented in the following tables.

From Tabs. 8 and 9, experimental cases 1 and 2 which are binary class classification gave the most
promising results with over 0.95 on the accuracy, recall, precision, and F1-score. For experimental cases
3 and 4, we consider more lung diseases for classification with 3 and 5 classes, respectively. Both of the
experiments give good results on COVID-19 detection/classification. In experimental case 4 with 5-class
classification, the performance in COVID-19 classification is 0.934 accuracy, while pneumonia
classification is the best, with 0.968 accuracy.

In summary, both VGG16 and VGG19 models give a similar performance at binary-class classification.
However, VGG19 performs slightly better than VGG16 at multi-class classification.

5.2 Classical Machine Learning Experiments

Next, we considered classical ML techniques with pre-trained features of VGG19 as input data. All
experimental cases use 5-fold cross-validation method. The input images are in red-green-blue format.
The performance evaluation metrics for SVM and RF are presented in Tabs. 10 and 11, respectively,
where SVM was found to have superior performance among all classification techniques that we
considered in all experiments.
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Figure 7: Accuracy and loss values of VGG19 from cases 1 to 4 starting from top to bottom rows
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Figure 8: Results of 4 experimental cases: confusion matrices of VGG16 and VGG19 classification models
started from the top row
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From Tab. 10, the SVM model gave very high accuracy and overall performance in all experimental
cases, with 0.99 accuracy for COVID-19 classification, while less accuracy was obtained for normal or
other disease classification. Other measures which are recall, precision and F1-score were obtained with
similar results as the accuracy as shown in the table.

Table 9: Performance of VGG19

Experiments Classes Performance metrics

Accuracy Recall Precision F1-score

Case 1: COVID-19 vs. normal COVID-19 0.965 0.970 0.961 0.965

Normal 0.961 0.969 0.965

Case 2: COVID-19 vs. non-COVID-19 COVID-19 0.974 0.962 0.967 0.964

Non-COVID-19 0.980 0.978 0.979

Case 3: COVID-19 vs. normal vs. others Normal 0.689 0.480 0.489 0.484

COVID-19 0.927 0.871 0.889 0.880

Other 0.690 0.620 0.601 0.610

Case 4: 5-class classification Normal 0.858 0.630 0.649 0.639

COVID-19 0.934 0.790 0.871 0.828

Pneumonia 0.968 0.933 0.909 0.921

Pneumothorax 0.782 0.466 0.457 0.462

Atelectasis 0.798 0.533 0.495 0.513

Table 8: Performance of VGG16

Experiments Classes Performance Metrics

Accuracy Recall Precision F1-score

Case 1: COVID-19 vs. normal COVID-19 0.965 0.975 0.956 0.966

Normal 0.955 0.975 0.965

Case 2: COVID-19 vs. non-COVID-19 COVID-19 0.975 0.985 0.976 0.980

Non-COVID-19 0.958 0.973 0.966

Case 3: COVID-19 vs. normal vs. others Normal 0.663 0.457 0.448 0.452

COVID-19 0.921 0.862 0.877 0.870

Other 0.662 0.567 0.569 0.568

Case 4: 5-class classification Normal 0.846 0.603 0.619 0.611

COVID-19 0.903 0.750 0.762 0.756

Pneumonia 0.959 0.890 0.905 0.897

Pneumothorax 0.782 0.470 0.457 0.463

Atelectasis 0.786 0.783 0.467 0.475

746 IASC, 2022, vol.34, no.2



Tab. 11 presented the results obtained with the RF model, where COVID-19 detection was obtained with
0.96–0.98 accuracy and similar values for recall, precision, and F1-score. The RF is not as good as the SVM
in solving these classification problems.

Table 10: Performance of SVM using VGG19 pre-trained features

Experiments Classes Stats Performance metrics

Accuracy Recall Precision F1-
score

Case 1: COVID-19 vs. normal COVID-19 Max 0.990 0.997 0.995 0.990

Normal 0.995 0.997 0.990

COVID-19 Avg 0.985 0.988 0.981 0.985

Normal 0.981 0.988 0.985

Case 2: COVID-19 vs. non-COVID-19 COVID-19 Max 0.991 0.988 0.994 0.987

Non-COVID-
19

0.996 0.993 0.992

COVID-19 Avg 0.987 0.979 0.985 0.982

Non-COVID-
19

0.991 0.988 0.989

Case 3: COVID-19 vs. normal vs. others Normal Max 0.778 0.817 0.608 0.687

COVID-19 0.990 0.991 0.986 0.985

Other 0.779 0.636 0.791 0.690

Normal Avg 0.774 0.764 0.602 0.673

COVID-19 0.986 0.981 0.973 0.977

Other 0.776 0.606 0.773 0.679

Case 4: 5-class classification Normal Max 0.929 0.790 0.884 0.817

COVID-19 0.990 0.973 0.979 0.976

Pneumonia 0.992 0.983 0.986 0.981

Pneumothorax 0.842 0.636 0.608 0.615

Atelectasis 0.861 0.760 0.637 0.673

Normal Avg 0.896 0.634 0.800 0.705

COVID-19 0.985 0.968 0.959 0.964

Pneumonia 0.989 0.974 0.973 0.974

Pneumothorax 0.825 0.597 0.560 0.577

Atelectasis 0.849 0.688 0.608 0.645
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5.3 Computation Time

In our experiments, deep learning and classical machine learning models were trained to classify the X-
ray images. We wanted to compare our computation time between using deep learning (VGG19) and
classical machine learning (SVM and RF). The computation time is separated into two parts which are
image pre-processing time and training time. The pre-processing time includes the time when images are
resized, reformatted, encoded, and feature extracted. This is shown in Tab. 12. The computation time
used for model training is shown in Tab. 13.

Table 11: Performance of RF using VGG19 pre-trained features

Experiments Class Stats Performance metrics

Accuracy Recall Precision F1-
score

Case 1: COVID-19 vs. normal COVID-19 Max 0.975 0.988 0.984 0.975

Normal 0.984 0.988 0.975

COVID-19 Avg 0.963 0.970 0.957 0.963

Normal 0.955 0.970 0.963

Case 2: COVID-19 vs.
non-COVID-19

COVID-19 Max 0.981 0.967 0.992 0.974

Non-COVID-
19

0.995 0.980 0.985

COVID-19 Avg 0.963 0.925 0.974 0.949

Non-COVID-
19

0.985 0.958 0.971

Case 3: COVID-19 vs. normal vs. others Normal Max 0.772 0.740 0.607 0.658

COVID-19 0.977 0.987 0.948 0.963

Other 0.774 0.632 0.760 0.687

Normal Avg 0.764 0.704 0.595 0.645

COVID-19 0.957 0.972 0.900 0.934

Other 0.763 0.595 0.750 0.663

Case 4: 5-class classification Normal Max 0.924 0.690 0.976 0.784

COVID-19 0.978 0.960 0.937 0.947

Pneumonia 0.990 0.990 0.973 0.976

Pneumothorax 0.839 0.640 0.592 0.610

Atelectasis 0.857 0.730 0.630 0.661

Normal Avg 0.901 0.553 0.922 0.684

COVID-19 0.964 0.951 0.883 0.915

Pneumonia 0.984 0.972 0.949 0.960

Pneumothorax 0.816 0.620 0.538 0.575

Atelectasis 0.842 0.674 0.594 0.630
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The image pre-processing time for the deep learning model is less than the time required for image pre-
processing for classical machine learning because the deep learning model does not require feature
extraction. However, training each deep learning model takes a significantly longer time than training a
classical machine learning model, as shown in Tab. 13. In addition, for experimental case 3, the amount
of data used in training each model is a lot more than in other cases. Thus, the SVM used more time with
an average of 1871.2 s which is close to the deep learning training time. However, RF is the model that
requires the lowest training time in all experimental cases.

5.4 Exploring NIH Dataset for COVID-19 Detection

To further demonstrate the effectiveness of our SVMmodel to identify COVID-19 infected images apart
from many other lung-infected/abnormal and normal images, we consider a well-known NIH dataset that
consists of X-ray images of many lung diseases and abnormalities. The dataset does not have COVID-
19 X-ray images, so we include in this last experiment the set of COVID-19 images that were used in our
previous experimental cases. So, this last experiment consists of 3500 COVID-19 images and 3500 non-
COVID-19 images from the NIH database.

We sampled 3500 images from the dataset consisting of normal (no finding), multi-finding, and many
lung diseases and abnormalities as shown in Tab. 14. We want to perform COVID-19 detection against other
diseases as well as normal. This is a binary class classification with 5-fold cross-validation. In this case, the
VGG19 pre-trained features are used as input and the classification result is shown in Tab. 15.

Table 12: Image pre-processing time (s)

Models Case 1 Case 2 Case 3 Case 4

Deep learning: VGG 16, VGG19 9 11 35 33

Classical Machine Learning with VGG16 features 67 77 90 62

Table 13: Computation time for model training (s)

Model fold/holdout Case 1 Case 2 Case 3 Case 4

VGG16 hold out 2920 4384 1943 1207

VGG19 hold out 3522 4659 2328 1860

SVM fold 1 294 507 1955 752

fold 2 284 496 1904 751

fold 3 290 499 1875 740

fold 4 286 504 1790 726

fold 5 278 485 1832 715

average 286.4 498.2 1871.2 736.8

RF fold 1 42 58 109 63

fold 2 41 57 110 61

fold 3 42 58 110 62

fold 4 42 59 115 63

fold 5 42 59 152 64

average 41.8 58.2 119.2 62.6
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In this experiment with our SVM model, COVID-19 images can be detected with 0.984 accuracy on
average of 5 folds, and sometimes as high as 0.992 accuracy in a fold which is quite impressive. The
other performance metrics which are recall, precision and F1-score also have very high values ranging
between 0.98–0.99 on average, and sometimes as high as 0.997, as shown in Tab. 15. This means the
SVM model can detect COVID-19 accurately against many other findings in the chest X-ray images.

6 Summary and Conclusion

In summary, our classification models have very good performance on binary-class classification with
both classical machine learning approach and deep learning approach. Overall, the classical machine learning
technique SVMwith VGG-19 pre-trained features gives the best classification performance. In this work, we
also consider the computation time of all classification models including image pre-processing time. Datasets
with many lung diseases and abnormalities from well-known database and NIH were also considered in our
classification models.

The SVMmodel requires more computation time (image pre-processing time and training time) than the
RF model, but less than the deep learning’s computation time. In other words, the proposed SVM with
VGG19 pre-trained features has superior performance than the deep learning models both in terms of
classification performance (i.e., accuracy, recall, precision, and F1-score) and computation time.

In conclusion, we can apply deep learning and classical machine learning approaches to automatically
detect/classify lung diseases with chest X-ray images. Our future work is to deploy the detection/
classification models for practical usage.

Table 14: Sample dataset from NIH group as a non-COVID-19 class

Finding Amount (images) Finding Amount (images)

No finding 2054 Pleural Thickening 49

Multi finding 504 Cardiomegaly 37

Infiltration 273 Fibrosis 36

Atelectasis 117 Emphysema 32

Effusion 110 Consolidation 17

Nodule 107 Pneumonia 5

Pneumothorax 89 Hernia 4

Mass 65 Edema 1

Table 15: Performance on non-COVID-19 and COVID-19 classes using SVMwith VGG19 pre-trained features

Experiment Classes Stats Performance Metrics

Accuracy Recall Precision F1-score

COVID-19 vs.
non-COVID-19

COVID-19 Max 0.992 0.997 0.992 0.992

non-COVID-19 0.992 0.996 0.992

COVID-19 Avg 0.984 0.990 0.980 0.985

non-COVID-19 0.979 0.990 0.984
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